Coverage Report

Created: 2025-11-16 06:35

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libSBRdec/src/sbrdec_freq_sca.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2021 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  Frequency scale calculation
106
*/
107
108
#include "sbrdec_freq_sca.h"
109
110
#include "transcendent.h"
111
#include "sbr_rom.h"
112
#include "env_extr.h"
113
114
#include "genericStds.h" /* need log() for debug-code only */
115
116
753k
#define MAX_OCTAVE 29
117
#define MAX_SECOND_REGION 50
118
119
static int numberOfBands(FIXP_SGL bpo_div16, int start, int stop, int warpFlag);
120
static void CalcBands(UCHAR *diff, UCHAR start, UCHAR stop, UCHAR num_bands);
121
static SBR_ERROR modifyBands(UCHAR max_band, UCHAR *diff, UCHAR length);
122
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
123
                   UCHAR *start_adress);
124
125
/*!
126
  \brief     Retrieve QMF-band where the SBR range starts
127
128
  Convert startFreq which was read from the bitstream into a
129
  QMF-channel number.
130
131
  \return  Number of start band
132
*/
133
static UCHAR getStartBand(
134
    UINT fs,              /*!< Output sampling frequency */
135
    UCHAR startFreq,      /*!< Index to table of possible start bands */
136
    UINT headerDataFlags) /*!< Info to SBR mode */
137
387k
{
138
387k
  INT band;
139
387k
  UINT fsMapped = fs;
140
387k
  SBR_RATE rate = DUAL;
141
142
387k
  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
143
125k
    if (headerDataFlags & SBRDEC_QUAD_RATE) {
144
17.7k
      rate = QUAD;
145
17.7k
    }
146
125k
    fsMapped = sbrdec_mapToStdSampleRate(fs, 1);
147
125k
  }
148
149
387k
  FDK_ASSERT(2 * (rate + 1) <= (4));
150
151
387k
  switch (fsMapped) {
152
2.25k
    case 192000:
153
2.25k
      band = FDK_sbrDecoder_sbr_start_freq_192[startFreq];
154
2.25k
      break;
155
19.1k
    case 176400:
156
19.1k
      band = FDK_sbrDecoder_sbr_start_freq_176[startFreq];
157
19.1k
      break;
158
8.96k
    case 128000:
159
8.96k
      band = FDK_sbrDecoder_sbr_start_freq_128[startFreq];
160
8.96k
      break;
161
37.2k
    case 96000:
162
41.1k
    case 88200:
163
41.1k
      band = FDK_sbrDecoder_sbr_start_freq_88[rate][startFreq];
164
41.1k
      break;
165
10.5k
    case 64000:
166
10.5k
      band = FDK_sbrDecoder_sbr_start_freq_64[rate][startFreq];
167
10.5k
      break;
168
10.1k
    case 48000:
169
10.1k
      band = FDK_sbrDecoder_sbr_start_freq_48[rate][startFreq];
170
10.1k
      break;
171
34.7k
    case 44100:
172
34.7k
      band = FDK_sbrDecoder_sbr_start_freq_44[rate][startFreq];
173
34.7k
      break;
174
1.18k
    case 40000:
175
1.18k
      band = FDK_sbrDecoder_sbr_start_freq_40[rate][startFreq];
176
1.18k
      break;
177
6.91k
    case 32000:
178
6.91k
      band = FDK_sbrDecoder_sbr_start_freq_32[rate][startFreq];
179
6.91k
      break;
180
73.4k
    case 24000:
181
73.4k
      band = FDK_sbrDecoder_sbr_start_freq_24[rate][startFreq];
182
73.4k
      break;
183
63.4k
    case 22050:
184
63.4k
      band = FDK_sbrDecoder_sbr_start_freq_22[rate][startFreq];
185
63.4k
      break;
186
115k
    case 16000:
187
115k
      band = FDK_sbrDecoder_sbr_start_freq_16[rate][startFreq];
188
115k
      break;
189
210
    default:
190
210
      band = 255;
191
387k
  }
192
193
387k
  return band;
194
387k
}
195
196
/*!
197
  \brief     Retrieve QMF-band where the SBR range starts
198
199
  Convert startFreq which was read from the bitstream into a
200
  QMF-channel number.
201
202
  \return  Number of start band
203
*/
204
static UCHAR getStopBand(
205
    UINT fs,              /*!< Output sampling frequency */
206
    UCHAR stopFreq,       /*!< Index to table of possible start bands */
207
    UINT headerDataFlags, /*!< Info to SBR mode */
208
    UCHAR k0)             /*!< Start freq index */
209
387k
{
210
387k
  UCHAR k2;
211
212
387k
  if (stopFreq < 14) {
213
366k
    INT stopMin;
214
366k
    INT num = 2 * (64);
215
366k
    UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
216
366k
    UCHAR *diff0 = diff_tot;
217
366k
    UCHAR *diff1 = diff_tot + MAX_OCTAVE;
218
219
366k
    if (headerDataFlags & SBRDEC_QUAD_RATE) {
220
17.6k
      num >>= 1;
221
17.6k
    }
222
223
366k
    if (fs < 32000) {
224
247k
      stopMin = (((2 * 6000 * num) / fs) + 1) >> 1;
225
247k
    } else {
226
119k
      if (fs < 64000) {
227
45.1k
        stopMin = (((2 * 8000 * num) / fs) + 1) >> 1;
228
74.2k
      } else {
229
74.2k
        stopMin = (((2 * 10000 * num) / fs) + 1) >> 1;
230
74.2k
      }
231
119k
    }
232
233
366k
    stopMin = fMin(stopMin, 64);
234
235
    /*
236
      Choose a stop band between k1 and 64 depending on stopFreq (0..13),
237
      based on a logarithmic scale.
238
      The vectors diff0 and diff1 are used temporarily here.
239
    */
240
366k
    CalcBands(diff0, stopMin, 64, 13);
241
366k
    shellsort(diff0, 13);
242
366k
    cumSum(stopMin, diff0, 13, diff1);
243
366k
    k2 = diff1[stopFreq];
244
366k
  } else if (stopFreq == 14)
245
4.95k
    k2 = 2 * k0;
246
15.6k
  else
247
15.6k
    k2 = 3 * k0;
248
249
  /* Limit to Nyquist */
250
387k
  if (k2 > (64)) k2 = (64);
251
252
  /* Range checks */
253
  /* 1 <= difference <= 48; 1 <= fs <= 96000 */
254
387k
  {
255
387k
    UCHAR max_freq_coeffs = (headerDataFlags & SBRDEC_QUAD_RATE)
256
387k
                                ? MAX_FREQ_COEFFS_QUAD_RATE
257
387k
                                : MAX_FREQ_COEFFS;
258
387k
    if (((k2 - k0) > max_freq_coeffs) || (k2 <= k0)) {
259
3.77k
      return 255;
260
3.77k
    }
261
387k
  }
262
263
383k
  if (headerDataFlags & SBRDEC_QUAD_RATE) {
264
17.7k
    return k2; /* skip other checks: (k2 - k0) must be <=
265
                  MAX_FREQ_COEFFS_QUAD_RATE for all fs */
266
17.7k
  }
267
365k
  if (headerDataFlags & (SBRDEC_SYNTAX_USAC | SBRDEC_SYNTAX_RSVD50)) {
268
    /* 1 <= difference <= 35; 42000 <= fs <= 96000 */
269
107k
    if ((fs >= 42000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
270
1.32k
      return 255;
271
1.32k
    }
272
    /* 1 <= difference <= 32; 46009 <= fs <= 96000 */
273
106k
    if ((fs >= 46009) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
274
174
      return 255;
275
174
    }
276
258k
  } else {
277
    /* 1 <= difference <= 35; fs == 44100 */
278
258k
    if ((fs == 44100) && ((k2 - k0) > MAX_FREQ_COEFFS_FS44100)) {
279
372
      return 255;
280
372
    }
281
    /* 1 <= difference <= 32; 48000 <= fs <= 96000 */
282
257k
    if ((fs >= 48000) && ((k2 - k0) > MAX_FREQ_COEFFS_FS48000)) {
283
809
      return 255;
284
809
    }
285
257k
  }
286
287
362k
  return k2;
288
365k
}
289
290
/*!
291
  \brief     Generates master frequency tables
292
293
  Frequency tables are calculated according to the selected domain
294
  (linear/logarithmic) and granularity.
295
  IEC 14496-3 4.6.18.3.2.1
296
297
  \return  errorCode, 0 if successful
298
*/
299
SBR_ERROR
300
sbrdecUpdateFreqScale(
301
    UCHAR *v_k_master, /*!< Master table to be created */
302
    UCHAR *numMaster,  /*!< Number of entries in master table */
303
    UINT fs,           /*!< SBR working sampling rate */
304
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Control data from bitstream */
305
387k
    UINT flags) {
306
387k
  FIXP_SGL bpo_div16; /* bands_per_octave divided by 16 */
307
387k
  INT dk = 0;
308
309
  /* Internal variables */
310
387k
  UCHAR k0, k2, i;
311
387k
  UCHAR num_bands0 = 0;
312
387k
  UCHAR num_bands1 = 0;
313
387k
  UCHAR diff_tot[MAX_OCTAVE + MAX_SECOND_REGION];
314
387k
  UCHAR *diff0 = diff_tot;
315
387k
  UCHAR *diff1 = diff_tot + MAX_OCTAVE;
316
387k
  INT k2_achived;
317
387k
  INT k2_diff;
318
387k
  INT incr = 0;
319
320
  /*
321
    Determine start band
322
  */
323
387k
  if (flags & SBRDEC_QUAD_RATE) {
324
17.7k
    fs >>= 1;
325
17.7k
  }
326
327
387k
  k0 = getStartBand(fs, hHeaderData->bs_data.startFreq, flags);
328
387k
  if (k0 == 255) {
329
210
    return SBRDEC_UNSUPPORTED_CONFIG;
330
210
  }
331
332
  /*
333
    Determine stop band
334
  */
335
387k
  k2 = getStopBand(fs, hHeaderData->bs_data.stopFreq, flags, k0);
336
387k
  if (k2 == 255) {
337
6.45k
    return SBRDEC_UNSUPPORTED_CONFIG;
338
6.45k
  }
339
340
380k
  if (hHeaderData->bs_data.freqScale > 0) { /* Bark */
341
193k
    INT k1;
342
343
193k
    if (hHeaderData->bs_data.freqScale == 1) {
344
5.31k
      bpo_div16 = FL2FXCONST_SGL(12.0f / 16.0f);
345
188k
    } else if (hHeaderData->bs_data.freqScale == 2) {
346
162k
      bpo_div16 = FL2FXCONST_SGL(10.0f / 16.0f);
347
162k
    } else {
348
26.3k
      bpo_div16 = FL2FXCONST_SGL(8.0f / 16.0f);
349
26.3k
    }
350
351
    /* Ref: ISO/IEC 23003-3, Figure 12 - Flowchart calculation of fMaster for
352
     * 4:1 system when bs_freq_scale > 0 */
353
193k
    if (flags & SBRDEC_QUAD_RATE) {
354
5.07k
      if ((SHORT)k0 < (SHORT)(bpo_div16 >> ((FRACT_BITS - 1) - 4))) {
355
2.22k
        bpo_div16 = (FIXP_SGL)(k0 & (UCHAR)0xfe)
356
2.22k
                    << ((FRACT_BITS - 1) - 4); /* bpo_div16 = floor(k0/2)*2 */
357
2.22k
      }
358
5.07k
    }
359
360
193k
    if (1000 * k2 > 2245 * k0) { /* Two or more regions */
361
118k
      k1 = 2 * k0;
362
363
118k
      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
364
118k
      num_bands1 =
365
118k
          numberOfBands(bpo_div16, k1, k2, hHeaderData->bs_data.alterScale);
366
118k
      if (num_bands0 < 1) {
367
688
        return SBRDEC_UNSUPPORTED_CONFIG;
368
688
      }
369
117k
      if (num_bands1 < 1) {
370
39
        return SBRDEC_UNSUPPORTED_CONFIG;
371
39
      }
372
373
117k
      CalcBands(diff0, k0, k1, num_bands0);
374
117k
      shellsort(diff0, num_bands0);
375
117k
      if (diff0[0] == 0) {
376
6.99k
        return SBRDEC_UNSUPPORTED_CONFIG;
377
6.99k
      }
378
379
110k
      cumSum(k0, diff0, num_bands0, v_k_master);
380
381
110k
      CalcBands(diff1, k1, k2, num_bands1);
382
110k
      shellsort(diff1, num_bands1);
383
110k
      if (diff0[num_bands0 - 1] > diff1[0]) {
384
3.63k
        SBR_ERROR err;
385
386
3.63k
        err = modifyBands(diff0[num_bands0 - 1], diff1, num_bands1);
387
3.63k
        if (err) return SBRDEC_UNSUPPORTED_CONFIG;
388
3.63k
      }
389
390
      /* Add 2nd region */
391
110k
      cumSum(k1, diff1, num_bands1, &v_k_master[num_bands0]);
392
110k
      *numMaster = num_bands0 + num_bands1; /* Output nr of bands */
393
394
110k
    } else { /* Only one region */
395
75.0k
      k1 = k2;
396
397
75.0k
      num_bands0 = numberOfBands(bpo_div16, k0, k1, 0);
398
75.0k
      if (num_bands0 < 1) {
399
345
        return SBRDEC_UNSUPPORTED_CONFIG;
400
345
      }
401
74.7k
      CalcBands(diff0, k0, k1, num_bands0);
402
74.7k
      shellsort(diff0, num_bands0);
403
74.7k
      if (diff0[0] == 0) {
404
1.31k
        return SBRDEC_UNSUPPORTED_CONFIG;
405
1.31k
      }
406
407
73.4k
      cumSum(k0, diff0, num_bands0, v_k_master);
408
73.4k
      *numMaster = num_bands0; /* Output nr of bands */
409
73.4k
    }
410
193k
  } else { /* Linear mode */
411
186k
    if (hHeaderData->bs_data.alterScale == 0) {
412
11.4k
      dk = 1;
413
      /* FLOOR to get to few number of bands (next lower even number) */
414
11.4k
      num_bands0 = (k2 - k0) & 254;
415
175k
    } else {
416
175k
      dk = 2;
417
175k
      num_bands0 = (((k2 - k0) >> 1) + 1) & 254; /* ROUND to the closest fit */
418
175k
    }
419
420
186k
    if (num_bands0 < 1) {
421
435
      return SBRDEC_UNSUPPORTED_CONFIG;
422
      /* We must return already here because 'i' can become negative below. */
423
435
    }
424
425
186k
    k2_achived = k0 + num_bands0 * dk;
426
186k
    k2_diff = k2 - k2_achived;
427
428
2.09M
    for (i = 0; i < num_bands0; i++) diff_tot[i] = dk;
429
430
    /* If linear scale wasn't achieved */
431
    /* and we got too wide SBR area */
432
186k
    if (k2_diff < 0) {
433
133k
      incr = 1;
434
133k
      i = 0;
435
133k
    }
436
437
    /* If linear scale wasn't achieved */
438
    /* and we got too small SBR area */
439
186k
    if (k2_diff > 0) {
440
38.8k
      incr = -1;
441
38.8k
      i = num_bands0 - 1;
442
38.8k
    }
443
444
    /* Adjust diff vector to get sepc. SBR range */
445
401k
    while (k2_diff != 0) {
446
214k
      diff_tot[i] = diff_tot[i] - incr;
447
214k
      i = i + incr;
448
214k
      k2_diff = k2_diff + incr;
449
214k
    }
450
451
186k
    cumSum(k0, diff_tot, num_bands0, v_k_master); /* cumsum */
452
186k
    *numMaster = num_bands0;                      /* Output nr of bands */
453
186k
  }
454
455
370k
  if (*numMaster < 1) {
456
0
    return SBRDEC_UNSUPPORTED_CONFIG;
457
0
  }
458
459
  /* Ref: ISO/IEC 23003-3 Cor.3, "In 7.5.5.2, add to the requirements:"*/
460
370k
  if (flags & SBRDEC_QUAD_RATE) {
461
16.6k
    int k;
462
198k
    for (k = 1; k < *numMaster; k++) {
463
182k
      if (!(v_k_master[k] - v_k_master[k - 1] <= k0 - 2)) {
464
766
        return SBRDEC_UNSUPPORTED_CONFIG;
465
766
      }
466
182k
    }
467
16.6k
  }
468
469
  /*
470
    Print out the calculated table
471
  */
472
473
369k
  return SBRDEC_OK;
474
370k
}
475
476
/*!
477
  \brief     Calculate frequency ratio of one SBR band
478
479
  All SBR bands should span a constant frequency range in the logarithmic
480
  domain. This function calculates the ratio of any SBR band's upper and lower
481
  frequency.
482
483
 \return    num_band-th root of k_start/k_stop
484
*/
485
670k
static FIXP_SGL calcFactorPerBand(int k_start, int k_stop, int num_bands) {
486
  /* Scaled bandfactor and step 1 bit right to avoid overflow
487
   * use double data type */
488
670k
  FIXP_DBL bandfactor = FL2FXCONST_DBL(0.25f); /* Start value */
489
670k
  FIXP_DBL step = FL2FXCONST_DBL(0.125f); /* Initial increment for factor */
490
491
670k
  int direction = 1;
492
493
  /* Because saturation can't be done in INT IIS,
494
   * changed start and stop data type from FIXP_SGL to FIXP_DBL */
495
670k
  FIXP_DBL start = k_start << (DFRACT_BITS - 8);
496
670k
  FIXP_DBL stop = k_stop << (DFRACT_BITS - 8);
497
498
670k
  FIXP_DBL temp;
499
500
670k
  int j, i = 0;
501
502
30.7M
  while (step > FL2FXCONST_DBL(0.0f)) {
503
30.0M
    i++;
504
30.0M
    temp = stop;
505
506
    /* Calculate temp^num_bands: */
507
342M
    for (j = 0; j < num_bands; j++)
508
      // temp = fMult(temp,bandfactor);
509
312M
      temp = fMultDiv2(temp, bandfactor) << 2;
510
511
30.0M
    if (temp < start) { /* Factor too strong, make it weaker */
512
15.4M
      if (direction == 0)
513
        /* Halfen step. Right shift is not done as fract because otherwise the
514
           lowest bit cannot be cleared due to rounding */
515
9.38M
        step = (FIXP_DBL)((LONG)step >> 1);
516
15.4M
      direction = 1;
517
15.4M
      bandfactor = bandfactor + step;
518
15.4M
    } else { /* Factor is too weak: make it stronger */
519
14.5M
      if (direction == 1) step = (FIXP_DBL)((LONG)step >> 1);
520
14.5M
      direction = 0;
521
14.5M
      bandfactor = bandfactor - step;
522
14.5M
    }
523
524
30.0M
    if (i > 100) {
525
0
      step = FL2FXCONST_DBL(0.0f);
526
0
    }
527
30.0M
  }
528
670k
  return (bandfactor >= FL2FXCONST_DBL(0.5)) ? (FIXP_SGL)MAXVAL_SGL
529
670k
                                             : FX_DBL2FX_SGL(bandfactor << 1);
530
670k
}
531
532
/*!
533
  \brief     Calculate number of SBR bands between start and stop band
534
535
  Given the number of bands per octave, this function calculates how many
536
  bands fit in the given frequency range.
537
  When the warpFlag is set, the 'band density' is decreased by a factor
538
  of 1/1.3
539
540
  \return    number of bands
541
*/
542
static int numberOfBands(
543
    FIXP_SGL bpo_div16, /*!< Input: number of bands per octave divided by 16 */
544
    int start,          /*!< First QMF band of SBR frequency range */
545
    int stop,           /*!< Last QMF band of SBR frequency range + 1 */
546
    int warpFlag)       /*!< Stretching flag */
547
312k
{
548
312k
  FIXP_SGL num_bands_div128;
549
312k
  int num_bands;
550
551
312k
  num_bands_div128 =
552
312k
      FX_DBL2FX_SGL(fMult(FDK_getNumOctavesDiv8(start, stop), bpo_div16));
553
554
312k
  if (warpFlag) {
555
    /* Apply the warp factor of 1.3 to get wider bands.  We use a value
556
       of 32768/25200 instead of the exact value to avoid critical cases
557
       of rounding.
558
    */
559
104k
    num_bands_div128 = FX_DBL2FX_SGL(
560
104k
        fMult(num_bands_div128, FL2FXCONST_SGL(25200.0 / 32768.0)));
561
104k
  }
562
563
  /* add scaled 1 for rounding to even numbers: */
564
312k
  num_bands_div128 = num_bands_div128 + FL2FXCONST_SGL(1.0f / 128.0f);
565
  /* scale back to right aligned integer and double the value: */
566
312k
  num_bands = 2 * ((LONG)num_bands_div128 >> (FRACT_BITS - 7));
567
568
312k
  return (num_bands);
569
312k
}
570
571
/*!
572
  \brief     Calculate width of SBR bands
573
574
  Given the desired number of bands within the SBR frequency range,
575
  this function calculates the width of each SBR band in QMF channels.
576
  The bands get wider from start to stop (bark scale).
577
*/
578
static void CalcBands(UCHAR *diff,     /*!< Vector of widths to be calculated */
579
                      UCHAR start,     /*!< Lower end of subband range */
580
                      UCHAR stop,      /*!< Upper end of subband range */
581
                      UCHAR num_bands) /*!< Desired number of bands */
582
670k
{
583
670k
  int i;
584
670k
  int previous;
585
670k
  int current;
586
670k
  FIXP_SGL exact, temp;
587
670k
  FIXP_SGL bandfactor = calcFactorPerBand(start, stop, num_bands);
588
589
670k
  previous = stop; /* Start with highest QMF channel */
590
670k
  exact = (FIXP_SGL)(
591
670k
      stop << (FRACT_BITS - 8)); /* Shift left to gain some accuracy */
592
593
7.63M
  for (i = num_bands - 1; i >= 0; i--) {
594
    /* Calculate border of next lower sbr band */
595
6.96M
    exact = FX_DBL2FX_SGL(fMult(exact, bandfactor));
596
597
    /* Add scaled 0.5 for rounding:
598
       We use a value 128/256 instead of 0.5 to avoid some critical cases of
599
       rounding. */
600
6.96M
    temp = exact + FL2FXCONST_SGL(128.0 / 32768.0);
601
602
    /* scale back to right alinged integer: */
603
6.96M
    current = (LONG)temp >> (FRACT_BITS - 8);
604
605
    /* Save width of band i */
606
6.96M
    diff[i] = previous - current;
607
6.96M
    previous = current;
608
6.96M
  }
609
670k
}
610
611
/*!
612
  \brief     Calculate cumulated sum vector from delta vector
613
*/
614
static void cumSum(UCHAR start_value, UCHAR *diff, UCHAR length,
615
848k
                   UCHAR *start_adress) {
616
848k
  int i;
617
848k
  start_adress[0] = start_value;
618
9.64M
  for (i = 1; i <= length; i++)
619
8.79M
    start_adress[i] = start_adress[i - 1] + diff[i - 1];
620
848k
}
621
622
/*!
623
  \brief     Adapt width of frequency bands in the second region
624
625
  If SBR spans more than 2 octaves, the upper part of a bark-frequency-scale
626
  is calculated separately. This function tries to avoid that the second region
627
  starts with a band smaller than the highest band of the first region.
628
*/
629
static SBR_ERROR modifyBands(UCHAR max_band_previous, UCHAR *diff,
630
3.63k
                             UCHAR length) {
631
3.63k
  int change = max_band_previous - diff[0];
632
633
  /* Limit the change so that the last band cannot get narrower than the first
634
   * one */
635
3.63k
  if (change > (diff[length - 1] - diff[0]) >> 1)
636
1.71k
    change = (diff[length - 1] - diff[0]) >> 1;
637
638
3.63k
  diff[0] += change;
639
3.63k
  diff[length - 1] -= change;
640
3.63k
  shellsort(diff, length);
641
642
3.63k
  return SBRDEC_OK;
643
3.63k
}
644
645
/*!
646
  \brief   Update high resolution frequency band table
647
*/
648
static void sbrdecUpdateHiRes(UCHAR *h_hires, UCHAR *num_hires,
649
                              UCHAR *v_k_master, UCHAR num_bands,
650
367k
                              UCHAR xover_band) {
651
367k
  UCHAR i;
652
653
367k
  *num_hires = num_bands - xover_band;
654
655
4.23M
  for (i = xover_band; i <= num_bands; i++) {
656
3.86M
    h_hires[i - xover_band] = v_k_master[i];
657
3.86M
  }
658
367k
}
659
660
/*!
661
  \brief  Build low resolution table out of high resolution table
662
*/
663
static void sbrdecUpdateLoRes(UCHAR *h_lores, UCHAR *num_lores, UCHAR *h_hires,
664
367k
                              UCHAR num_hires) {
665
367k
  UCHAR i;
666
667
367k
  if ((num_hires & 1) == 0) {
668
    /* If even number of hires bands */
669
291k
    *num_lores = num_hires >> 1;
670
    /* Use every second lores=hires[0,2,4...] */
671
2.03M
    for (i = 0; i <= *num_lores; i++) h_lores[i] = h_hires[i * 2];
672
291k
  } else {
673
    /* Odd number of hires, which means xover is odd */
674
76.3k
    *num_lores = (num_hires + 1) >> 1;
675
    /* Use lores=hires[0,1,3,5 ...] */
676
76.3k
    h_lores[0] = h_hires[0];
677
411k
    for (i = 1; i <= *num_lores; i++) {
678
334k
      h_lores[i] = h_hires[i * 2 - 1];
679
334k
    }
680
76.3k
  }
681
367k
}
682
683
/*!
684
  \brief   Derive a low-resolution frequency-table from the master frequency
685
  table
686
*/
687
void sbrdecDownSampleLoRes(UCHAR *v_result, UCHAR num_result,
688
354k
                           UCHAR *freqBandTableRef, UCHAR num_Ref) {
689
354k
  int step;
690
354k
  int i, j;
691
354k
  int org_length, result_length;
692
354k
  int v_index[MAX_FREQ_COEFFS >> 1];
693
694
  /* init */
695
354k
  org_length = num_Ref;
696
354k
  result_length = num_result;
697
698
354k
  v_index[0] = 0; /* Always use left border */
699
354k
  i = 0;
700
1.08M
  while (org_length > 0) {
701
    /* Create downsample vector */
702
729k
    i++;
703
729k
    step = org_length / result_length;
704
729k
    org_length = org_length - step;
705
729k
    result_length--;
706
729k
    v_index[i] = v_index[i - 1] + step;
707
729k
  }
708
709
1.43M
  for (j = 0; j <= i; j++) {
710
    /* Use downsample vector to index LoResolution vector */
711
1.08M
    v_result[j] = freqBandTableRef[v_index[j]];
712
1.08M
  }
713
354k
}
714
715
/*!
716
  \brief   Sorting routine
717
*/
718
1.24M
void shellsort(UCHAR *in, UCHAR n) {
719
1.24M
  int i, j, v, w;
720
1.24M
  int inc = 1;
721
722
1.24M
  do
723
2.72M
    inc = 3 * inc + 1;
724
2.72M
  while (inc <= n);
725
726
2.72M
  do {
727
2.72M
    inc = inc / 3;
728
19.2M
    for (i = inc; i < n; i++) {
729
16.5M
      v = in[i];
730
16.5M
      j = i;
731
19.3M
      while ((w = in[j - inc]) > v) {
732
3.11M
        in[j] = w;
733
3.11M
        j -= inc;
734
3.11M
        if (j < inc) break;
735
3.11M
      }
736
16.5M
      in[j] = v;
737
16.5M
    }
738
2.72M
  } while (inc > 1);
739
1.24M
}
740
741
/*!
742
  \brief   Reset frequency band tables
743
  \return  errorCode, 0 if successful
744
*/
745
SBR_ERROR
746
387k
resetFreqBandTables(HANDLE_SBR_HEADER_DATA hHeaderData, const UINT flags) {
747
387k
  SBR_ERROR err = SBRDEC_OK;
748
387k
  int k2, kx, lsb, usb;
749
387k
  int intTemp;
750
387k
  UCHAR nBandsLo, nBandsHi;
751
387k
  HANDLE_FREQ_BAND_DATA hFreq = &hHeaderData->freqBandData;
752
753
  /* Calculate master frequency function */
754
387k
  err = sbrdecUpdateFreqScale(hFreq->v_k_master, &hFreq->numMaster,
755
387k
                              hHeaderData->sbrProcSmplRate, hHeaderData, flags);
756
757
387k
  if (err || (hHeaderData->bs_info.xover_band > hFreq->numMaster)) {
758
19.6k
    return SBRDEC_UNSUPPORTED_CONFIG;
759
19.6k
  }
760
761
  /* Derive Hiresolution from master frequency function */
762
367k
  sbrdecUpdateHiRes(hFreq->freqBandTable[1], &nBandsHi, hFreq->v_k_master,
763
367k
                    hFreq->numMaster, hHeaderData->bs_info.xover_band);
764
  /* Derive Loresolution from Hiresolution */
765
367k
  sbrdecUpdateLoRes(hFreq->freqBandTable[0], &nBandsLo, hFreq->freqBandTable[1],
766
367k
                    nBandsHi);
767
768
  /* Check index to freqBandTable[0] */
769
367k
  if (!(nBandsLo > 0) ||
770
366k
      (nBandsLo > (((hHeaderData->numberOfAnalysisBands == 16)
771
366k
                        ? MAX_FREQ_COEFFS_QUAD_RATE
772
366k
                        : MAX_FREQ_COEFFS_DUAL_RATE) >>
773
366k
                   1))) {
774
902
    return SBRDEC_UNSUPPORTED_CONFIG;
775
902
  }
776
777
366k
  hFreq->nSfb[0] = nBandsLo;
778
366k
  hFreq->nSfb[1] = nBandsHi;
779
780
366k
  lsb = hFreq->freqBandTable[0][0];
781
366k
  usb = hFreq->freqBandTable[0][nBandsLo];
782
783
  /* Check for start frequency border k_x:
784
     - ISO/IEC 14496-3 4.6.18.3.6 Requirements
785
     - ISO/IEC 23003-3 7.5.5.2    Modifications and additions to the MPEG-4 SBR
786
     tool
787
  */
788
  /* Note that lsb > as hHeaderData->numberOfAnalysisBands is a valid SBR config
789
   * for 24 band QMF analysis. */
790
366k
  if ((lsb > ((flags & SBRDEC_QUAD_RATE) ? 16 : (32))) || (lsb >= usb)) {
791
11.5k
    return SBRDEC_UNSUPPORTED_CONFIG;
792
11.5k
  }
793
794
  /* Calculate number of noise bands */
795
796
355k
  k2 = hFreq->freqBandTable[1][nBandsHi];
797
355k
  kx = hFreq->freqBandTable[1][0];
798
799
355k
  if (hHeaderData->bs_data.noise_bands == 0) {
800
17.2k
    hFreq->nNfb = 1;
801
17.2k
  } else /* Calculate no of noise bands 1,2 or 3 bands/octave */
802
337k
  {
803
    /* Fetch number of octaves divided by 32 */
804
337k
    intTemp = (LONG)FDK_getNumOctavesDiv8(kx, k2) >> 2;
805
806
    /* Integer-Multiplication with number of bands: */
807
337k
    intTemp = intTemp * hHeaderData->bs_data.noise_bands;
808
809
    /* Add scaled 0.5 for rounding: */
810
337k
    intTemp = intTemp + (LONG)FL2FXCONST_SGL(0.5f / 32.0f);
811
812
    /* Convert to right-aligned integer: */
813
337k
    intTemp = intTemp >> (FRACT_BITS - 1 /*sign*/ - 5 /* rescale */);
814
815
337k
    if (intTemp == 0) intTemp = 1;
816
817
337k
    if (intTemp > MAX_NOISE_COEFFS) {
818
315
      return SBRDEC_UNSUPPORTED_CONFIG;
819
315
    }
820
821
337k
    hFreq->nNfb = intTemp;
822
337k
  }
823
824
354k
  hFreq->nInvfBands = hFreq->nNfb;
825
826
  /* Get noise bands */
827
354k
  sbrdecDownSampleLoRes(hFreq->freqBandTableNoise, hFreq->nNfb,
828
354k
                        hFreq->freqBandTable[0], nBandsLo);
829
830
  /* save old highband; required for overlap in usac
831
     when headerchange occurs at XVAR and VARX frame; */
832
354k
  hFreq->ov_highSubband = hFreq->highSubband;
833
834
354k
  hFreq->lowSubband = lsb;
835
354k
  hFreq->highSubband = usb;
836
837
354k
  return SBRDEC_OK;
838
355k
}