Coverage Report

Created: 2026-01-09 06:47

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libAACdec/src/aacdec_hcrs.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):   Robert Weidner (DSP Solutions)
98
99
   Description: HCR Decoder: Prepare decoding of non-PCWs, segmentation- and
100
                bitfield-handling, HCR-Statemachine
101
102
*******************************************************************************/
103
104
#include "aacdec_hcrs.h"
105
106
#include "aacdec_hcr.h"
107
108
#include "aacdec_hcr_bit.h"
109
#include "aac_rom.h"
110
#include "aac_ram.h"
111
112
static UINT InitSegmentBitfield(UINT *pNumSegment,
113
                                SCHAR *pRemainingBitsInSegment,
114
                                UINT *pSegmentBitfield,
115
                                UCHAR *pNumWordForBitfield,
116
                                USHORT *pNumBitValidInLastWord);
117
118
static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr);
119
120
static INT ModuloValue(INT input, INT bufferlength);
121
122
static void ClearBitFromBitfield(STATEFUNC *ptrState, UINT offset,
123
                                 UINT *pBitfield);
124
125
/*---------------------------------------------------------------------------------------------
126
     description: This function decodes all non-priority codewords (non-PCWs) by
127
using a state-machine.
128
--------------------------------------------------------------------------------------------
129
*/
130
7.72k
void DecodeNonPCWs(HANDLE_FDK_BITSTREAM bs, H_HCR_INFO pHcr) {
131
7.72k
  UINT numValidSegment;
132
7.72k
  INT segmentOffset;
133
7.72k
  INT codewordOffsetBase;
134
7.72k
  INT codewordOffset;
135
7.72k
  UINT trial;
136
137
7.72k
  UINT *pNumSegment;
138
7.72k
  SCHAR *pRemainingBitsInSegment;
139
7.72k
  UINT *pSegmentBitfield;
140
7.72k
  UCHAR *pNumWordForBitfield;
141
7.72k
  USHORT *pNumBitValidInLastWord;
142
7.72k
  UINT *pCodewordBitfield;
143
7.72k
  INT bitfieldWord;
144
7.72k
  INT bitInWord;
145
7.72k
  UINT tempWord;
146
7.72k
  UINT interMediateWord;
147
7.72k
  INT tempBit;
148
7.72k
  INT carry;
149
150
7.72k
  UINT numCodeword;
151
7.72k
  UCHAR numSet;
152
7.72k
  UCHAR currentSet;
153
7.72k
  UINT codewordInSet;
154
7.72k
  UINT remainingCodewordsInSet;
155
7.72k
  SCHAR *pSta;
156
7.72k
  UINT ret;
157
158
7.72k
  pNumSegment = &(pHcr->segmentInfo.numSegment);
159
7.72k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
160
7.72k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
161
7.72k
  pNumWordForBitfield = &(pHcr->segmentInfo.numWordForBitfield);
162
7.72k
  pNumBitValidInLastWord = &(pHcr->segmentInfo.pNumBitValidInLastWord);
163
7.72k
  pSta = pHcr->nonPcwSideinfo.pSta;
164
165
7.72k
  numValidSegment = InitSegmentBitfield(pNumSegment, pRemainingBitsInSegment,
166
7.72k
                                        pSegmentBitfield, pNumWordForBitfield,
167
7.72k
                                        pNumBitValidInLastWord);
168
169
7.72k
  if (numValidSegment != 0) {
170
7.43k
    numCodeword = pHcr->sectionInfo.numCodeword;
171
7.43k
    numSet = ((numCodeword - 1) / *pNumSegment) + 1;
172
173
7.43k
    pHcr->segmentInfo.readDirection = FROM_RIGHT_TO_LEFT;
174
175
    /* Process sets subsequently */
176
7.43k
    numSet = fMin(numSet, (UCHAR)MAX_HCR_SETS);
177
44.5k
    for (currentSet = 1; currentSet < numSet; currentSet++) {
178
179
      /* step 1 */
180
38.1k
      numCodeword -=
181
38.1k
          *pNumSegment; /* number of remaining non PCWs [for all sets] */
182
38.1k
      if (numCodeword < *pNumSegment) {
183
4.96k
        codewordInSet = numCodeword; /* for last set */
184
33.2k
      } else {
185
33.2k
        codewordInSet = *pNumSegment; /* for all sets except last set */
186
33.2k
      }
187
188
      /* step 2 */
189
      /* prepare array 'CodewordBitfield'; as much ones are written from left in
190
       * all words, as much decodedCodewordInSetCounter nonPCWs exist in this
191
       * set */
192
38.1k
      tempWord = 0xFFFFFFFF;
193
38.1k
      pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
194
195
83.7k
      for (bitfieldWord = *pNumWordForBitfield; bitfieldWord != 0;
196
45.5k
           bitfieldWord--) { /* loop over all used words */
197
45.5k
        if (codewordInSet > NUMBER_OF_BIT_IN_WORD) { /* more codewords than
198
                                                        number of bits => fill
199
                                                        ones */
200
          /* fill a whole word with ones */
201
4.57k
          *pCodewordBitfield++ = tempWord;
202
4.57k
          codewordInSet -= NUMBER_OF_BIT_IN_WORD; /* subtract number of bits */
203
41.0k
        } else {
204
          /* prepare last tempWord */
205
41.0k
          for (remainingCodewordsInSet = codewordInSet;
206
985k
               remainingCodewordsInSet < NUMBER_OF_BIT_IN_WORD;
207
944k
               remainingCodewordsInSet++) {
208
944k
            tempWord =
209
944k
                tempWord &
210
944k
                ~(1
211
944k
                  << (NUMBER_OF_BIT_IN_WORD - 1 -
212
944k
                      remainingCodewordsInSet)); /* set a zero at bit number
213
                                                    (NUMBER_OF_BIT_IN_WORD-1-i)
214
                                                    in tempWord */
215
944k
          }
216
41.0k
          *pCodewordBitfield++ = tempWord;
217
41.0k
          tempWord = 0x00000000;
218
41.0k
        }
219
45.5k
      }
220
38.1k
      pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
221
222
      /* step 3 */
223
      /* build non-PCW sideinfo for each non-PCW of the current set */
224
38.1k
      InitNonPCWSideInformationForCurrentSet(pHcr);
225
226
      /* step 4 */
227
      /* decode all non-PCWs belonging to this set */
228
229
      /* loop over trials */
230
38.1k
      codewordOffsetBase = 0;
231
523k
      for (trial = *pNumSegment; trial > 0; trial--) {
232
        /* loop over number of words in bitfields */
233
486k
        segmentOffset = 0; /* start at zero in every segment */
234
486k
        pHcr->segmentInfo.segmentOffset =
235
486k
            segmentOffset; /* store in structure for states */
236
486k
        codewordOffset = codewordOffsetBase;
237
486k
        pHcr->nonPcwSideinfo.codewordOffset =
238
486k
            codewordOffset; /* store in structure for states */
239
240
2.03M
        for (bitfieldWord = 0; bitfieldWord < *pNumWordForBitfield;
241
1.54M
             bitfieldWord++) {
242
          /* derive tempWord with bitwise and */
243
1.54M
          tempWord =
244
1.54M
              pSegmentBitfield[bitfieldWord] & pCodewordBitfield[bitfieldWord];
245
246
          /* if tempWord is not zero, decode something */
247
1.54M
          if (tempWord != 0) {
248
            /* loop over all bits in tempWord; start state machine if & is true
249
             */
250
2.54M
            for (bitInWord = NUMBER_OF_BIT_IN_WORD; bitInWord > 0;
251
2.46M
                 bitInWord--) {
252
2.46M
              interMediateWord = ((UINT)1 << (bitInWord - 1));
253
2.46M
              if ((tempWord & interMediateWord) == interMediateWord) {
254
                /* get state and start state machine */
255
317k
                pHcr->nonPcwSideinfo.pState =
256
317k
                    aStateConstant2State[pSta[codewordOffset]];
257
258
761k
                while (pHcr->nonPcwSideinfo.pState) {
259
445k
                  ret = ((STATEFUNC)pHcr->nonPcwSideinfo.pState)(bs, pHcr);
260
445k
                  if (ret != 0) {
261
1.03k
                    return;
262
1.03k
                  }
263
445k
                }
264
317k
              }
265
266
              /* update both offsets */
267
2.46M
              segmentOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */
268
2.46M
              pHcr->segmentInfo.segmentOffset = segmentOffset;
269
2.46M
              codewordOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */
270
2.46M
              codewordOffset =
271
2.46M
                  ModuloValue(codewordOffset,
272
2.46M
                              *pNumSegment); /* index of the current codeword
273
                                                lies within modulo range */
274
2.46M
              pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
275
2.46M
            }
276
1.46M
          } else {
277
1.46M
            segmentOffset +=
278
1.46M
                NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */
279
1.46M
            pHcr->segmentInfo.segmentOffset = segmentOffset;
280
1.46M
            codewordOffset +=
281
1.46M
                NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */
282
1.46M
            codewordOffset = ModuloValue(
283
1.46M
                codewordOffset,
284
1.46M
                *pNumSegment); /* index of the current codeword lies within
285
                                  modulo range */
286
1.46M
            pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
287
1.46M
          }
288
1.54M
        } /* end of bitfield word loop */
289
290
        /* decrement codeword - pointer */
291
485k
        codewordOffsetBase -= 1;
292
485k
        codewordOffsetBase =
293
485k
            ModuloValue(codewordOffsetBase, *pNumSegment); /* index of the
294
                                                              current codeword
295
                                                              base lies within
296
                                                              modulo range */
297
298
        /* rotate numSegment bits in codewordBitfield */
299
        /* rotation of *numSegment bits in bitfield of codewords
300
         * (circle-rotation) */
301
        /* get last valid bit */
302
485k
        tempBit = pCodewordBitfield[*pNumWordForBitfield - 1] &
303
485k
                  (1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));
304
485k
        tempBit = tempBit >> (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord);
305
306
        /* write zero into place where tempBit was fetched from */
307
485k
        pCodewordBitfield[*pNumWordForBitfield - 1] =
308
485k
            pCodewordBitfield[*pNumWordForBitfield - 1] &
309
485k
            ~(1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));
310
311
        /* rotate last valid word */
312
485k
        pCodewordBitfield[*pNumWordForBitfield - 1] =
313
485k
            pCodewordBitfield[*pNumWordForBitfield - 1] >> 1;
314
315
        /* transfare carry bit 0 from current word into bitposition 31 from next
316
         * word and rotate current word */
317
1.54M
        for (bitfieldWord = *pNumWordForBitfield - 2; bitfieldWord > -1;
318
1.06M
             bitfieldWord--) {
319
          /* get carry (=bit at position 0) from current word */
320
1.06M
          carry = pCodewordBitfield[bitfieldWord] & 1;
321
322
          /* put the carry bit at position 31 into word right from current word
323
           */
324
1.06M
          pCodewordBitfield[bitfieldWord + 1] =
325
1.06M
              pCodewordBitfield[bitfieldWord + 1] |
326
1.06M
              (carry << (NUMBER_OF_BIT_IN_WORD - 1));
327
328
          /* shift current word */
329
1.06M
          pCodewordBitfield[bitfieldWord] =
330
1.06M
              pCodewordBitfield[bitfieldWord] >> 1;
331
1.06M
        }
332
333
        /* put tempBit into free bit-position 31 from first word */
334
485k
        pCodewordBitfield[0] =
335
485k
            pCodewordBitfield[0] | (tempBit << (NUMBER_OF_BIT_IN_WORD - 1));
336
337
485k
      } /* end of trial loop */
338
339
      /* toggle read direction */
340
37.1k
      pHcr->segmentInfo.readDirection =
341
37.1k
          ToggleReadDirection(pHcr->segmentInfo.readDirection);
342
37.1k
    }
343
    /* end of set loop */
344
345
    /* all non-PCWs of this spectrum are decoded */
346
7.43k
  }
347
348
  /* all PCWs and all non PCWs are decoded. They are unbacksorted in output
349
   * buffer. Here is the Interface with comparing QSCs to asm decoding */
350
7.72k
}
351
352
/*---------------------------------------------------------------------------------------------
353
     description:   This function prepares the bitfield used for the
354
                    segments. The list is set up once to be used in all
355
following sets. If a segment is decoded empty, the according bit from the
356
Bitfield is removed.
357
-----------------------------------------------------------------------------------------------
358
        return:     numValidSegment = the number of valid segments
359
--------------------------------------------------------------------------------------------
360
*/
361
static UINT InitSegmentBitfield(UINT *pNumSegment,
362
                                SCHAR *pRemainingBitsInSegment,
363
                                UINT *pSegmentBitfield,
364
                                UCHAR *pNumWordForBitfield,
365
7.72k
                                USHORT *pNumBitValidInLastWord) {
366
7.72k
  SHORT i;
367
7.72k
  USHORT r;
368
7.72k
  UCHAR bitfieldWord;
369
7.72k
  UINT tempWord;
370
7.72k
  USHORT numValidSegment;
371
372
7.72k
  *pNumWordForBitfield =
373
7.72k
      (*pNumSegment == 0)
374
7.72k
          ? 0
375
7.72k
          : ((*pNumSegment - 1) >> THIRTYTWO_LOG_DIV_TWO_LOG) + 1;
376
377
  /* loop over all words, which are completely used or only partial */
378
  /* bit in pSegmentBitfield is zero if segment is empty; bit in
379
   * pSegmentBitfield is one if segment is not empty */
380
7.72k
  numValidSegment = 0;
381
7.72k
  *pNumBitValidInLastWord = *pNumSegment;
382
383
  /* loop over words */
384
15.0k
  for (bitfieldWord = 0; bitfieldWord < *pNumWordForBitfield - 1;
385
7.72k
       bitfieldWord++) {
386
7.32k
    tempWord = 0xFFFFFFFF; /* set ones */
387
7.32k
    r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
388
241k
    for (i = 0; i < NUMBER_OF_BIT_IN_WORD; i++) {
389
234k
      if (pRemainingBitsInSegment[r + i] == 0) {
390
29.1k
        tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 -
391
29.1k
                                      i)); /* set a zero at bit number
392
                                              (NUMBER_OF_BIT_IN_WORD-1-i) in
393
                                              tempWord */
394
205k
      } else {
395
205k
        numValidSegment += 1; /* count segments which are not empty */
396
205k
      }
397
234k
    }
398
7.32k
    pSegmentBitfield[bitfieldWord] = tempWord;        /* store result */
399
7.32k
    *pNumBitValidInLastWord -= NUMBER_OF_BIT_IN_WORD; /* calculate number of
400
                                                         zeros on LSB side in
401
                                                         the last word */
402
7.32k
  }
403
404
  /* calculate last word: prepare special tempWord */
405
7.72k
  tempWord = 0xFFFFFFFF;
406
148k
  for (i = 0; i < (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord); i++) {
407
140k
    tempWord = tempWord & ~(1 << i); /* clear bit i in tempWord */
408
140k
  }
409
410
  /* calculate last word */
411
7.72k
  r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
412
114k
  for (i = 0; i < *pNumBitValidInLastWord; i++) {
413
106k
    if (pRemainingBitsInSegment[r + i] == 0) {
414
7.67k
      tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 -
415
7.67k
                                    i)); /* set a zero at bit number
416
                                            (NUMBER_OF_BIT_IN_WORD-1-i) in
417
                                            tempWord */
418
98.9k
    } else {
419
98.9k
      numValidSegment += 1; /* count segments which are not empty */
420
98.9k
    }
421
106k
  }
422
7.72k
  pSegmentBitfield[bitfieldWord] = tempWord; /* store result */
423
424
7.72k
  return numValidSegment;
425
7.72k
}
426
427
/*---------------------------------------------------------------------------------------------
428
  description:  This function sets up sideinfo for the non-PCW decoder (for the
429
current set).
430
---------------------------------------------------------------------------------------------*/
431
38.1k
static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr) {
432
38.1k
  USHORT i, k;
433
38.1k
  UCHAR codebookDim;
434
38.1k
  UINT startNode;
435
436
38.1k
  UCHAR *pCodebook = pHcr->nonPcwSideinfo.pCodebook;
437
38.1k
  UINT *iNode = pHcr->nonPcwSideinfo.iNode;
438
38.1k
  UCHAR *pCntSign = pHcr->nonPcwSideinfo.pCntSign;
439
38.1k
  USHORT *iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
440
38.1k
  UINT *pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
441
38.1k
  SCHAR *pSta = pHcr->nonPcwSideinfo.pSta;
442
38.1k
  USHORT *pNumExtendedSortedCodewordInSection =
443
38.1k
      pHcr->sectionInfo.pNumExtendedSortedCodewordInSection;
444
38.1k
  int numExtendedSortedCodewordInSectionIdx =
445
38.1k
      pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx;
446
38.1k
  UCHAR *pExtendedSortedCodebook = pHcr->sectionInfo.pExtendedSortedCodebook;
447
38.1k
  int extendedSortedCodebookIdx = pHcr->sectionInfo.extendedSortedCodebookIdx;
448
38.1k
  USHORT *pNumExtendedSortedSectionsInSets =
449
38.1k
      pHcr->sectionInfo.pNumExtendedSortedSectionsInSets;
450
38.1k
  int numExtendedSortedSectionsInSetsIdx =
451
38.1k
      pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx;
452
38.1k
  int quantizedSpectralCoefficientsIdx =
453
38.1k
      pHcr->decInOut.quantizedSpectralCoefficientsIdx;
454
38.1k
  const UCHAR *pCbDimension = aDimCb;
455
38.1k
  int iterationCounter = 0;
456
457
  /* loop over number of extended sorted sections in the current set so all
458
   * codewords sideinfo variables within this set can be prepared for decoding
459
   */
460
38.1k
  for (i = pNumExtendedSortedSectionsInSets[numExtendedSortedSectionsInSetsIdx];
461
96.8k
       i != 0; i--) {
462
59.0k
    codebookDim =
463
59.0k
        pCbDimension[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
464
59.0k
    startNode = *aHuffTable[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
465
466
59.0k
    for (k = pNumExtendedSortedCodewordInSection
467
59.0k
             [numExtendedSortedCodewordInSectionIdx];
468
554k
         k != 0; k--) {
469
496k
      iterationCounter++;
470
496k
      if (iterationCounter > (1024 >> 2)) {
471
7
        return;
472
7
      }
473
496k
      *pSta++ = aCodebook2StartInt
474
496k
          [pExtendedSortedCodebook[extendedSortedCodebookIdx]];
475
496k
      *pCodebook++ = pExtendedSortedCodebook[extendedSortedCodebookIdx];
476
496k
      *iNode++ = startNode;
477
496k
      *pCntSign++ = 0;
478
496k
      *iResultPointer++ = quantizedSpectralCoefficientsIdx;
479
496k
      *pEscapeSequenceInfo++ = 0;
480
496k
      quantizedSpectralCoefficientsIdx +=
481
496k
          codebookDim; /* update pointer by codebookDim --> point to next
482
                          starting value for writing out */
483
496k
      if (quantizedSpectralCoefficientsIdx >= 1024) {
484
346
        return;
485
346
      }
486
496k
    }
487
58.6k
    numExtendedSortedCodewordInSectionIdx++; /* inc ptr for next ext sort sec in
488
                                                current set */
489
58.6k
    extendedSortedCodebookIdx++; /* inc ptr for next ext sort sec in current set
490
                                  */
491
58.6k
    if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR + MAX_HCR_SETS) ||
492
58.6k
        extendedSortedCodebookIdx >= (MAX_SFB_HCR + MAX_HCR_SETS)) {
493
0
      return;
494
0
    }
495
58.6k
  }
496
37.8k
  numExtendedSortedSectionsInSetsIdx++; /* inc ptr for next set of non-PCWs */
497
37.8k
  if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR + MAX_HCR_SETS)) {
498
0
    return;
499
0
  }
500
501
  /* Write back indexes */
502
37.8k
  pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx =
503
37.8k
      numExtendedSortedCodewordInSectionIdx;
504
37.8k
  pHcr->sectionInfo.extendedSortedCodebookIdx = extendedSortedCodebookIdx;
505
37.8k
  pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx =
506
37.8k
      numExtendedSortedSectionsInSetsIdx;
507
37.8k
  pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx =
508
37.8k
      numExtendedSortedCodewordInSectionIdx;
509
37.8k
  pHcr->decInOut.quantizedSpectralCoefficientsIdx =
510
37.8k
      quantizedSpectralCoefficientsIdx;
511
37.8k
}
512
513
/*---------------------------------------------------------------------------------------------
514
     description: This function returns the input value if the value is in the
515
                  range of bufferlength. If <input> is smaller, one bufferlength
516
is added, if <input> is bigger one bufferlength is subtracted.
517
-----------------------------------------------------------------------------------------------
518
        return:   modulo result
519
--------------------------------------------------------------------------------------------
520
*/
521
4.42M
static INT ModuloValue(INT input, INT bufferlength) {
522
4.42M
  if (input > (bufferlength - 1)) {
523
608k
    return (input - bufferlength);
524
608k
  }
525
3.81M
  if (input < 0) {
526
37.1k
    return (input + bufferlength);
527
37.1k
  }
528
3.77M
  return input;
529
3.81M
}
530
531
/*---------------------------------------------------------------------------------------------
532
     description: This function clears a bit from current bitfield and
533
                  switches off the statemachine.
534
535
                  A bit is cleared in two cases:
536
                  a) a codeword is decoded, then a bit is cleared in codeword
537
bitfield b) a segment is decoded empty, then a bit is cleared in segment
538
bitfield
539
--------------------------------------------------------------------------------------------
540
*/
541
static void ClearBitFromBitfield(STATEFUNC *ptrState, UINT offset,
542
350k
                                 UINT *pBitfield) {
543
350k
  UINT numBitfieldWord;
544
350k
  UINT numBitfieldBit;
545
546
  /* get both values needed for clearing the bit */
547
350k
  numBitfieldWord = offset >> THIRTYTWO_LOG_DIV_TWO_LOG; /* int   = wordNr */
548
350k
  numBitfieldBit = offset - (numBitfieldWord
549
350k
                             << THIRTYTWO_LOG_DIV_TWO_LOG); /* fract = bitNr  */
550
551
  /* clear a bit in bitfield */
552
350k
  pBitfield[numBitfieldWord] =
553
350k
      pBitfield[numBitfieldWord] &
554
350k
      ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 - numBitfieldBit));
555
556
  /* switch off state machine because codeword is decoded and/or because segment
557
   * is empty */
558
350k
  *ptrState = NULL;
559
350k
}
560
561
/* =========================================================================================
562
                              the states of the statemachine
563
   =========================================================================================
564
 */
565
566
/*---------------------------------------------------------------------------------------------
567
     description:  Decodes the body of a codeword. This State is used for
568
codebooks 1,2,5 and 6. No sign bits are decoded, because the table of the
569
quantized spectral values has got a valid sign at the quantized spectral lines.
570
-----------------------------------------------------------------------------------------------
571
        output:   Two or four quantizes spectral values written at position
572
where pResultPointr points to
573
-----------------------------------------------------------------------------------------------
574
        return:   0
575
--------------------------------------------------------------------------------------------
576
*/
577
80.3k
UINT Hcr_State_BODY_ONLY(HANDLE_FDK_BITSTREAM bs, void *ptr) {
578
80.3k
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
579
80.3k
  UINT *pSegmentBitfield;
580
80.3k
  UINT *pCodewordBitfield;
581
80.3k
  UINT segmentOffset;
582
80.3k
  FIXP_DBL *pResultBase;
583
80.3k
  UINT *iNode;
584
80.3k
  USHORT *iResultPointer;
585
80.3k
  UINT codewordOffset;
586
80.3k
  UINT branchNode;
587
80.3k
  UINT branchValue;
588
80.3k
  UINT iQSC;
589
80.3k
  UINT treeNode;
590
80.3k
  UCHAR carryBit;
591
80.3k
  INT *pLeftStartOfSegment;
592
80.3k
  INT *pRightStartOfSegment;
593
80.3k
  SCHAR *pRemainingBitsInSegment;
594
80.3k
  UCHAR readDirection;
595
80.3k
  UCHAR *pCodebook;
596
80.3k
  UCHAR dimCntr;
597
80.3k
  const UINT *pCurrentTree;
598
80.3k
  const UCHAR *pCbDimension;
599
80.3k
  const SCHAR *pQuantVal;
600
80.3k
  const SCHAR *pQuantValBase;
601
602
80.3k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
603
80.3k
  pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
604
80.3k
  pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
605
80.3k
  readDirection = pHcr->segmentInfo.readDirection;
606
80.3k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
607
80.3k
  pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
608
80.3k
  segmentOffset = pHcr->segmentInfo.segmentOffset;
609
610
80.3k
  pCodebook = pHcr->nonPcwSideinfo.pCodebook;
611
80.3k
  iNode = pHcr->nonPcwSideinfo.iNode;
612
80.3k
  pResultBase = pHcr->nonPcwSideinfo.pResultBase;
613
80.3k
  iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
614
80.3k
  codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
615
616
80.3k
  pCbDimension = aDimCb;
617
618
80.3k
  treeNode = iNode[codewordOffset];
619
80.3k
  pCurrentTree = aHuffTable[pCodebook[codewordOffset]];
620
621
159k
  for (; pRemainingBitsInSegment[segmentOffset] > 0;
622
154k
       pRemainingBitsInSegment[segmentOffset] -= 1) {
623
154k
    carryBit = HcrGetABitFromBitstream(
624
154k
        bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
625
154k
        &pRightStartOfSegment[segmentOffset], readDirection);
626
627
154k
    CarryBitToBranchValue(carryBit, /* make a step in decoding tree */
628
154k
                          treeNode, &branchValue, &branchNode);
629
630
    /* if end of branch reached write out lines and count bits needed for sign,
631
     * otherwise store node in codeword sideinfo */
632
154k
    if ((branchNode & TEST_BIT_10) ==
633
154k
        TEST_BIT_10) { /* test bit 10 ; ==> body is complete */
634
74.9k
      pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base
635
                                                                 address of
636
                                                                 quantized
637
                                                                 values
638
                                                                 belonging to
639
                                                                 current
640
                                                                 codebook */
641
74.9k
      pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid
642
                                                  line [of 2 or 4 quantized
643
                                                  values] */
644
645
74.9k
      iQSC = iResultPointer[codewordOffset]; /* get position of first line for
646
                                                writing out result */
647
648
227k
      for (dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0;
649
152k
           dimCntr--) {
650
152k
        pResultBase[iQSC++] =
651
152k
            (FIXP_DBL)*pQuantVal++; /* write out 2 or 4 lines into
652
                                       spectrum; no Sign bits
653
                                       available in this state */
654
152k
      }
655
656
74.9k
      ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
657
74.9k
                           pCodewordBitfield); /* clear a bit in bitfield and
658
                                                  switch off statemachine */
659
74.9k
      pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
660
                                                      for loop counter (see
661
                                                      above) is done here */
662
74.9k
      break; /* end of branch in tree reached  i.e. a whole nonPCW-Body is
663
                decoded */
664
79.4k
    } else { /* body is not decoded completely: */
665
79.4k
      treeNode = *(
666
79.4k
          pCurrentTree +
667
79.4k
          branchValue); /* update treeNode for further step in decoding tree */
668
79.4k
    }
669
154k
  }
670
80.3k
  iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe
671
                                       decoding of codeword body not finished
672
                                       yet */
673
674
80.3k
  if (pRemainingBitsInSegment[segmentOffset] <= 0) {
675
9.56k
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
676
9.56k
                         pSegmentBitfield); /* clear a bit in bitfield and
677
                                               switch off statemachine */
678
679
9.56k
    if (pRemainingBitsInSegment[segmentOffset] < 0) {
680
1
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_ONLY;
681
1
      return BODY_ONLY;
682
1
    }
683
9.56k
  }
684
685
80.3k
  return STOP_THIS_STATE;
686
80.3k
}
687
688
/*---------------------------------------------------------------------------------------------
689
     description: Decodes the codeword body, writes out result and counts the
690
number of quantized spectral values, which are different form zero. For those
691
values sign bits are needed.
692
693
                  If sign bit counter cntSign is different from zero, switch to
694
next state to decode sign Bits there. If sign bit counter cntSign is zero, no
695
sign bits are needed and codeword is decoded.
696
-----------------------------------------------------------------------------------------------
697
        output:   Two or four written quantizes spectral values written at
698
position where pResultPointr points to. The signs of those lines may be wrong.
699
If the signs [on just one signle sign] is wrong, the next state will correct it.
700
-----------------------------------------------------------------------------------------------
701
        return:   0
702
--------------------------------------------------------------------------------------------
703
*/
704
147k
UINT Hcr_State_BODY_SIGN__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr) {
705
147k
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
706
147k
  SCHAR *pRemainingBitsInSegment;
707
147k
  INT *pLeftStartOfSegment;
708
147k
  INT *pRightStartOfSegment;
709
147k
  UCHAR readDirection;
710
147k
  UINT *pSegmentBitfield;
711
147k
  UINT *pCodewordBitfield;
712
147k
  UINT segmentOffset;
713
714
147k
  UCHAR *pCodebook;
715
147k
  UINT *iNode;
716
147k
  UCHAR *pCntSign;
717
147k
  FIXP_DBL *pResultBase;
718
147k
  USHORT *iResultPointer;
719
147k
  UINT codewordOffset;
720
721
147k
  UINT iQSC;
722
147k
  UINT cntSign;
723
147k
  UCHAR dimCntr;
724
147k
  UCHAR carryBit;
725
147k
  SCHAR *pSta;
726
147k
  UINT treeNode;
727
147k
  UINT branchValue;
728
147k
  UINT branchNode;
729
147k
  const UCHAR *pCbDimension;
730
147k
  const UINT *pCurrentTree;
731
147k
  const SCHAR *pQuantValBase;
732
147k
  const SCHAR *pQuantVal;
733
734
147k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
735
147k
  pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
736
147k
  pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
737
147k
  readDirection = pHcr->segmentInfo.readDirection;
738
147k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
739
147k
  pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
740
147k
  segmentOffset = pHcr->segmentInfo.segmentOffset;
741
742
147k
  pCodebook = pHcr->nonPcwSideinfo.pCodebook;
743
147k
  iNode = pHcr->nonPcwSideinfo.iNode;
744
147k
  pCntSign = pHcr->nonPcwSideinfo.pCntSign;
745
147k
  pResultBase = pHcr->nonPcwSideinfo.pResultBase;
746
147k
  iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
747
147k
  codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
748
147k
  pSta = pHcr->nonPcwSideinfo.pSta;
749
750
147k
  pCbDimension = aDimCb;
751
752
147k
  treeNode = iNode[codewordOffset];
753
147k
  pCurrentTree = aHuffTable[pCodebook[codewordOffset]];
754
755
558k
  for (; pRemainingBitsInSegment[segmentOffset] > 0;
756
531k
       pRemainingBitsInSegment[segmentOffset] -= 1) {
757
531k
    carryBit = HcrGetABitFromBitstream(
758
531k
        bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
759
531k
        &pRightStartOfSegment[segmentOffset], readDirection);
760
761
531k
    CarryBitToBranchValue(carryBit, /* make a step in decoding tree */
762
531k
                          treeNode, &branchValue, &branchNode);
763
764
    /* if end of branch reached write out lines and count bits needed for sign,
765
     * otherwise store node in codeword sideinfo */
766
531k
    if ((branchNode & TEST_BIT_10) ==
767
531k
        TEST_BIT_10) { /* test bit 10 ; if set body complete */
768
      /* body completely decoded; branchValue is valid, set pQuantVal to first
769
       * (of two or four) quantized spectral coefficients */
770
119k
      pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base
771
                                                                 address of
772
                                                                 quantized
773
                                                                 values
774
                                                                 belonging to
775
                                                                 current
776
                                                                 codebook */
777
119k
      pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid
778
                                                  line [of 2 or 4 quantized
779
                                                  values] */
780
781
119k
      iQSC = iResultPointer[codewordOffset]; /* get position of first line for
782
                                                writing result */
783
784
      /* codeword decoding result is written out here: Write out 2 or 4
785
       * quantized spectral values with probably */
786
      /* wrong sign and count number of values which are different from zero for
787
       * sign bit decoding [which happens in next state] */
788
119k
      cntSign = 0;
789
362k
      for (dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0;
790
242k
           dimCntr--) {
791
242k
        pResultBase[iQSC++] =
792
242k
            (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */
793
242k
        if (*pQuantVal++ != 0) {
794
210k
          cntSign += 1;
795
210k
        }
796
242k
      }
797
798
119k
      if (cntSign == 0) {
799
7.77k
        ClearBitFromBitfield(
800
7.77k
            &(pHcr->nonPcwSideinfo.pState), segmentOffset,
801
7.77k
            pCodewordBitfield); /* clear a bit in bitfield and switch off
802
                                   statemachine */
803
112k
      } else {
804
112k
        pCntSign[codewordOffset] = cntSign;     /* write sign count result into
805
                                                   codewordsideinfo of current
806
                                                   codeword */
807
112k
        pSta[codewordOffset] = BODY_SIGN__SIGN; /* change state */
808
112k
        pHcr->nonPcwSideinfo.pState =
809
112k
            aStateConstant2State[pSta[codewordOffset]]; /* get state from
810
                                                           separate array of
811
                                                           cw-sideinfo */
812
112k
      }
813
119k
      pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
814
                                                      for loop counter (see
815
                                                      above) is done here */
816
119k
      break; /* end of branch in tree reached  i.e. a whole nonPCW-Body is
817
                decoded */
818
411k
    } else { /* body is not decoded completely: */
819
411k
      treeNode = *(
820
411k
          pCurrentTree +
821
411k
          branchValue); /* update treeNode for further step in decoding tree */
822
411k
    }
823
531k
  }
824
147k
  iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe
825
                                       decoding of codeword body not finished
826
                                       yet */
827
828
147k
  if (pRemainingBitsInSegment[segmentOffset] <= 0) {
829
42.3k
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
830
42.3k
                         pSegmentBitfield); /* clear a bit in bitfield and
831
                                               switch off statemachine */
832
833
42.3k
    if (pRemainingBitsInSegment[segmentOffset] < 0) {
834
241
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__BODY;
835
241
      return BODY_SIGN__BODY;
836
241
    }
837
42.3k
  }
838
839
147k
  return STOP_THIS_STATE;
840
147k
}
841
842
/*---------------------------------------------------------------------------------------------
843
     description: This state decodes the sign bits belonging to a codeword. The
844
state is called as often in different "trials" until pCntSgn[codewordOffset] is
845
zero.
846
-----------------------------------------------------------------------------------------------
847
        output:   The two or four quantizes spectral values (written in previous
848
state) have now the correct sign.
849
-----------------------------------------------------------------------------------------------
850
        return:   0
851
--------------------------------------------------------------------------------------------
852
*/
853
130k
UINT Hcr_State_BODY_SIGN__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr) {
854
130k
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
855
130k
  SCHAR *pRemainingBitsInSegment;
856
130k
  INT *pLeftStartOfSegment;
857
130k
  INT *pRightStartOfSegment;
858
130k
  UCHAR readDirection;
859
130k
  UINT *pSegmentBitfield;
860
130k
  UINT *pCodewordBitfield;
861
130k
  UINT segmentOffset;
862
863
130k
  UCHAR *pCntSign;
864
130k
  FIXP_DBL *pResultBase;
865
130k
  USHORT *iResultPointer;
866
130k
  UINT codewordOffset;
867
868
130k
  UCHAR carryBit;
869
130k
  UINT iQSC;
870
130k
  UCHAR cntSign;
871
872
130k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
873
130k
  pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
874
130k
  pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
875
130k
  readDirection = pHcr->segmentInfo.readDirection;
876
130k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
877
130k
  pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
878
130k
  segmentOffset = pHcr->segmentInfo.segmentOffset;
879
880
  /*pCodebook               = */
881
130k
  pCntSign = pHcr->nonPcwSideinfo.pCntSign;
882
130k
  pResultBase = pHcr->nonPcwSideinfo.pResultBase;
883
130k
  iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
884
130k
  codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
885
886
130k
  iQSC = iResultPointer[codewordOffset];
887
130k
  cntSign = pCntSign[codewordOffset];
888
889
  /* loop for sign bit decoding */
890
227k
  for (; pRemainingBitsInSegment[segmentOffset] > 0;
891
209k
       pRemainingBitsInSegment[segmentOffset] -= 1) {
892
209k
    carryBit = HcrGetABitFromBitstream(
893
209k
        bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
894
209k
        &pRightStartOfSegment[segmentOffset], readDirection);
895
209k
    cntSign -=
896
209k
        1; /* decrement sign counter because one sign bit has been read */
897
898
    /* search for a line (which was decoded in previous state) which is not
899
     * zero. [This value will get a sign] */
900
220k
    while (pResultBase[iQSC] == (FIXP_DBL)0) {
901
11.7k
      if (++iQSC >= 1024) { /* points to current value different from zero */
902
0
        return BODY_SIGN__SIGN;
903
0
      }
904
11.7k
    }
905
906
    /* put sign together with line; if carryBit is zero, the sign is ok already;
907
     * no write operation necessary in this case */
908
209k
    if (carryBit != 0) {
909
42.6k
      pResultBase[iQSC] = -pResultBase[iQSC]; /* carryBit = 1 --> minus */
910
42.6k
    }
911
912
209k
    iQSC++; /* update pointer to next (maybe valid) value */
913
914
209k
    if (cntSign == 0) { /* if (cntSign==0)  ==>  set state CODEWORD_DECODED */
915
111k
      ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
916
111k
                           pCodewordBitfield); /* clear a bit in bitfield and
917
                                                  switch off statemachine */
918
111k
      pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
919
                                                      for loop counter (see
920
                                                      above) is done here */
921
111k
      break; /* whole nonPCW-Body and according sign bits are decoded */
922
111k
    }
923
209k
  }
924
130k
  pCntSign[codewordOffset] = cntSign;
925
130k
  iResultPointer[codewordOffset] = iQSC; /* store updated pResultPointer */
926
927
130k
  if (pRemainingBitsInSegment[segmentOffset] <= 0) {
928
44.8k
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
929
44.8k
                         pSegmentBitfield); /* clear a bit in bitfield and
930
                                               switch off statemachine */
931
932
44.8k
    if (pRemainingBitsInSegment[segmentOffset] < 0) {
933
6
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__SIGN;
934
6
      return BODY_SIGN__SIGN;
935
6
    }
936
44.8k
  }
937
938
130k
  return STOP_THIS_STATE;
939
130k
}
940
941
/*---------------------------------------------------------------------------------------------
942
     description: Decodes the codeword body in case of codebook is 11. Writes
943
out resulting two or four lines [with probably wrong sign] and counts the number
944
of lines, which are different form zero. This information is needed in next
945
                  state where sign bits will be decoded, if necessary.
946
                  If sign bit counter cntSign is zero, no sign bits are needed
947
and codeword is decoded completely.
948
-----------------------------------------------------------------------------------------------
949
        output:   Two lines (quantizes spectral coefficients) which are probably
950
wrong. The sign may be wrong and if one or two values is/are 16, the following
951
states will decode the escape sequence to correct the values which are wirtten
952
here.
953
-----------------------------------------------------------------------------------------------
954
        return:   0
955
--------------------------------------------------------------------------------------------
956
*/
957
53.1k
UINT Hcr_State_BODY_SIGN_ESC__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr) {
958
53.1k
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
959
53.1k
  SCHAR *pRemainingBitsInSegment;
960
53.1k
  INT *pLeftStartOfSegment;
961
53.1k
  INT *pRightStartOfSegment;
962
53.1k
  UCHAR readDirection;
963
53.1k
  UINT *pSegmentBitfield;
964
53.1k
  UINT *pCodewordBitfield;
965
53.1k
  UINT segmentOffset;
966
967
53.1k
  UINT *iNode;
968
53.1k
  UCHAR *pCntSign;
969
53.1k
  FIXP_DBL *pResultBase;
970
53.1k
  USHORT *iResultPointer;
971
53.1k
  UINT codewordOffset;
972
973
53.1k
  UCHAR carryBit;
974
53.1k
  UINT iQSC;
975
53.1k
  UINT cntSign;
976
53.1k
  UINT dimCntr;
977
53.1k
  UINT treeNode;
978
53.1k
  SCHAR *pSta;
979
53.1k
  UINT branchNode;
980
53.1k
  UINT branchValue;
981
53.1k
  const UINT *pCurrentTree;
982
53.1k
  const SCHAR *pQuantValBase;
983
53.1k
  const SCHAR *pQuantVal;
984
985
53.1k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
986
53.1k
  pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
987
53.1k
  pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
988
53.1k
  readDirection = pHcr->segmentInfo.readDirection;
989
53.1k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
990
53.1k
  pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
991
53.1k
  segmentOffset = pHcr->segmentInfo.segmentOffset;
992
993
53.1k
  iNode = pHcr->nonPcwSideinfo.iNode;
994
53.1k
  pCntSign = pHcr->nonPcwSideinfo.pCntSign;
995
53.1k
  pResultBase = pHcr->nonPcwSideinfo.pResultBase;
996
53.1k
  iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
997
53.1k
  codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
998
53.1k
  pSta = pHcr->nonPcwSideinfo.pSta;
999
1000
53.1k
  treeNode = iNode[codewordOffset];
1001
53.1k
  pCurrentTree = aHuffTable[ESCAPE_CODEBOOK];
1002
1003
256k
  for (; pRemainingBitsInSegment[segmentOffset] > 0;
1004
250k
       pRemainingBitsInSegment[segmentOffset] -= 1) {
1005
250k
    carryBit = HcrGetABitFromBitstream(
1006
250k
        bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1007
250k
        &pRightStartOfSegment[segmentOffset], readDirection);
1008
1009
    /* make a step in tree */
1010
250k
    CarryBitToBranchValue(carryBit, treeNode, &branchValue, &branchNode);
1011
1012
    /* if end of branch reached write out lines and count bits needed for sign,
1013
     * otherwise store node in codeword sideinfo */
1014
250k
    if ((branchNode & TEST_BIT_10) ==
1015
250k
        TEST_BIT_10) { /* test bit 10 ; if set body complete */
1016
1017
      /* body completely decoded; branchValue is valid */
1018
      /* set pQuantVol to first (of two or four) quantized spectral coefficients
1019
       */
1020
47.9k
      pQuantValBase = aQuantTable[ESCAPE_CODEBOOK]; /* get base address of
1021
                                                       quantized values
1022
                                                       belonging to current
1023
                                                       codebook */
1024
47.9k
      pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid
1025
                                                  line [of 2 or 4 quantized
1026
                                                  values] */
1027
1028
      /* make backup from original resultPointer in node storage for state
1029
       * BODY_SIGN_ESC__SIGN */
1030
47.9k
      iNode[codewordOffset] = iResultPointer[codewordOffset];
1031
1032
      /* get position of first line for writing result */
1033
47.9k
      iQSC = iResultPointer[codewordOffset];
1034
1035
      /* codeword decoding result is written out here: Write out 2 or 4
1036
       * quantized spectral values with probably */
1037
      /* wrong sign and count number of values which are different from zero for
1038
       * sign bit decoding [which happens in next state] */
1039
47.9k
      cntSign = 0;
1040
1041
143k
      for (dimCntr = DIMENSION_OF_ESCAPE_CODEBOOK; dimCntr != 0; dimCntr--) {
1042
95.8k
        pResultBase[iQSC++] =
1043
95.8k
            (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */
1044
95.8k
        if (*pQuantVal++ != 0) {
1045
37.3k
          cntSign += 1;
1046
37.3k
        }
1047
95.8k
      }
1048
1049
47.9k
      if (cntSign == 0) {
1050
27.9k
        ClearBitFromBitfield(
1051
27.9k
            &(pHcr->nonPcwSideinfo.pState), segmentOffset,
1052
27.9k
            pCodewordBitfield); /* clear a bit in bitfield and switch off
1053
                                   statemachine */
1054
        /* codeword decoded */
1055
27.9k
      } else {
1056
        /* write sign count result into codewordsideinfo of current codeword */
1057
19.9k
        pCntSign[codewordOffset] = cntSign;
1058
19.9k
        pSta[codewordOffset] = BODY_SIGN_ESC__SIGN; /* change state */
1059
19.9k
        pHcr->nonPcwSideinfo.pState =
1060
19.9k
            aStateConstant2State[pSta[codewordOffset]]; /* get state from
1061
                                                           separate array of
1062
                                                           cw-sideinfo */
1063
19.9k
      }
1064
47.9k
      pRemainingBitsInSegment[segmentOffset] -= 1; /* the last reinitialzation
1065
                                                      of for loop counter (see
1066
                                                      above) is done here */
1067
47.9k
      break; /* end of branch in tree reached  i.e. a whole nonPCW-Body is
1068
                decoded */
1069
202k
    } else { /* body is not decoded completely: */
1070
      /* update treeNode for further step in decoding tree and store updated
1071
       * treeNode because maybe no more bits left in segment */
1072
202k
      treeNode = *(pCurrentTree + branchValue);
1073
202k
      iNode[codewordOffset] = treeNode;
1074
202k
    }
1075
250k
  }
1076
1077
53.1k
  if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1078
8.00k
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1079
8.00k
                         pSegmentBitfield); /* clear a bit in bitfield and
1080
                                               switch off statemachine */
1081
1082
8.00k
    if (pRemainingBitsInSegment[segmentOffset] < 0) {
1083
766
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__BODY;
1084
766
      return BODY_SIGN_ESC__BODY;
1085
766
    }
1086
8.00k
  }
1087
1088
52.4k
  return STOP_THIS_STATE;
1089
53.1k
}
1090
1091
/*---------------------------------------------------------------------------------------------
1092
     description: This state decodes the sign bits, if a codeword of codebook 11
1093
needs some. A flag named 'flagB' in codeword sideinfo is set, if the second line
1094
of quantized spectral values is 16. The 'flagB' is used in case of decoding of a
1095
escape sequence is necessary as far as the second line is concerned.
1096
1097
                  If only the first line needs an escape sequence, the flagB is
1098
cleared. If only the second line needs an escape sequence, the flagB is not
1099
used.
1100
1101
                  For storing sideinfo in case of escape sequence decoding one
1102
single word can be used for both escape sequences because they are decoded not
1103
at the same time:
1104
1105
1106
                  bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5
1107
4  3  2  1  0
1108
                      ===== == == =========== ===========
1109
=================================== ^      ^  ^         ^            ^
1110
^ |      |  |         |            |                    | res. flagA  flagB
1111
escapePrefixUp  escapePrefixDown  escapeWord
1112
1113
-----------------------------------------------------------------------------------------------
1114
        output:   Two lines with correct sign. If one or two values is/are 16,
1115
the lines are not valid, otherwise they are.
1116
-----------------------------------------------------------------------------------------------
1117
        return:   0
1118
--------------------------------------------------------------------------------------------
1119
*/
1120
20.4k
UINT Hcr_State_BODY_SIGN_ESC__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr) {
1121
20.4k
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
1122
20.4k
  SCHAR *pRemainingBitsInSegment;
1123
20.4k
  INT *pLeftStartOfSegment;
1124
20.4k
  INT *pRightStartOfSegment;
1125
20.4k
  UCHAR readDirection;
1126
20.4k
  UINT *pSegmentBitfield;
1127
20.4k
  UINT *pCodewordBitfield;
1128
20.4k
  UINT segmentOffset;
1129
1130
20.4k
  UINT *iNode;
1131
20.4k
  UCHAR *pCntSign;
1132
20.4k
  FIXP_DBL *pResultBase;
1133
20.4k
  USHORT *iResultPointer;
1134
20.4k
  UINT *pEscapeSequenceInfo;
1135
20.4k
  UINT codewordOffset;
1136
1137
20.4k
  UINT iQSC;
1138
20.4k
  UCHAR cntSign;
1139
20.4k
  UINT flagA;
1140
20.4k
  UINT flagB;
1141
20.4k
  UINT flags;
1142
20.4k
  UCHAR carryBit;
1143
20.4k
  SCHAR *pSta;
1144
1145
20.4k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
1146
20.4k
  pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
1147
20.4k
  pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
1148
20.4k
  readDirection = pHcr->segmentInfo.readDirection;
1149
20.4k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
1150
20.4k
  pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
1151
20.4k
  segmentOffset = pHcr->segmentInfo.segmentOffset;
1152
1153
20.4k
  iNode = pHcr->nonPcwSideinfo.iNode;
1154
20.4k
  pCntSign = pHcr->nonPcwSideinfo.pCntSign;
1155
20.4k
  pResultBase = pHcr->nonPcwSideinfo.pResultBase;
1156
20.4k
  iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
1157
20.4k
  pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
1158
20.4k
  codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
1159
20.4k
  pSta = pHcr->nonPcwSideinfo.pSta;
1160
1161
20.4k
  iQSC = iResultPointer[codewordOffset];
1162
20.4k
  cntSign = pCntSign[codewordOffset];
1163
1164
  /* loop for sign bit decoding */
1165
37.8k
  for (; pRemainingBitsInSegment[segmentOffset] > 0;
1166
37.2k
       pRemainingBitsInSegment[segmentOffset] -= 1) {
1167
37.2k
    carryBit = HcrGetABitFromBitstream(
1168
37.2k
        bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1169
37.2k
        &pRightStartOfSegment[segmentOffset], readDirection);
1170
1171
    /* decrement sign counter because one sign bit has been read */
1172
37.2k
    cntSign -= 1;
1173
37.2k
    pCntSign[codewordOffset] = cntSign;
1174
1175
    /* get a quantized spectral value (which was decoded in previous state)
1176
     * which is not zero. [This value will get a sign] */
1177
38.0k
    while (pResultBase[iQSC] == (FIXP_DBL)0) {
1178
803
      if (++iQSC >= 1024) {
1179
0
        return BODY_SIGN_ESC__SIGN;
1180
0
      }
1181
803
    }
1182
37.2k
    iResultPointer[codewordOffset] = iQSC;
1183
1184
    /* put negative sign together with quantized spectral value; if carryBit is
1185
     * zero, the sign is ok already; no write operation necessary in this case
1186
     */
1187
37.2k
    if (carryBit != 0) {
1188
9.51k
      pResultBase[iQSC] = -pResultBase[iQSC]; /* carryBit = 1 --> minus */
1189
9.51k
    }
1190
37.2k
    iQSC++; /* update index to next (maybe valid) value */
1191
37.2k
    iResultPointer[codewordOffset] = iQSC;
1192
1193
37.2k
    if (cntSign == 0) {
1194
      /* all sign bits are decoded now */
1195
19.9k
      pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
1196
                                                      for loop counter (see
1197
                                                      above) is done here */
1198
1199
      /* check decoded values if codeword is decoded: Check if one or two escape
1200
       * sequences 16 follow */
1201
1202
      /* step 0 */
1203
      /* restore pointer to first decoded quantized value [ = original
1204
       * pResultPointr] from index iNode prepared in State_BODY_SIGN_ESC__BODY
1205
       */
1206
19.9k
      iQSC = iNode[codewordOffset];
1207
1208
      /* step 1 */
1209
      /* test first value if escape sequence follows */
1210
19.9k
      flagA = 0; /* for first possible escape sequence */
1211
19.9k
      if (fixp_abs(pResultBase[iQSC++]) == (FIXP_DBL)ESCAPE_VALUE) {
1212
2.31k
        flagA = 1;
1213
2.31k
      }
1214
1215
      /* step 2 */
1216
      /* test second value if escape sequence follows */
1217
19.9k
      flagB = 0; /* for second possible escape sequence */
1218
19.9k
      if (fixp_abs(pResultBase[iQSC]) == (FIXP_DBL)ESCAPE_VALUE) {
1219
3.60k
        flagB = 1;
1220
3.60k
      }
1221
1222
      /* step 3 */
1223
      /* evaluate flag result and go on if necessary */
1224
19.9k
      if (!flagA && !flagB) {
1225
15.2k
        ClearBitFromBitfield(
1226
15.2k
            &(pHcr->nonPcwSideinfo.pState), segmentOffset,
1227
15.2k
            pCodewordBitfield); /* clear a bit in bitfield and switch off
1228
                                   statemachine */
1229
15.2k
      } else {
1230
        /* at least one of two lines is 16 */
1231
        /* store both flags at correct positions in non PCW codeword sideinfo
1232
         * pEscapeSequenceInfo[codewordOffset] */
1233
4.70k
        flags = flagA << POSITION_OF_FLAG_A;
1234
4.70k
        flags |= (flagB << POSITION_OF_FLAG_B);
1235
4.70k
        pEscapeSequenceInfo[codewordOffset] = flags;
1236
1237
        /* set next state */
1238
4.70k
        pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
1239
4.70k
        pHcr->nonPcwSideinfo.pState =
1240
4.70k
            aStateConstant2State[pSta[codewordOffset]]; /* get state from
1241
                                                           separate array of
1242
                                                           cw-sideinfo */
1243
1244
        /* set result pointer to the first line of the two decoded lines */
1245
4.70k
        iResultPointer[codewordOffset] = iNode[codewordOffset];
1246
1247
4.70k
        if (!flagA && flagB) {
1248
          /* update pResultPointr ==> state Stat_BODY_SIGN_ESC__ESC_WORD writes
1249
           * to correct position. Second value is the one and only escape value
1250
           */
1251
2.38k
          iQSC = iResultPointer[codewordOffset];
1252
2.38k
          iQSC++;
1253
2.38k
          iResultPointer[codewordOffset] = iQSC;
1254
2.38k
        }
1255
1256
4.70k
      }      /* at least one of two lines is 16 */
1257
19.9k
      break; /* nonPCW-Body at cb 11 and according sign bits are decoded */
1258
1259
19.9k
    } /* if ( cntSign == 0 ) */
1260
37.2k
  }   /* loop over remaining Bits in segment */
1261
1262
20.4k
  if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1263
1.21k
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1264
1.21k
                         pSegmentBitfield); /* clear a bit in bitfield and
1265
                                               switch off statemachine */
1266
1267
1.21k
    if (pRemainingBitsInSegment[segmentOffset] < 0) {
1268
1
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__SIGN;
1269
1
      return BODY_SIGN_ESC__SIGN;
1270
1
    }
1271
1.21k
  }
1272
20.4k
  return STOP_THIS_STATE;
1273
20.4k
}
1274
1275
/*---------------------------------------------------------------------------------------------
1276
     description: Decode escape prefix of first or second escape sequence. The
1277
escape prefix consists of ones. The following zero is also decoded here.
1278
-----------------------------------------------------------------------------------------------
1279
        output:   If the single separator-zero which follows the
1280
escape-prefix-ones is not yet decoded: The value 'escapePrefixUp' in word
1281
pEscapeSequenceInfo[codewordOffset] is updated.
1282
1283
                  If the single separator-zero which follows the
1284
escape-prefix-ones is decoded: Two updated values 'escapePrefixUp' and
1285
'escapePrefixDown' in word pEscapeSequenceInfo[codewordOffset]. This State is
1286
finished. Switch to next state.
1287
-----------------------------------------------------------------------------------------------
1288
        return:   0
1289
--------------------------------------------------------------------------------------------
1290
*/
1291
6.53k
UINT Hcr_State_BODY_SIGN_ESC__ESC_PREFIX(HANDLE_FDK_BITSTREAM bs, void *ptr) {
1292
6.53k
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
1293
6.53k
  SCHAR *pRemainingBitsInSegment;
1294
6.53k
  INT *pLeftStartOfSegment;
1295
6.53k
  INT *pRightStartOfSegment;
1296
6.53k
  UCHAR readDirection;
1297
6.53k
  UINT *pSegmentBitfield;
1298
6.53k
  UINT segmentOffset;
1299
6.53k
  UINT *pEscapeSequenceInfo;
1300
6.53k
  UINT codewordOffset;
1301
6.53k
  UCHAR carryBit;
1302
6.53k
  UINT escapePrefixUp;
1303
6.53k
  SCHAR *pSta;
1304
1305
6.53k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
1306
6.53k
  pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
1307
6.53k
  pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
1308
6.53k
  readDirection = pHcr->segmentInfo.readDirection;
1309
6.53k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
1310
6.53k
  segmentOffset = pHcr->segmentInfo.segmentOffset;
1311
6.53k
  pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
1312
6.53k
  codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
1313
6.53k
  pSta = pHcr->nonPcwSideinfo.pSta;
1314
1315
6.53k
  escapePrefixUp =
1316
6.53k
      (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >>
1317
6.53k
      LSB_ESCAPE_PREFIX_UP;
1318
1319
  /* decode escape prefix */
1320
9.73k
  for (; pRemainingBitsInSegment[segmentOffset] > 0;
1321
9.08k
       pRemainingBitsInSegment[segmentOffset] -= 1) {
1322
9.08k
    carryBit = HcrGetABitFromBitstream(
1323
9.08k
        bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1324
9.08k
        &pRightStartOfSegment[segmentOffset], readDirection);
1325
1326
    /* count ones and store sum in escapePrefixUp */
1327
9.08k
    if (carryBit == 1) {
1328
3.21k
      escapePrefixUp += 1; /* update conter for ones */
1329
3.21k
      if (escapePrefixUp > 8) {
1330
14
        pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_PREFIX;
1331
14
        return BODY_SIGN_ESC__ESC_PREFIX;
1332
14
      }
1333
1334
      /* store updated counter in sideinfo of current codeword */
1335
3.19k
      pEscapeSequenceInfo[codewordOffset] &=
1336
3.19k
          ~MASK_ESCAPE_PREFIX_UP;              /* delete old escapePrefixUp */
1337
3.19k
      escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */
1338
3.19k
      pEscapeSequenceInfo[codewordOffset] |=
1339
3.19k
          escapePrefixUp;                      /* insert new escapePrefixUp */
1340
3.19k
      escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */
1341
5.86k
    } else {                                   /* separator [zero] reached */
1342
5.86k
      pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
1343
                                                      for loop counter (see
1344
                                                      above) is done here */
1345
5.86k
      escapePrefixUp +=
1346
5.86k
          4; /* if escape_separator '0' appears, add 4 and ==> break */
1347
1348
      /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit
1349
       * position escapePrefixUp */
1350
5.86k
      pEscapeSequenceInfo[codewordOffset] &=
1351
5.86k
          ~MASK_ESCAPE_PREFIX_UP;              /* delete old escapePrefixUp */
1352
5.86k
      escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */
1353
5.86k
      pEscapeSequenceInfo[codewordOffset] |=
1354
5.86k
          escapePrefixUp;                      /* insert new escapePrefixUp */
1355
5.86k
      escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */
1356
1357
      /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit
1358
       * position escapePrefixDown */
1359
5.86k
      pEscapeSequenceInfo[codewordOffset] &=
1360
5.86k
          ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */
1361
5.86k
      escapePrefixUp <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */
1362
5.86k
      pEscapeSequenceInfo[codewordOffset] |=
1363
5.86k
          escapePrefixUp; /* insert new escapePrefixDown */
1364
1365
5.86k
      pSta[codewordOffset] = BODY_SIGN_ESC__ESC_WORD; /* set next state */
1366
5.86k
      pHcr->nonPcwSideinfo.pState =
1367
5.86k
          aStateConstant2State[pSta[codewordOffset]]; /* get state from separate
1368
                                                         array of cw-sideinfo */
1369
5.86k
      break;
1370
5.86k
    }
1371
9.08k
  }
1372
1373
6.52k
  if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1374
1.06k
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1375
1.06k
                         pSegmentBitfield); /* clear a bit in bitfield and
1376
                                               switch off statemachine */
1377
1378
1.06k
    if (pRemainingBitsInSegment[segmentOffset] < 0) {
1379
2
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_PREFIX;
1380
2
      return BODY_SIGN_ESC__ESC_PREFIX;
1381
2
    }
1382
1.06k
  }
1383
1384
6.52k
  return STOP_THIS_STATE;
1385
6.52k
}
1386
1387
/*---------------------------------------------------------------------------------------------
1388
     description: Decode escapeWord of escape sequence. If the escape sequence
1389
is decoded completely, assemble quantized-spectral-escape-coefficient and
1390
replace the previous decoded 16 by the new value. Test flagB. If flagB is set,
1391
the second escape sequence must be decoded. If flagB is not set, the codeword is
1392
decoded and the state machine is switched off.
1393
-----------------------------------------------------------------------------------------------
1394
        output:   Two lines with valid sign. At least one of both lines has got
1395
the correct value.
1396
-----------------------------------------------------------------------------------------------
1397
        return:   0
1398
--------------------------------------------------------------------------------------------
1399
*/
1400
7.22k
UINT Hcr_State_BODY_SIGN_ESC__ESC_WORD(HANDLE_FDK_BITSTREAM bs, void *ptr) {
1401
7.22k
  H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
1402
7.22k
  SCHAR *pRemainingBitsInSegment;
1403
7.22k
  INT *pLeftStartOfSegment;
1404
7.22k
  INT *pRightStartOfSegment;
1405
7.22k
  UCHAR readDirection;
1406
7.22k
  UINT *pSegmentBitfield;
1407
7.22k
  UINT *pCodewordBitfield;
1408
7.22k
  UINT segmentOffset;
1409
1410
7.22k
  FIXP_DBL *pResultBase;
1411
7.22k
  USHORT *iResultPointer;
1412
7.22k
  UINT *pEscapeSequenceInfo;
1413
7.22k
  UINT codewordOffset;
1414
1415
7.22k
  UINT escapeWord;
1416
7.22k
  UINT escapePrefixDown;
1417
7.22k
  UINT escapePrefixUp;
1418
7.22k
  UCHAR carryBit;
1419
7.22k
  UINT iQSC;
1420
7.22k
  INT sign;
1421
7.22k
  UINT flagA;
1422
7.22k
  UINT flagB;
1423
7.22k
  SCHAR *pSta;
1424
1425
7.22k
  pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
1426
7.22k
  pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
1427
7.22k
  pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
1428
7.22k
  readDirection = pHcr->segmentInfo.readDirection;
1429
7.22k
  pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
1430
7.22k
  pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
1431
7.22k
  segmentOffset = pHcr->segmentInfo.segmentOffset;
1432
1433
7.22k
  pResultBase = pHcr->nonPcwSideinfo.pResultBase;
1434
7.22k
  iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
1435
7.22k
  pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
1436
7.22k
  codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
1437
7.22k
  pSta = pHcr->nonPcwSideinfo.pSta;
1438
1439
7.22k
  escapeWord = pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_WORD;
1440
7.22k
  escapePrefixDown =
1441
7.22k
      (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_DOWN) >>
1442
7.22k
      LSB_ESCAPE_PREFIX_DOWN;
1443
1444
  /* decode escape word */
1445
27.8k
  for (; pRemainingBitsInSegment[segmentOffset] > 0;
1446
26.4k
       pRemainingBitsInSegment[segmentOffset] -= 1) {
1447
26.4k
    carryBit = HcrGetABitFromBitstream(
1448
26.4k
        bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1449
26.4k
        &pRightStartOfSegment[segmentOffset], readDirection);
1450
1451
    /* build escape word */
1452
26.4k
    escapeWord <<=
1453
26.4k
        1; /* left shift previous decoded part of escapeWord by on bit */
1454
26.4k
    escapeWord = escapeWord | carryBit; /* assemble escape word by bitwise or */
1455
1456
    /* decrement counter for length of escape word because one more bit was
1457
     * decoded */
1458
26.4k
    escapePrefixDown -= 1;
1459
1460
    /* store updated escapePrefixDown */
1461
26.4k
    pEscapeSequenceInfo[codewordOffset] &=
1462
26.4k
        ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */
1463
26.4k
    escapePrefixDown <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */
1464
26.4k
    pEscapeSequenceInfo[codewordOffset] |=
1465
26.4k
        escapePrefixDown; /* insert new escapePrefixDown */
1466
26.4k
    escapePrefixDown >>= LSB_ESCAPE_PREFIX_DOWN; /* shift back */
1467
1468
    /* store updated escapeWord */
1469
26.4k
    pEscapeSequenceInfo[codewordOffset] &=
1470
26.4k
        ~MASK_ESCAPE_WORD; /* delete old escapeWord */
1471
26.4k
    pEscapeSequenceInfo[codewordOffset] |=
1472
26.4k
        escapeWord; /* insert new escapeWord */
1473
1474
26.4k
    if (escapePrefixDown == 0) {
1475
5.85k
      pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
1476
                                                      for loop counter (see
1477
                                                      above) is done here */
1478
1479
      /* escape sequence decoded. Assemble escape-line and replace original line
1480
       */
1481
1482
      /* step 0 */
1483
      /* derive sign */
1484
5.85k
      iQSC = iResultPointer[codewordOffset];
1485
5.85k
      sign = (pResultBase[iQSC] >= (FIXP_DBL)0)
1486
5.85k
                 ? 1
1487
5.85k
                 : -1; /* get sign of escape value 16 */
1488
1489
      /* step 1 */
1490
      /* get escapePrefixUp */
1491
5.85k
      escapePrefixUp =
1492
5.85k
          (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >>
1493
5.85k
          LSB_ESCAPE_PREFIX_UP;
1494
1495
      /* step 2 */
1496
      /* calculate escape value */
1497
5.85k
      pResultBase[iQSC] =
1498
5.85k
          (FIXP_DBL)(sign * (((INT)1 << escapePrefixUp) + (INT)escapeWord));
1499
1500
      /* get both flags from sideinfo (flags are not shifted to the
1501
       * lsb-position) */
1502
5.85k
      flagA = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_A;
1503
5.85k
      flagB = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_B;
1504
1505
      /* step 3 */
1506
      /* clear the whole escape sideinfo word */
1507
5.85k
      pEscapeSequenceInfo[codewordOffset] = 0;
1508
1509
      /* change state in dependence of flag flagB */
1510
5.85k
      if (flagA != 0) {
1511
        /* first escape sequence decoded; previous decoded 16 has been replaced
1512
         * by valid line */
1513
1514
        /* clear flagA in sideinfo word because this escape sequence has already
1515
         * beed decoded */
1516
2.30k
        pEscapeSequenceInfo[codewordOffset] &= ~MASK_FLAG_A;
1517
1518
2.30k
        if (flagB == 0) {
1519
1.09k
          ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1520
1.09k
                               pCodewordBitfield); /* clear a bit in bitfield
1521
                                                      and switch off
1522
                                                      statemachine */
1523
1.20k
        } else {
1524
          /* updated pointer to next and last 16 */
1525
1.20k
          iQSC++;
1526
1.20k
          iResultPointer[codewordOffset] = iQSC;
1527
1528
          /* change state */
1529
1.20k
          pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
1530
1.20k
          pHcr->nonPcwSideinfo.pState =
1531
1.20k
              aStateConstant2State[pSta[codewordOffset]]; /* get state from
1532
                                                             separate array of
1533
                                                             cw-sideinfo */
1534
1.20k
        }
1535
3.55k
      } else {
1536
3.55k
        ClearBitFromBitfield(
1537
3.55k
            &(pHcr->nonPcwSideinfo.pState), segmentOffset,
1538
3.55k
            pCodewordBitfield); /* clear a bit in bitfield and switch off
1539
                                   statemachine */
1540
3.55k
      }
1541
5.85k
      break;
1542
5.85k
    }
1543
26.4k
  }
1544
1545
7.22k
  if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1546
1.56k
    ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1547
1.56k
                         pSegmentBitfield); /* clear a bit in bitfield and
1548
                                               switch off statemachine */
1549
1550
1.56k
    if (pRemainingBitsInSegment[segmentOffset] < 0) {
1551
3
      pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_WORD;
1552
3
      return BODY_SIGN_ESC__ESC_WORD;
1553
3
    }
1554
1.56k
  }
1555
1556
7.22k
  return STOP_THIS_STATE;
1557
7.22k
}