Coverage Report

Created: 2026-01-10 06:15

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libAACdec/src/usacdec_fac.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2019 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** AAC decoder library ******************************
96
97
   Author(s):   Manuel Jander
98
99
   Description: USAC FAC
100
101
*******************************************************************************/
102
103
#include "usacdec_fac.h"
104
105
#include "usacdec_const.h"
106
#include "usacdec_lpc.h"
107
#include "usacdec_acelp.h"
108
#include "usacdec_rom.h"
109
#include "dct.h"
110
#include "FDK_tools_rom.h"
111
#include "mdct.h"
112
113
59.6k
#define SPEC_FAC(ptr, i, gl) ((ptr) + ((i) * (gl)))
114
115
FIXP_DBL *CLpd_FAC_GetMemory(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
116
61.2k
                             UCHAR mod[NB_DIV], int *pState) {
117
61.2k
  FIXP_DBL *ptr;
118
61.2k
  int i;
119
61.2k
  int k = 0;
120
61.2k
  int max_windows = 8;
121
122
61.2k
  FDK_ASSERT(*pState >= 0 && *pState < max_windows);
123
124
  /* Look for free space to store FAC data. 2 FAC data blocks fit into each TCX
125
   * spectral data block. */
126
167k
  for (i = *pState; i < max_windows; i++) {
127
165k
    if (mod[i >> 1] == 0) {
128
59.6k
      break;
129
59.6k
    }
130
165k
  }
131
132
61.2k
  *pState = i + 1;
133
134
61.2k
  if (i == max_windows) {
135
1.56k
    ptr = pAacDecoderChannelInfo->data.usac.fac_data0;
136
59.6k
  } else {
137
59.6k
    FDK_ASSERT(mod[(i >> 1)] == 0);
138
59.6k
    ptr = SPEC_FAC(pAacDecoderChannelInfo->pSpectralCoefficient, i,
139
59.6k
                   pAacDecoderChannelInfo->granuleLength << k);
140
59.6k
  }
141
142
61.2k
  return ptr;
143
61.2k
}
144
145
int CLpd_FAC_Read(HANDLE_FDK_BITSTREAM hBs, FIXP_DBL *pFac, SCHAR *pFacScale,
146
104k
                  int length, int use_gain, int frame) {
147
104k
  FIXP_DBL fac_gain;
148
104k
  int fac_gain_e = 0;
149
150
104k
  if (use_gain) {
151
47.6k
    CLpd_DecodeGain(&fac_gain, &fac_gain_e, FDKreadBits(hBs, 7));
152
47.6k
  }
153
154
104k
  if (CLpc_DecodeAVQ(hBs, pFac, 1, 1, length) != 0) {
155
321
    return -1;
156
321
  }
157
158
104k
  {
159
104k
    int scale;
160
161
104k
    scale = getScalefactor(pFac, length);
162
104k
    scaleValues(pFac, length, scale);
163
104k
    pFacScale[frame] = DFRACT_BITS - 1 - scale;
164
104k
  }
165
166
104k
  if (use_gain) {
167
47.3k
    int i;
168
169
47.3k
    pFacScale[frame] += fac_gain_e;
170
171
3.33M
    for (i = 0; i < length; i++) {
172
3.28M
      pFac[i] = fMult(pFac[i], fac_gain);
173
3.28M
    }
174
47.3k
  }
175
104k
  return 0;
176
104k
}
177
178
/**
179
 * \brief Apply synthesis filter with zero input to x. The overall filter gain
180
 * is 1.0.
181
 * \param a LPC filter coefficients.
182
 * \param length length of the input/output data vector x.
183
 * \param x input/output vector, where the synthesis filter is applied in place.
184
 */
185
static void Syn_filt_zero(const FIXP_LPC a[], const INT a_exp, INT length,
186
86.1k
                          FIXP_DBL x[]) {
187
86.1k
  int i, j;
188
86.1k
  FIXP_DBL L_tmp;
189
190
16.7M
  for (i = 0; i < length; i++) {
191
16.6M
    L_tmp = (FIXP_DBL)0;
192
193
270M
    for (j = 0; j < fMin(i, M_LP_FILTER_ORDER); j++) {
194
254M
      L_tmp -= fMultDiv2(a[j], x[i - (j + 1)]) >> (LP_FILTER_SCALE - 1);
195
254M
    }
196
197
16.6M
    L_tmp = scaleValue(L_tmp, a_exp + LP_FILTER_SCALE);
198
16.6M
    x[i] = fAddSaturate(x[i], L_tmp);
199
16.6M
  }
200
86.1k
}
201
202
/* Table is also correct for coreCoderFrameLength = 768. Factor 3/4 is canceled
203
   out: gainFac = 0.5 * sqrt(fac_length/lFrame)
204
*/
205
static const FIXP_DBL gainFac[4] = {0x40000000, 0x2d413ccd, 0x20000000,
206
                                    0x16a09e66};
207
208
void CFac_ApplyGains(FIXP_DBL fac_data[LFAC], const INT fac_length,
209
                     const FIXP_DBL tcx_gain, const FIXP_DBL alfd_gains[],
210
49.5k
                     const INT mod) {
211
49.5k
  FIXP_DBL facFactor;
212
49.5k
  int i;
213
214
49.5k
  FDK_ASSERT((fac_length == 128) || (fac_length == 96));
215
216
  /* 2) Apply gain factor to FAC data */
217
49.5k
  facFactor = fMult(gainFac[mod], tcx_gain);
218
5.52M
  for (i = 0; i < fac_length; i++) {
219
5.47M
    fac_data[i] = fMult(fac_data[i], facFactor);
220
5.47M
  }
221
222
  /* 3) Apply spectrum deshaping using alfd_gains */
223
1.41M
  for (i = 0; i < fac_length / 4; i++) {
224
1.36M
    int k;
225
226
1.36M
    k = i >> (3 - mod);
227
1.36M
    fac_data[i] = fMult(fac_data[i], alfd_gains[k])
228
1.36M
                  << 1; /* alfd_gains is scaled by one bit. */
229
1.36M
  }
230
49.5k
}
231
232
static void CFac_CalcFacSignal(FIXP_DBL *pOut, FIXP_DBL *pFac,
233
                               const int fac_scale, const int fac_length,
234
                               const FIXP_LPC A[M_LP_FILTER_ORDER],
235
                               const INT A_exp, const int fAddZir,
236
86.1k
                               const int isFdFac) {
237
86.1k
  FIXP_LPC wA[M_LP_FILTER_ORDER];
238
86.1k
  FIXP_DBL tf_gain = (FIXP_DBL)0;
239
86.1k
  int wlength;
240
86.1k
  int scale = fac_scale;
241
242
  /* obtain tranform gain. */
243
86.1k
  imdct_gain(&tf_gain, &scale, isFdFac ? 0 : fac_length);
244
245
  /* 4) Compute inverse DCT-IV of FAC data. Output scale of DCT IV is 16 bits.
246
   */
247
86.1k
  dct_IV(pFac, fac_length, &scale);
248
  /* dct_IV scale = log2(fac_length). "- 7" is a factor of 2/128 */
249
86.1k
  if (tf_gain != (FIXP_DBL)0) { /* non-radix 2 transform gain */
250
34.0k
    int i;
251
252
3.30M
    for (i = 0; i < fac_length; i++) {
253
3.26M
      pFac[i] = fMult(tf_gain, pFac[i]);
254
3.26M
    }
255
34.0k
  }
256
86.1k
  scaleValuesSaturate(pOut, pFac, fac_length,
257
86.1k
                      scale); /* Avoid overflow issues and saturate. */
258
259
86.1k
  E_LPC_a_weight(wA, A, M_LP_FILTER_ORDER);
260
261
  /* We need the output of the IIR filter to be longer than "fac_length".
262
  For this reason we run it with zero input appended to the end of the input
263
  sequence, i.e. we generate its ZIR and extend the output signal.*/
264
86.1k
  FDKmemclear(pOut + fac_length, fac_length * sizeof(FIXP_DBL));
265
86.1k
  wlength = 2 * fac_length;
266
267
  /* 5) Apply weighted synthesis filter to FAC data, including optional Zir (5.
268
   * item 4). */
269
86.1k
  Syn_filt_zero(wA, A_exp, wlength, pOut);
270
86.1k
}
271
272
INT CLpd_FAC_Mdct2Acelp(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *pFac,
273
                        const int fac_scale, FIXP_LPC *A, INT A_exp,
274
                        INT nrOutSamples, const INT fac_length,
275
54.9k
                        const INT isFdFac, UCHAR prevWindowShape) {
276
54.9k
  FIXP_DBL *pOvl;
277
54.9k
  FIXP_DBL *pOut0;
278
54.9k
  const FIXP_WTP *pWindow;
279
54.9k
  int i, fl, nrSamples = 0;
280
281
54.9k
  FDK_ASSERT(fac_length <= 1024 / (4 * 2));
282
283
54.9k
  fl = fac_length * 2;
284
285
54.9k
  pWindow = FDKgetWindowSlope(fl, prevWindowShape);
286
287
  /* Adapt window slope length in case of frame loss. */
288
54.9k
  if (hMdct->prev_fr != fl) {
289
13.4k
    int nl = 0;
290
13.4k
    imdct_adapt_parameters(hMdct, &fl, &nl, fac_length, pWindow, nrOutSamples);
291
13.4k
    FDK_ASSERT(nl == 0);
292
13.4k
  }
293
294
54.9k
  if (nrSamples < nrOutSamples) {
295
39.3k
    pOut0 = output;
296
39.3k
    nrSamples += hMdct->ov_offset;
297
    /* Purge buffered output. */
298
39.3k
    FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
299
39.3k
    hMdct->ov_offset = 0;
300
39.3k
  }
301
302
54.9k
  pOvl = hMdct->overlap.freq + hMdct->ov_size - 1;
303
304
54.9k
  if (nrSamples >= nrOutSamples) {
305
15.5k
    pOut0 = hMdct->overlap.time + hMdct->ov_offset;
306
15.5k
    hMdct->ov_offset += hMdct->prev_nr + fl / 2;
307
39.3k
  } else {
308
39.3k
    pOut0 = output + nrSamples;
309
39.3k
    nrSamples += hMdct->prev_nr + fl / 2;
310
39.3k
  }
311
54.9k
  if (hMdct->prevPrevAliasSymmetry == 0) {
312
5.29M
    for (i = 0; i < hMdct->prev_nr; i++) {
313
5.24M
      FIXP_DBL x = -(*pOvl--);
314
5.24M
      *pOut0 = IMDCT_SCALE_DBL(x);
315
5.24M
      pOut0++;
316
5.24M
    }
317
54.9k
  } else {
318
0
    for (i = 0; i < hMdct->prev_nr; i++) {
319
0
      FIXP_DBL x = (*pOvl--);
320
0
      *pOut0 = IMDCT_SCALE_DBL(x);
321
0
      pOut0++;
322
0
    }
323
0
  }
324
54.9k
  hMdct->prev_nr = 0;
325
326
54.9k
  {
327
54.9k
    if (pFac != NULL) {
328
      /* Note: The FAC gain might have been applied directly after bit stream
329
       * parse in this case. */
330
37.3k
      CFac_CalcFacSignal(pOut0, pFac, fac_scale, fac_length, A, A_exp, 0,
331
37.3k
                         isFdFac);
332
37.3k
    } else {
333
      /* Clear buffer because of the overlap and ADD! */
334
17.5k
      FDKmemclear(pOut0, fac_length * sizeof(FIXP_DBL));
335
17.5k
    }
336
54.9k
  }
337
338
54.9k
  i = 0;
339
340
54.9k
  if (hMdct->prevPrevAliasSymmetry == 0) {
341
5.51M
    for (; i < fl / 2; i++) {
342
5.45M
      FIXP_DBL x0;
343
344
      /* Overlap Add */
345
5.45M
      x0 = -fMult(*pOvl--, pWindow[i].v.re);
346
347
5.45M
      *pOut0 = fAddSaturate(*pOut0, IMDCT_SCALE_DBL(x0));
348
5.45M
      pOut0++;
349
5.45M
    }
350
54.9k
  } else {
351
0
    for (; i < fl / 2; i++) {
352
0
      FIXP_DBL x0;
353
354
      /* Overlap Add */
355
0
      x0 = fMult(*pOvl--, pWindow[i].v.re);
356
357
0
      *pOut0 = fAddSaturate(*pOut0, IMDCT_SCALE_DBL(x0));
358
0
      pOut0++;
359
0
    }
360
0
  }
361
54.9k
  if (hMdct->pFacZir !=
362
54.9k
      0) { /* this should only happen for ACELP -> TCX20 -> ACELP transition */
363
11.2k
    FIXP_DBL *pOut = pOut0 - fl / 2; /* fl/2 == fac_length */
364
1.21M
    for (i = 0; i < fl / 2; i++) {
365
1.20M
      pOut[i] = fAddSaturate(pOut[i], IMDCT_SCALE_DBL(hMdct->pFacZir[i]));
366
1.20M
    }
367
11.2k
    hMdct->pFacZir = NULL;
368
11.2k
  }
369
370
54.9k
  hMdct->prev_fr = 0;
371
54.9k
  hMdct->prev_nr = 0;
372
54.9k
  hMdct->prev_tl = 0;
373
54.9k
  hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
374
375
54.9k
  return nrSamples;
376
54.9k
}
377
378
INT CLpd_FAC_Acelp2Mdct(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *_pSpec,
379
                        const SHORT spec_scale[], const int nSpec,
380
                        FIXP_DBL *pFac, const int fac_scale,
381
                        const INT fac_length, INT noOutSamples, const INT tl,
382
                        const FIXP_WTP *wrs, const INT fr, FIXP_LPC A[16],
383
                        INT A_exp, CAcelpStaticMem *acelp_mem,
384
                        const FIXP_DBL gain, const int last_frame_lost,
385
                        const int isFdFac, const UCHAR last_lpd_mode,
386
48.7k
                        const int k, int currAliasingSymmetry) {
387
48.7k
  FIXP_DBL *pCurr, *pOvl, *pSpec;
388
48.7k
  const FIXP_WTP *pWindow;
389
48.7k
  const FIXP_WTB *FacWindowZir_conceal;
390
48.7k
  UCHAR doFacZirConceal = 0;
391
48.7k
  int doDeemph = 1;
392
48.7k
  const FIXP_WTB *FacWindowZir, *FacWindowSynth;
393
48.7k
  FIXP_DBL *pOut0 = output, *pOut1;
394
48.7k
  int w, i, fl, nl, nr, f_len, nrSamples = 0, s = 0, scale, total_gain_e;
395
48.7k
  FIXP_DBL *pF, *pFAC_and_FAC_ZIR = NULL;
396
48.7k
  FIXP_DBL total_gain = gain;
397
398
48.7k
  FDK_ASSERT(fac_length <= 1024 / (4 * 2));
399
48.7k
  switch (fac_length) {
400
    /* coreCoderFrameLength = 1024 */
401
14.0k
    case 128:
402
14.0k
      pWindow = SineWindow256;
403
14.0k
      FacWindowZir = FacWindowZir128;
404
14.0k
      FacWindowSynth = FacWindowSynth128;
405
14.0k
      break;
406
5.48k
    case 64:
407
5.48k
      pWindow = SineWindow128;
408
5.48k
      FacWindowZir = FacWindowZir64;
409
5.48k
      FacWindowSynth = FacWindowSynth64;
410
5.48k
      break;
411
0
    case 32:
412
0
      pWindow = SineWindow64;
413
0
      FacWindowZir = FacWindowZir32;
414
0
      FacWindowSynth = FacWindowSynth32;
415
0
      break;
416
    /* coreCoderFrameLength = 768 */
417
17.5k
    case 96:
418
17.5k
      pWindow = SineWindow192;
419
17.5k
      FacWindowZir = FacWindowZir96;
420
17.5k
      FacWindowSynth = FacWindowSynth96;
421
17.5k
      break;
422
11.6k
    case 48:
423
11.6k
      pWindow = SineWindow96;
424
11.6k
      FacWindowZir = FacWindowZir48;
425
11.6k
      FacWindowSynth = FacWindowSynth48;
426
11.6k
      break;
427
0
    default:
428
0
      FDK_ASSERT(0);
429
0
      return 0;
430
48.7k
  }
431
432
48.7k
  FacWindowZir_conceal = FacWindowSynth;
433
  /* Derive NR and NL */
434
48.7k
  fl = fac_length * 2;
435
48.7k
  nl = (tl - fl) >> 1;
436
48.7k
  nr = (tl - fr) >> 1;
437
438
48.7k
  if (noOutSamples > nrSamples) {
439
    /* Purge buffered output. */
440
36.0k
    FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
441
36.0k
    nrSamples = hMdct->ov_offset;
442
36.0k
    hMdct->ov_offset = 0;
443
36.0k
  }
444
445
48.7k
  if (nrSamples >= noOutSamples) {
446
12.7k
    pOut1 = hMdct->overlap.time + hMdct->ov_offset;
447
12.7k
    if (hMdct->ov_offset < fac_length) {
448
8.31k
      pOut0 = output + nrSamples;
449
8.31k
    } else {
450
4.38k
      pOut0 = pOut1;
451
4.38k
    }
452
12.7k
    hMdct->ov_offset += fac_length + nl;
453
36.0k
  } else {
454
36.0k
    pOut1 = output + nrSamples;
455
36.0k
    pOut0 = output + nrSamples;
456
36.0k
  }
457
458
48.7k
  {
459
48.7k
    pFAC_and_FAC_ZIR = CLpd_ACELP_GetFreeExcMem(acelp_mem, 2 * fac_length);
460
48.7k
    {
461
48.7k
      const FIXP_DBL *pTmp1, *pTmp2;
462
463
48.7k
      doFacZirConceal |= ((last_frame_lost != 0) && (k == 0));
464
48.7k
      doDeemph &= (last_lpd_mode != 4);
465
48.7k
      if (doFacZirConceal) {
466
        /* ACELP contribution in concealment case:
467
           Use ZIR with a modified ZIR window to preserve some more energy.
468
           Dont use FAC, which contains wrong information for concealed frame
469
           Dont use last ACELP samples, but double ZIR, instead (afterwards) */
470
10
        FDKmemclear(pFAC_and_FAC_ZIR, 2 * fac_length * sizeof(FIXP_DBL));
471
10
        FacWindowSynth = (FIXP_WTB *)pFAC_and_FAC_ZIR;
472
10
        FacWindowZir = FacWindowZir_conceal;
473
48.7k
      } else {
474
48.7k
        CFac_CalcFacSignal(pFAC_and_FAC_ZIR, pFac, fac_scale + s, fac_length, A,
475
48.7k
                           A_exp, 1, isFdFac);
476
48.7k
      }
477
      /* 6) Get windowed past ACELP samples and ACELP ZIR signal */
478
479
      /*
480
       * Get ACELP ZIR (pFac[]) and ACELP past samples (pOut0[]) and add them
481
       * to the FAC synth signal contribution on pOut1[].
482
       */
483
48.7k
      {
484
48.7k
        {
485
48.7k
          CLpd_Acelp_Zir(A, A_exp, acelp_mem, fac_length, pFac, doDeemph);
486
487
48.7k
          pTmp1 = pOut0;
488
48.7k
          pTmp2 = pFac;
489
48.7k
        }
490
491
4.44M
        for (i = 0, w = 0; i < fac_length; i++) {
492
4.39M
          FIXP_DBL x;
493
          /* Div2 is compensated by table scaling */
494
4.39M
          x = fMultDiv2(pTmp2[i], FacWindowZir[w]);
495
4.39M
          x += fMultDiv2(pTmp1[-i - 1], FacWindowSynth[w]);
496
4.39M
          pOut1[i] = fAddSaturate(x, pFAC_and_FAC_ZIR[i]);
497
4.39M
          w++;
498
4.39M
        }
499
48.7k
      }
500
501
48.7k
      if (doFacZirConceal) {
502
        /* ZIR is the only ACELP contribution, so double it */
503
10
        scaleValues(pOut1, fac_length, 1);
504
10
      }
505
48.7k
    }
506
48.7k
  }
507
508
48.7k
  if (nrSamples < noOutSamples) {
509
36.0k
    nrSamples += fac_length + nl;
510
36.0k
  }
511
512
  /* Obtain transform gain */
513
48.7k
  total_gain = gain;
514
48.7k
  total_gain_e = 0;
515
48.7k
  imdct_gain(&total_gain, &total_gain_e, tl);
516
517
  /* IMDCT overlap add */
518
48.7k
  scale = total_gain_e;
519
48.7k
  pSpec = _pSpec;
520
521
  /* Note:when comming from an LPD frame (TCX/ACELP) the previous alisaing
522
   * symmetry must always be 0 */
523
48.7k
  if (currAliasingSymmetry == 0) {
524
48.7k
    dct_IV(pSpec, tl, &scale);
525
48.7k
  } else {
526
0
    FIXP_DBL _tmp[1024 + ALIGNMENT_DEFAULT / sizeof(FIXP_DBL)];
527
0
    FIXP_DBL *tmp = (FIXP_DBL *)ALIGN_PTR(_tmp);
528
0
    C_ALLOC_ALIGNED_REGISTER(tmp, sizeof(_tmp));
529
0
    dst_III(pSpec, tmp, tl, &scale);
530
0
    C_ALLOC_ALIGNED_UNREGISTER(tmp);
531
0
  }
532
533
  /* Optional scaling of time domain - no yet windowed - of current spectrum */
534
48.7k
  if (total_gain != (FIXP_DBL)0) {
535
9.76M
    for (i = 0; i < tl; i++) {
536
9.72M
      pSpec[i] = fMult(pSpec[i], total_gain);
537
9.72M
    }
538
38.9k
  }
539
48.7k
  int loc_scale = fixmin_I(spec_scale[0] + scale, (INT)DFRACT_BITS - 1);
540
48.7k
  scaleValuesSaturate(pSpec, tl, loc_scale);
541
542
48.7k
  pOut1 += fl / 2 - 1;
543
48.7k
  pCurr = pSpec + tl - fl / 2;
544
545
4.44M
  for (i = 0; i < fl / 2; i++) {
546
4.39M
    FIXP_DBL x1;
547
548
    /* FAC signal is already on pOut1, because of that the += operator. */
549
4.39M
    x1 = fMult(*pCurr++, pWindow[i].v.re);
550
4.39M
    FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
551
4.39M
                pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
552
4.39M
               (pOut1 >= output && pOut1 < output + 1024));
553
4.39M
    *pOut1 = fAddSaturate(*pOut1, IMDCT_SCALE_DBL(-x1));
554
4.39M
    pOut1--;
555
4.39M
  }
556
557
  /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
558
48.7k
  pOut1 += (fl / 2) + 1;
559
560
48.7k
  pFAC_and_FAC_ZIR += fac_length; /* set pointer to beginning of FAC ZIR */
561
562
48.7k
  if (nl == 0) {
563
    /* save pointer to write FAC ZIR data later */
564
33.4k
    hMdct->pFacZir = pFAC_and_FAC_ZIR;
565
33.4k
  } else {
566
15.3k
    FDK_ASSERT(nl >= fac_length);
567
    /* FAC ZIR will be added now ... */
568
15.3k
    hMdct->pFacZir = NULL;
569
15.3k
  }
570
571
48.7k
  pF = pFAC_and_FAC_ZIR;
572
48.7k
  f_len = fac_length;
573
574
48.7k
  pCurr = pSpec + tl - fl / 2 - 1;
575
3.07M
  for (i = 0; i < nl; i++) {
576
3.03M
    FIXP_DBL x = -(*pCurr--);
577
    /* 5) (item 4) Synthesis filter Zir component, FAC ZIR (another one). */
578
3.03M
    if (i < f_len) {
579
1.68M
      x = fAddSaturate(x, *pF++);
580
1.68M
    }
581
582
3.03M
    FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
583
3.03M
                pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
584
3.03M
               (pOut1 >= output && pOut1 < output + 1024));
585
3.03M
    *pOut1 = IMDCT_SCALE_DBL(x);
586
3.03M
    pOut1++;
587
3.03M
  }
588
589
48.7k
  hMdct->prev_nr = nr;
590
48.7k
  hMdct->prev_fr = fr;
591
48.7k
  hMdct->prev_wrs = wrs;
592
48.7k
  hMdct->prev_tl = tl;
593
48.7k
  hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
594
48.7k
  hMdct->prevAliasSymmetry = currAliasingSymmetry;
595
48.7k
  fl = fr;
596
48.7k
  nl = nr;
597
598
48.7k
  pOvl = pSpec + tl / 2 - 1;
599
48.7k
  pOut0 = pOut1;
600
601
168k
  for (w = 1; w < nSpec; w++) /* for ACELP -> FD short */
602
119k
  {
603
119k
    const FIXP_WTP *pWindow_prev;
604
605
    /* Setup window pointers */
606
119k
    pWindow_prev = hMdct->prev_wrs;
607
608
    /* Current spectrum */
609
119k
    pSpec = _pSpec + w * tl;
610
611
119k
    scale = total_gain_e;
612
613
    /* For the second, third, etc. short frames the alisaing symmetry is equal,
614
     * either (0,0) or (1,1) */
615
119k
    if (currAliasingSymmetry == 0) {
616
      /* DCT IV of current spectrum */
617
119k
      dct_IV(pSpec, tl, &scale);
618
119k
    } else {
619
0
      dst_IV(pSpec, tl, &scale);
620
0
    }
621
622
    /* Optional scaling of time domain - no yet windowed - of current spectrum
623
     */
624
    /* and de-scale current spectrum signal (time domain, no yet windowed) */
625
119k
    if (total_gain != (FIXP_DBL)0) {
626
7.91M
      for (i = 0; i < tl; i++) {
627
7.83M
        pSpec[i] = fMult(pSpec[i], total_gain);
628
7.83M
      }
629
81.6k
    }
630
119k
    loc_scale = fixmin_I(spec_scale[w] + scale, (INT)DFRACT_BITS - 1);
631
119k
    scaleValuesSaturate(pSpec, tl, loc_scale);
632
633
119k
    if (noOutSamples <= nrSamples) {
634
      /* Divert output first half to overlap buffer if we already got enough
635
       * output samples. */
636
51.4k
      pOut0 = hMdct->overlap.time + hMdct->ov_offset;
637
51.4k
      hMdct->ov_offset += hMdct->prev_nr + fl / 2;
638
68.5k
    } else {
639
      /* Account output samples */
640
68.5k
      nrSamples += hMdct->prev_nr + fl / 2;
641
68.5k
    }
642
643
    /* NR output samples 0 .. NR. -overlap[TL/2..TL/2-NR] */
644
119k
    for (i = 0; i < hMdct->prev_nr; i++) {
645
0
      FIXP_DBL x = -(*pOvl--);
646
0
      *pOut0 = IMDCT_SCALE_DBL(x);
647
0
      pOut0++;
648
0
    }
649
650
119k
    if (noOutSamples <= nrSamples) {
651
      /* Divert output second half to overlap buffer if we already got enough
652
       * output samples. */
653
68.5k
      pOut1 = hMdct->overlap.time + hMdct->ov_offset + fl / 2 - 1;
654
68.5k
      hMdct->ov_offset += fl / 2 + nl;
655
68.5k
    } else {
656
51.4k
      pOut1 = pOut0 + (fl - 1);
657
51.4k
      nrSamples += fl / 2 + nl;
658
51.4k
    }
659
660
    /* output samples before window crossing point NR .. TL/2.
661
     * -overlap[TL/2-NR..TL/2-NR-FL/2] + current[NR..TL/2] */
662
    /* output samples after window crossing point TL/2 .. TL/2+FL/2.
663
     * -overlap[0..FL/2] - current[TL/2..FL/2] */
664
119k
    pCurr = pSpec + tl - fl / 2;
665
119k
    if (currAliasingSymmetry == 0) {
666
6.49M
      for (i = 0; i < fl / 2; i++) {
667
6.37M
        FIXP_DBL x0, x1;
668
669
6.37M
        cplxMultDiv2(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
670
6.37M
        *pOut0 = IMDCT_SCALE_DBL_LSH1(x0);
671
6.37M
        *pOut1 = IMDCT_SCALE_DBL_LSH1(-x1);
672
6.37M
        pOut0++;
673
6.37M
        pOut1--;
674
6.37M
      }
675
119k
    } else {
676
0
      if (hMdct->prevPrevAliasSymmetry == 0) {
677
        /* Jump DST II -> DST IV for the second window */
678
0
        for (i = 0; i < fl / 2; i++) {
679
0
          FIXP_DBL x0, x1;
680
681
0
          cplxMultDiv2(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
682
0
          *pOut0 = IMDCT_SCALE_DBL_LSH1(x0);
683
0
          *pOut1 = IMDCT_SCALE_DBL_LSH1(x1);
684
0
          pOut0++;
685
0
          pOut1--;
686
0
        }
687
0
      } else {
688
        /* Jump DST IV -> DST IV from the second window on */
689
0
        for (i = 0; i < fl / 2; i++) {
690
0
          FIXP_DBL x0, x1;
691
692
0
          cplxMultDiv2(&x1, &x0, *pCurr++, *pOvl--, pWindow_prev[i]);
693
0
          *pOut0 = IMDCT_SCALE_DBL_LSH1(x0);
694
0
          *pOut1 = IMDCT_SCALE_DBL_LSH1(x1);
695
0
          pOut0++;
696
0
          pOut1--;
697
0
        }
698
0
      }
699
0
    }
700
701
119k
    if (hMdct->pFacZir != 0) {
702
      /* add FAC ZIR of previous ACELP -> mdct transition */
703
17.1k
      FIXP_DBL *pOut = pOut0 - fl / 2;
704
17.1k
      FDK_ASSERT(fl / 2 <= 128);
705
927k
      for (i = 0; i < fl / 2; i++) {
706
910k
        pOut[i] = fAddSaturate(pOut[i], IMDCT_SCALE_DBL(hMdct->pFacZir[i]));
707
910k
      }
708
17.1k
      hMdct->pFacZir = NULL;
709
17.1k
    }
710
119k
    pOut0 += (fl / 2);
711
712
    /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
713
119k
    pOut1 += (fl / 2) + 1;
714
119k
    pCurr = pSpec + tl - fl / 2 - 1;
715
119k
    for (i = 0; i < nl; i++) {
716
0
      FIXP_DBL x = -(*pCurr--);
717
0
      *pOut1 = IMDCT_SCALE_DBL(x);
718
0
      pOut1++;
719
0
    }
720
721
    /* Set overlap source pointer for next window pOvl = pSpec + tl/2 - 1; */
722
119k
    pOvl = pSpec + tl / 2 - 1;
723
724
    /* Previous window values. */
725
119k
    hMdct->prev_nr = nr;
726
119k
    hMdct->prev_fr = fr;
727
119k
    hMdct->prev_tl = tl;
728
119k
    hMdct->prev_wrs = pWindow_prev;
729
119k
    hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
730
119k
    hMdct->prevAliasSymmetry = currAliasingSymmetry;
731
119k
  }
732
733
  /* Save overlap */
734
735
48.7k
  pOvl = hMdct->overlap.freq + hMdct->ov_size - tl / 2;
736
48.7k
  FDK_ASSERT(pOvl >= hMdct->overlap.time + hMdct->ov_offset);
737
48.7k
  FDK_ASSERT(tl / 2 <= hMdct->ov_size);
738
7.47M
  for (i = 0; i < tl / 2; i++) {
739
7.42M
    pOvl[i] = _pSpec[i + (w - 1) * tl];
740
7.42M
  }
741
742
48.7k
  return nrSamples;
743
48.7k
}