Coverage Report

Created: 2026-02-14 06:49

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libFDK/src/dct.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/******************* Library for basic calculation routines ********************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file   dct.cpp
105
  \brief  DCT Implementations
106
  Library functions to calculate standard DCTs. This will most likely be
107
  replaced by hand-optimized functions for the specific target processor.
108
109
  Three different implementations of the dct type II and the dct type III
110
  transforms are provided.
111
112
  By default implementations which are based on a single, standard complex
113
  FFT-kernel are used (dctII_f() and dctIII_f()). These are specifically helpful
114
  in cases where optimized FFT libraries are already available. The FFT used in
115
  these implementation is FFT rad2 from FDK_tools.
116
117
  Of course, one might also use DCT-libraries should they be available. The DCT
118
  and DST type IV implementations are only available in a version based on a
119
  complex FFT kernel.
120
*/
121
122
#include "dct.h"
123
124
#include "FDK_tools_rom.h"
125
#include "fft.h"
126
127
void dct_getTables(const FIXP_WTP **ptwiddle, const FIXP_STP **sin_twiddle,
128
58.6M
                   int *sin_step, int length) {
129
58.6M
  const FIXP_WTP *twiddle;
130
58.6M
  int ld2_length;
131
132
  /* Get ld2 of length - 2 + 1
133
      -2: because first table entry is window of size 4
134
      +1: because we already include +1 because of ceil(log2(length)) */
135
58.6M
  ld2_length = DFRACT_BITS - 1 - fNormz((FIXP_DBL)length) - 1;
136
137
  /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
138
58.6M
  switch ((length) >> (ld2_length - 1)) {
139
45.6M
    case 0x4: /* radix 2 */
140
45.6M
      *sin_twiddle = SineTable1024;
141
45.6M
      *sin_step = 1 << (10 - ld2_length);
142
45.6M
      twiddle = windowSlopes[0][0][ld2_length - 1];
143
45.6M
      break;
144
301k
    case 0x7: /* 10 ms */
145
301k
      *sin_twiddle = SineTable480;
146
301k
      *sin_step = 1 << (8 - ld2_length);
147
301k
      twiddle = windowSlopes[0][1][ld2_length];
148
301k
      break;
149
12.4M
    case 0x6: /* 3/4 of radix 2 */
150
12.4M
      *sin_twiddle = SineTable384;
151
12.4M
      *sin_step = 1 << (8 - ld2_length);
152
12.4M
      twiddle = windowSlopes[0][2][ld2_length];
153
12.4M
      break;
154
235k
    case 0x5: /* 5/16 of radix 2*/
155
235k
      *sin_twiddle = SineTable80;
156
235k
      *sin_step = 1 << (6 - ld2_length);
157
235k
      twiddle = windowSlopes[0][3][ld2_length];
158
235k
      break;
159
0
    default:
160
0
      *sin_twiddle = NULL;
161
0
      *sin_step = 0;
162
0
      twiddle = NULL;
163
0
      break;
164
58.6M
  }
165
166
58.6M
  if (ptwiddle != NULL) {
167
53.3M
    FDK_ASSERT(twiddle != NULL);
168
53.3M
    *ptwiddle = twiddle;
169
53.3M
  }
170
171
58.6M
  FDK_ASSERT(*sin_step > 0);
172
58.6M
}
173
174
#if !defined(FUNCTION_dct_III)
175
void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
176
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
177
             int L,          /*!< lenght of transform */
178
653k
             int *pDat_e) {
179
653k
  const FIXP_WTP *sin_twiddle;
180
653k
  int i;
181
653k
  FIXP_DBL xr, accu1, accu2;
182
653k
  int inc, index;
183
653k
  int M = L >> 1;
184
185
653k
  FDK_ASSERT(L % 4 == 0);
186
653k
  dct_getTables(NULL, &sin_twiddle, &inc, L);
187
653k
  inc >>= 1;
188
189
653k
  FIXP_DBL *pTmp_0 = &tmp[2];
190
653k
  FIXP_DBL *pTmp_1 = &tmp[(M - 1) * 2];
191
192
653k
  index = 4 * inc;
193
194
  /* This loop performs multiplication for index i (i*inc) */
195
5.22M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
196
4.57M
    FIXP_DBL accu3, accu4, accu5, accu6;
197
198
4.57M
    cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle[i * inc]);
199
4.57M
    cplxMultDiv2(&accu4, &accu3, pDat[M + i], pDat[M - i],
200
4.57M
                 sin_twiddle[(M - i) * inc]);
201
4.57M
    accu3 >>= 1;
202
4.57M
    accu4 >>= 1;
203
204
    /* This method is better for ARM926, that uses operand2 shifted right by 1
205
     * always */
206
4.57M
    if (2 * i < (M / 2)) {
207
1.95M
      cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1 >> 1)),
208
1.95M
                   ((accu2 >> 1) + accu4), sin_twiddle[index]);
209
2.61M
    } else {
210
2.61M
      cplxMultDiv2(&accu6, &accu5, ((accu2 >> 1) + accu4),
211
2.61M
                   (accu3 - (accu1 >> 1)), sin_twiddle[index]);
212
2.61M
      accu6 = -accu6;
213
2.61M
    }
214
4.57M
    xr = (accu1 >> 1) + accu3;
215
4.57M
    pTmp_0[0] = (xr >> 1) - accu5;
216
4.57M
    pTmp_1[0] = (xr >> 1) + accu5;
217
218
4.57M
    xr = (accu2 >> 1) - accu4;
219
4.57M
    pTmp_0[1] = (xr >> 1) - accu6;
220
4.57M
    pTmp_1[1] = -((xr >> 1) + accu6);
221
222
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
223
     * short tables. */
224
4.57M
    if (2 * i < ((M / 2) - 1)) {
225
1.95M
      index += 4 * inc;
226
2.61M
    } else if (2 * i >= ((M / 2))) {
227
2.61M
      index -= 4 * inc;
228
2.61M
    }
229
4.57M
  }
230
231
653k
  xr = fMultDiv2(pDat[M], sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
232
653k
  tmp[0] = ((pDat[0] >> 1) + xr) >> 1;
233
653k
  tmp[1] = ((pDat[0] >> 1) - xr) >> 1;
234
235
653k
  cplxMultDiv2(&accu2, &accu1, pDat[L - (M / 2)], pDat[M / 2],
236
653k
               sin_twiddle[M * inc / 2]);
237
653k
  tmp[M] = accu1 >> 1;
238
653k
  tmp[M + 1] = accu2 >> 1;
239
240
  /* dit_fft expects 1 bit scaled input values */
241
653k
  fft(M, tmp, pDat_e);
242
243
  /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
244
653k
  pTmp_1 = &tmp[L];
245
5.87M
  for (i = M >> 1; i--;) {
246
5.22M
    FIXP_DBL tmp1, tmp2, tmp3, tmp4;
247
5.22M
    tmp1 = *tmp++;
248
5.22M
    tmp2 = *tmp++;
249
5.22M
    tmp3 = *--pTmp_1;
250
5.22M
    tmp4 = *--pTmp_1;
251
5.22M
    *pDat++ = tmp1;
252
5.22M
    *pDat++ = tmp3;
253
5.22M
    *pDat++ = tmp2;
254
5.22M
    *pDat++ = tmp4;
255
5.22M
  }
256
257
653k
  *pDat_e += 2;
258
653k
}
259
260
void dst_III(FIXP_DBL *pDat, /*!< pointer to input/output */
261
             FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
262
             int L,          /*!< lenght of transform */
263
0
             int *pDat_e) {
264
0
  int L2 = L >> 1;
265
0
  int i;
266
0
  FIXP_DBL t;
267
268
  /* note: DCT III is reused here, direct DST III implementation might be more
269
   * efficient */
270
271
  /* mirror input */
272
0
  for (i = 0; i < L2; i++) {
273
0
    t = pDat[i];
274
0
    pDat[i] = pDat[L - 1 - i];
275
0
    pDat[L - 1 - i] = t;
276
0
  }
277
278
  /* DCT-III */
279
0
  dct_III(pDat, tmp, L, pDat_e);
280
281
  /* flip signs at odd indices */
282
0
  for (i = 1; i < L; i += 2) pDat[i] = -pDat[i];
283
0
}
284
285
#endif
286
287
#if !defined(FUNCTION_dct_II)
288
void dct_II(
289
    FIXP_DBL *pDat, /*!< pointer to input/output */
290
    FIXP_DBL *tmp,  /*!< pointer to temporal working buffer */
291
    int L, /*!< lenght of transform (has to be a multiple of 8 (or 4 in case
292
              DCT_II_L_MULTIPLE_OF_4_SUPPORT is defined) */
293
4.61M
    int *pDat_e) {
294
4.61M
  const FIXP_WTP *sin_twiddle;
295
4.61M
  FIXP_DBL accu1, accu2;
296
4.61M
  FIXP_DBL *pTmp_0, *pTmp_1;
297
298
4.61M
  int i;
299
4.61M
  int inc, index = 0;
300
4.61M
  int M = L >> 1;
301
302
4.61M
  FDK_ASSERT(L % 4 == 0);
303
4.61M
  dct_getTables(NULL, &sin_twiddle, &inc, L);
304
4.61M
  inc >>= 1;
305
306
4.61M
  {
307
49.8M
    for (i = 0; i < M; i++) {
308
45.2M
      tmp[i] = pDat[2 * i] >> 2;
309
45.2M
      tmp[L - 1 - i] = pDat[2 * i + 1] >> 2;
310
45.2M
    }
311
4.61M
  }
312
313
4.61M
  fft(M, tmp, pDat_e);
314
315
4.61M
  pTmp_0 = &tmp[2];
316
4.61M
  pTmp_1 = &tmp[(M - 1) * 2];
317
318
4.61M
  index = inc * 4;
319
320
22.6M
  for (i = 1; i<M>> 1; i++, pTmp_0 += 2, pTmp_1 -= 2) {
321
18.0M
    FIXP_DBL a1, a2;
322
18.0M
    FIXP_DBL accu3, accu4;
323
324
18.0M
    a1 = ((pTmp_0[1] >> 1) + (pTmp_1[1] >> 1));
325
18.0M
    a2 = ((pTmp_1[0] >> 1) - (pTmp_0[0] >> 1));
326
327
18.0M
    if (2 * i < (M / 2)) {
328
7.93M
      cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle[index]);
329
10.0M
    } else {
330
10.0M
      cplxMultDiv2(&accu1, &accu2, a1, a2, sin_twiddle[index]);
331
10.0M
      accu1 = -accu1;
332
10.0M
    }
333
18.0M
    accu1 <<= 1;
334
18.0M
    accu2 <<= 1;
335
336
18.0M
    a1 = ((pTmp_0[0] >> 1) + (pTmp_1[0] >> 1));
337
18.0M
    a2 = ((pTmp_0[1] >> 1) - (pTmp_1[1] >> 1));
338
339
18.0M
    cplxMult(&accu3, &accu4, (accu1 + a2), (a1 + accu2), sin_twiddle[i * inc]);
340
18.0M
    pDat[L - i] = -accu3;
341
18.0M
    pDat[i] = accu4;
342
343
18.0M
    cplxMult(&accu3, &accu4, (accu1 - a2), (a1 - accu2),
344
18.0M
             sin_twiddle[(M - i) * inc]);
345
18.0M
    pDat[M + i] = -accu3;
346
18.0M
    pDat[M - i] = accu4;
347
348
    /* Create index helper variables for (4*i)*inc indexed equivalent values of
349
     * short tables. */
350
18.0M
    if (2 * i < ((M / 2) - 1)) {
351
5.45M
      index += 4 * inc;
352
12.5M
    } else if (2 * i >= ((M / 2))) {
353
10.0M
      index -= 4 * inc;
354
10.0M
    }
355
18.0M
  }
356
357
4.61M
  cplxMult(&accu1, &accu2, tmp[M], tmp[M + 1], sin_twiddle[(M / 2) * inc]);
358
4.61M
  pDat[L - (M / 2)] = accu2;
359
4.61M
  pDat[M / 2] = accu1;
360
361
4.61M
  pDat[0] = tmp[0] + tmp[1];
362
4.61M
  pDat[M] = fMult(tmp[0] - tmp[1],
363
4.61M
                  sin_twiddle[M * inc].v.re); /* cos((PI/(2*L))*M); */
364
365
4.61M
  *pDat_e += 2;
366
4.61M
}
367
#endif
368
369
#if !defined(FUNCTION_dct_IV)
370
371
28.6M
void dct_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
372
28.6M
  int sin_step = 0;
373
28.6M
  int M = L >> 1;
374
375
28.6M
  const FIXP_WTP *twiddle;
376
28.6M
  const FIXP_STP *sin_twiddle;
377
378
28.6M
  FDK_ASSERT(L >= 4);
379
380
28.6M
  FDK_ASSERT(L >= 4);
381
382
28.6M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
383
384
28.6M
  {
385
28.6M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
386
28.6M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
387
28.6M
    int i;
388
389
    /* 29 cycles on ARM926 */
390
421M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
391
393M
      FIXP_DBL accu1, accu2, accu3, accu4;
392
393
393M
      accu1 = pDat_1[1];
394
393M
      accu2 = pDat_0[0];
395
393M
      accu3 = pDat_0[1];
396
393M
      accu4 = pDat_1[0];
397
398
393M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
399
393M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
400
401
393M
      pDat_0[0] = accu2 >> 1;
402
393M
      pDat_0[1] = accu1 >> 1;
403
393M
      pDat_1[0] = accu4 >> 1;
404
393M
      pDat_1[1] = -(accu3 >> 1);
405
393M
    }
406
28.6M
    if (M & 1) {
407
0
      FIXP_DBL accu1, accu2;
408
409
0
      accu1 = pDat_1[1];
410
0
      accu2 = pDat_0[0];
411
412
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
413
414
0
      pDat_0[0] = accu2 >> 1;
415
0
      pDat_0[1] = accu1 >> 1;
416
0
    }
417
28.6M
  }
418
419
28.6M
  fft(M, pDat, pDat_e);
420
421
28.6M
  {
422
28.6M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
423
28.6M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
424
28.6M
    FIXP_DBL accu1, accu2, accu3, accu4;
425
28.6M
    int idx, i;
426
427
    /* Sin and Cos values are 0.0f and 1.0f */
428
28.6M
    accu1 = pDat_1[0];
429
28.6M
    accu2 = pDat_1[1];
430
431
28.6M
    pDat_1[1] = -pDat_0[1];
432
433
    /* 28 cycles for ARM926 */
434
393M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
435
364M
      FIXP_STP twd = sin_twiddle[idx];
436
364M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
437
364M
      pDat_0[1] = accu3;
438
364M
      pDat_1[0] = accu4;
439
440
364M
      pDat_0 += 2;
441
364M
      pDat_1 -= 2;
442
443
364M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
444
445
364M
      accu1 = pDat_1[0];
446
364M
      accu2 = pDat_1[1];
447
448
364M
      pDat_1[1] = -accu3;
449
364M
      pDat_0[0] = accu4;
450
364M
    }
451
452
28.6M
    if ((M & 1) == 0) {
453
      /* Last Sin and Cos value pair are the same */
454
28.6M
      accu1 = fMult(accu1, WTC(0x5a82799a));
455
28.6M
      accu2 = fMult(accu2, WTC(0x5a82799a));
456
457
28.6M
      pDat_1[0] = accu1 + accu2;
458
28.6M
      pDat_0[1] = accu1 - accu2;
459
28.6M
    }
460
28.6M
  }
461
462
  /* Add twiddeling scale. */
463
28.6M
  *pDat_e += 2;
464
28.6M
}
465
#endif /* defined (FUNCTION_dct_IV) */
466
467
#if !defined(FUNCTION_dst_IV)
468
24.7M
void dst_IV(FIXP_DBL *pDat, int L, int *pDat_e) {
469
24.7M
  int sin_step = 0;
470
24.7M
  int M = L >> 1;
471
472
24.7M
  const FIXP_WTP *twiddle;
473
24.7M
  const FIXP_STP *sin_twiddle;
474
475
24.7M
  FDK_ASSERT(L >= 4);
476
477
24.7M
  FDK_ASSERT(L >= 4);
478
479
24.7M
  dct_getTables(&twiddle, &sin_twiddle, &sin_step, L);
480
481
24.7M
  {
482
24.7M
    FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
483
24.7M
    FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
484
24.7M
    int i;
485
486
    /* 34 cycles on ARM926 */
487
299M
    for (i = 0; i < M - 1; i += 2, pDat_0 += 2, pDat_1 -= 2) {
488
274M
      FIXP_DBL accu1, accu2, accu3, accu4;
489
490
274M
      accu1 = pDat_1[1] >> 1;
491
274M
      accu2 = -(pDat_0[0] >> 1);
492
274M
      accu3 = pDat_0[1] >> 1;
493
274M
      accu4 = -(pDat_1[0] >> 1);
494
495
274M
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
496
274M
      cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i + 1]);
497
498
274M
      pDat_0[0] = accu2;
499
274M
      pDat_0[1] = accu1;
500
274M
      pDat_1[0] = accu4;
501
274M
      pDat_1[1] = -accu3;
502
274M
    }
503
24.7M
    if (M & 1) {
504
0
      FIXP_DBL accu1, accu2;
505
506
0
      accu1 = pDat_1[1];
507
0
      accu2 = -pDat_0[0];
508
509
0
      cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
510
511
0
      pDat_0[0] = accu2 >> 1;
512
0
      pDat_0[1] = accu1 >> 1;
513
0
    }
514
24.7M
  }
515
516
24.7M
  fft(M, pDat, pDat_e);
517
518
24.7M
  {
519
24.7M
    FIXP_DBL *RESTRICT pDat_0;
520
24.7M
    FIXP_DBL *RESTRICT pDat_1;
521
24.7M
    FIXP_DBL accu1, accu2, accu3, accu4;
522
24.7M
    int idx, i;
523
524
24.7M
    pDat_0 = &pDat[0];
525
24.7M
    pDat_1 = &pDat[L - 2];
526
527
    /* Sin and Cos values are 0.0f and 1.0f */
528
24.7M
    accu1 = pDat_1[0];
529
24.7M
    accu2 = pDat_1[1];
530
531
24.7M
    pDat_1[1] = -pDat_0[0];
532
24.7M
    pDat_0[0] = pDat_0[1];
533
534
274M
    for (idx = sin_step, i = 1; i<(M + 1)>> 1; i++, idx += sin_step) {
535
250M
      FIXP_STP twd = sin_twiddle[idx];
536
537
250M
      cplxMult(&accu3, &accu4, accu1, accu2, twd);
538
250M
      pDat_1[0] = -accu3;
539
250M
      pDat_0[1] = -accu4;
540
541
250M
      pDat_0 += 2;
542
250M
      pDat_1 -= 2;
543
544
250M
      cplxMult(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
545
546
250M
      accu1 = pDat_1[0];
547
250M
      accu2 = pDat_1[1];
548
549
250M
      pDat_0[0] = accu3;
550
250M
      pDat_1[1] = -accu4;
551
250M
    }
552
553
24.7M
    if ((M & 1) == 0) {
554
      /* Last Sin and Cos value pair are the same */
555
24.7M
      accu1 = fMult(accu1, WTC(0x5a82799a));
556
24.7M
      accu2 = fMult(accu2, WTC(0x5a82799a));
557
558
24.7M
      pDat_0[1] = -accu1 - accu2;
559
24.7M
      pDat_1[0] = accu2 - accu1;
560
24.7M
    }
561
24.7M
  }
562
563
  /* Add twiddeling scale. */
564
24.7M
  *pDat_e += 2;
565
24.7M
}
566
#endif /* !defined(FUNCTION_dst_IV) */