Coverage Report

Created: 2026-02-14 06:49

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aac/libSBRdec/src/env_dec.cpp
Line
Count
Source
1
/* -----------------------------------------------------------------------------
2
Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4
© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5
Forschung e.V. All rights reserved.
6
7
 1.    INTRODUCTION
8
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10
scheme for digital audio. This FDK AAC Codec software is intended to be used on
11
a wide variety of Android devices.
12
13
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14
general perceptual audio codecs. AAC-ELD is considered the best-performing
15
full-bandwidth communications codec by independent studies and is widely
16
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17
specifications.
18
19
Patent licenses for necessary patent claims for the FDK AAC Codec (including
20
those of Fraunhofer) may be obtained through Via Licensing
21
(www.vialicensing.com) or through the respective patent owners individually for
22
the purpose of encoding or decoding bit streams in products that are compliant
23
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24
Android devices already license these patent claims through Via Licensing or
25
directly from the patent owners, and therefore FDK AAC Codec software may
26
already be covered under those patent licenses when it is used for those
27
licensed purposes only.
28
29
Commercially-licensed AAC software libraries, including floating-point versions
30
with enhanced sound quality, are also available from Fraunhofer. Users are
31
encouraged to check the Fraunhofer website for additional applications
32
information and documentation.
33
34
2.    COPYRIGHT LICENSE
35
36
Redistribution and use in source and binary forms, with or without modification,
37
are permitted without payment of copyright license fees provided that you
38
satisfy the following conditions:
39
40
You must retain the complete text of this software license in redistributions of
41
the FDK AAC Codec or your modifications thereto in source code form.
42
43
You must retain the complete text of this software license in the documentation
44
and/or other materials provided with redistributions of the FDK AAC Codec or
45
your modifications thereto in binary form. You must make available free of
46
charge copies of the complete source code of the FDK AAC Codec and your
47
modifications thereto to recipients of copies in binary form.
48
49
The name of Fraunhofer may not be used to endorse or promote products derived
50
from this library without prior written permission.
51
52
You may not charge copyright license fees for anyone to use, copy or distribute
53
the FDK AAC Codec software or your modifications thereto.
54
55
Your modified versions of the FDK AAC Codec must carry prominent notices stating
56
that you changed the software and the date of any change. For modified versions
57
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59
AAC Codec Library for Android."
60
61
3.    NO PATENT LICENSE
62
63
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65
Fraunhofer provides no warranty of patent non-infringement with respect to this
66
software.
67
68
You may use this FDK AAC Codec software or modifications thereto only for
69
purposes that are authorized by appropriate patent licenses.
70
71
4.    DISCLAIMER
72
73
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75
including but not limited to the implied warranties of merchantability and
76
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78
or consequential damages, including but not limited to procurement of substitute
79
goods or services; loss of use, data, or profits, or business interruption,
80
however caused and on any theory of liability, whether in contract, strict
81
liability, or tort (including negligence), arising in any way out of the use of
82
this software, even if advised of the possibility of such damage.
83
84
5.    CONTACT INFORMATION
85
86
Fraunhofer Institute for Integrated Circuits IIS
87
Attention: Audio and Multimedia Departments - FDK AAC LL
88
Am Wolfsmantel 33
89
91058 Erlangen, Germany
90
91
www.iis.fraunhofer.de/amm
92
amm-info@iis.fraunhofer.de
93
----------------------------------------------------------------------------- */
94
95
/**************************** SBR decoder library ******************************
96
97
   Author(s):
98
99
   Description:
100
101
*******************************************************************************/
102
103
/*!
104
  \file
105
  \brief  envelope decoding
106
  This module provides envelope decoding and error concealment algorithms. The
107
  main entry point is decodeSbrData().
108
109
  \sa decodeSbrData(),\ref documentationOverview
110
*/
111
112
#include "env_dec.h"
113
114
#include "env_extr.h"
115
#include "transcendent.h"
116
117
#include "genericStds.h"
118
119
static void decodeEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
120
                           HANDLE_SBR_FRAME_DATA h_sbr_data,
121
                           HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
122
                           HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
123
static void sbr_envelope_unmapping(HANDLE_SBR_HEADER_DATA hHeaderData,
124
                                   HANDLE_SBR_FRAME_DATA h_data_left,
125
                                   HANDLE_SBR_FRAME_DATA h_data_right);
126
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
127
                                   int ampResolution);
128
static void deltaToLinearPcmEnvelopeDecoding(
129
    HANDLE_SBR_HEADER_DATA hHeaderData, HANDLE_SBR_FRAME_DATA h_sbr_data,
130
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
131
static void decodeNoiseFloorlevels(HANDLE_SBR_HEADER_DATA hHeaderData,
132
                                   HANDLE_SBR_FRAME_DATA h_sbr_data,
133
                                   HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
134
static void timeCompensateFirstEnvelope(HANDLE_SBR_HEADER_DATA hHeaderData,
135
                                        HANDLE_SBR_FRAME_DATA h_sbr_data,
136
                                        HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
137
static int checkEnvelopeData(HANDLE_SBR_HEADER_DATA hHeaderData,
138
                             HANDLE_SBR_FRAME_DATA h_sbr_data,
139
                             HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
140
141
22.0k
#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
142
97.3k
#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
143
144
66.3k
#define DECAY (1 << ENV_EXP_FRACT)
145
146
#if ENV_EXP_FRACT
147
#define DECAY_COUPLING \
148
  (1 << (ENV_EXP_FRACT - 1)) /*!< corresponds to a value of 0.5 */
149
#else
150
#define DECAY_COUPLING \
151
10.5k
  1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
152
#endif
153
154
/*!
155
  \brief  Convert table index
156
*/
157
static int indexLow2High(int offset, /*!< mapping factor */
158
                         int index,  /*!< index to scalefactor band */
159
                         int res)    /*!< frequency resolution */
160
1.19M
{
161
1.19M
  if (res == 0) {
162
42.6k
    if (offset >= 0) {
163
42.6k
      if (index < offset)
164
5.54k
        return (index);
165
37.1k
      else
166
37.1k
        return (2 * index - offset);
167
42.6k
    } else {
168
0
      offset = -offset;
169
0
      if (index < offset)
170
0
        return (2 * index + index);
171
0
      else
172
0
        return (2 * index + offset);
173
0
    }
174
42.6k
  } else
175
1.15M
    return (index);
176
1.19M
}
177
178
/*!
179
  \brief  Update previous envelope value for delta-coding
180
181
  The current envelope values needs to be stored for delta-coding
182
  in the next frame.  The stored envelope is always represented with
183
  the high frequency resolution.  If the current envelope uses the
184
  low frequency resolution, the energy value will be mapped to the
185
  corresponding high-res bands.
186
*/
187
static void mapLowResEnergyVal(
188
    FIXP_SGL currVal,   /*!< current energy value */
189
    FIXP_SGL *prevData, /*!< pointer to previous data vector */
190
    int offset,         /*!< mapping factor */
191
    int index,          /*!< index to scalefactor band */
192
    int res)            /*!< frequeny resolution */
193
2.16M
{
194
2.16M
  if (res == 0) {
195
527k
    if (offset >= 0) {
196
527k
      if (index < offset)
197
28.3k
        prevData[index] = currVal;
198
499k
      else {
199
499k
        prevData[2 * index - offset] = currVal;
200
499k
        prevData[2 * index + 1 - offset] = currVal;
201
499k
      }
202
527k
    } else {
203
0
      offset = -offset;
204
0
      if (index < offset) {
205
0
        prevData[3 * index] = currVal;
206
0
        prevData[3 * index + 1] = currVal;
207
0
        prevData[3 * index + 2] = currVal;
208
0
      } else {
209
0
        prevData[2 * index + offset] = currVal;
210
0
        prevData[2 * index + 1 + offset] = currVal;
211
0
      }
212
0
    }
213
527k
  } else
214
1.63M
    prevData[index] = currVal;
215
2.16M
}
216
217
/*!
218
  \brief    Convert raw envelope and noisefloor data to energy levels
219
220
  This function is being called by sbrDecoder_ParseElement() and provides two
221
  important algorithms:
222
223
  First the function decodes envelopes and noise floor levels as described in
224
  requantizeEnvelopeData() and sbr_envelope_unmapping(). The function also
225
  implements concealment algorithms in case there are errors within the sbr
226
  data. For both operations fractional arithmetic is used. Therefore you might
227
  encounter different output values on your target system compared to the
228
  reference implementation.
229
*/
230
void decodeSbrData(
231
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
232
    HANDLE_SBR_FRAME_DATA
233
        h_data_left, /*!< pointer to left channel frame data */
234
    HANDLE_SBR_PREV_FRAME_DATA
235
        h_prev_data_left, /*!< pointer to left channel previous frame data */
236
    HANDLE_SBR_FRAME_DATA
237
        h_data_right, /*!< pointer to right channel frame data */
238
    HANDLE_SBR_PREV_FRAME_DATA
239
        h_prev_data_right) /*!< pointer to right channel previous frame data */
240
163k
{
241
163k
  FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
242
163k
  int errLeft;
243
244
  /* Save previous energy values to be able to reuse them later for concealment.
245
   */
246
163k
  FDKmemcpy(tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev,
247
163k
            MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
248
249
163k
  if (hHeaderData->frameErrorFlag || hHeaderData->bs_info.pvc_mode == 0) {
250
89.1k
    decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
251
89.1k
                   h_prev_data_right);
252
89.1k
  } else {
253
74.2k
    FDK_ASSERT(h_data_right == NULL);
254
74.2k
  }
255
163k
  decodeNoiseFloorlevels(hHeaderData, h_data_left, h_prev_data_left);
256
257
163k
  if (h_data_right != NULL) {
258
60.2k
    errLeft = hHeaderData->frameErrorFlag;
259
60.2k
    decodeEnvelope(hHeaderData, h_data_right, h_prev_data_right,
260
60.2k
                   h_prev_data_left);
261
60.2k
    decodeNoiseFloorlevels(hHeaderData, h_data_right, h_prev_data_right);
262
263
60.2k
    if (!errLeft && hHeaderData->frameErrorFlag) {
264
      /* If an error occurs in the right channel where the left channel seemed
265
         ok, we apply concealment also on the left channel. This ensures that
266
         the coupling modes of both channels match and that we have the same
267
         number of envelopes in coupling mode. However, as the left channel has
268
         already been processed before, the resulting energy levels are not the
269
         same as if the left channel had been concealed during the first call of
270
         decodeEnvelope().
271
      */
272
      /* Restore previous energy values for concealment, because the values have
273
         been overwritten by the first call of decodeEnvelope(). */
274
5.45k
      FDKmemcpy(h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev,
275
5.45k
                MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
276
      /* Do concealment */
277
5.45k
      decodeEnvelope(hHeaderData, h_data_left, h_prev_data_left,
278
5.45k
                     h_prev_data_right);
279
5.45k
    }
280
281
60.2k
    if (h_data_left->coupling) {
282
18.3k
      sbr_envelope_unmapping(hHeaderData, h_data_left, h_data_right);
283
18.3k
    }
284
60.2k
  }
285
286
  /* Display the data for debugging: */
287
163k
}
288
289
/*!
290
  \brief   Convert from coupled channels to independent L/R data
291
*/
292
static void sbr_envelope_unmapping(
293
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
294
    HANDLE_SBR_FRAME_DATA h_data_left,  /*!< pointer to left channel */
295
    HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
296
18.3k
{
297
18.3k
  int i;
298
18.3k
  FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
299
18.3k
  SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
300
301
  /* 1. Unmap (already dequantized) coupled envelope energies */
302
303
235k
  for (i = 0; i < h_data_left->nScaleFactors; i++) {
304
217k
    tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
305
217k
    tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
306
307
217k
    tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE /
308
                                         h_data_right->nChannels) */
309
217k
    tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
310
217k
    tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
311
312
217k
    tempL_e -= NRG_EXP_OFFSET;
313
314
    /* Calculate tempRight+1 */
315
217k
    FDK_add_MantExp(tempR_m, tempR_e, FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
316
217k
                    &tempRplus1_m, &tempRplus1_e);
317
318
217k
    FDK_divide_MantExp(tempL_m, tempL_e + 1, /*  2 * tempLeft */
319
217k
                       tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
320
321
217k
    if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
322
250
      newR_m >>= 1;
323
250
      newR_e += 1;
324
250
    }
325
326
217k
    newL_m = FX_DBL2FX_SGL(fMult(tempR_m, newR_m));
327
217k
    newL_e = tempR_e + newR_e;
328
329
217k
    h_data_right->iEnvelope[i] =
330
217k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
331
217k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
332
217k
    h_data_left->iEnvelope[i] =
333
217k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
334
217k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
335
217k
  }
336
337
  /* 2. Dequantize and unmap coupled noise floor levels */
338
339
76.7k
  for (i = 0; i < hHeaderData->freqBandData.nNfb *
340
76.7k
                      h_data_left->frameInfo.nNoiseEnvelopes;
341
58.3k
       i++) {
342
58.3k
    tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
343
58.3k
    tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] -
344
58.3k
                      12) /*SBR_ENERGY_PAN_OFFSET*/;
345
346
    /* Calculate tempR+1 */
347
58.3k
    FDK_add_MantExp(FL2FXCONST_SGL(0.5f), 1 + tempR_e, /* tempR */
348
58.3k
                    FL2FXCONST_SGL(0.5f), 1,           /*  1.0  */
349
58.3k
                    &tempRplus1_m, &tempRplus1_e);
350
351
    /* Calculate 2*tempLeft/(tempR+1) */
352
58.3k
    FDK_divide_MantExp(FL2FXCONST_SGL(0.5f), tempL_e + 2, /*  2 * tempLeft */
353
58.3k
                       tempRplus1_m, tempRplus1_e, &newR_m, &newR_e);
354
355
    /* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
356
      newR_m >>= 1;
357
      newR_e += 1;
358
    } */
359
360
    /* L = tempR * R */
361
58.3k
    newL_m = newR_m;
362
58.3k
    newL_e = newR_e + tempR_e;
363
58.3k
    h_data_right->sbrNoiseFloorLevel[i] =
364
58.3k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
365
58.3k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
366
58.3k
    h_data_left->sbrNoiseFloorLevel[i] =
367
58.3k
        ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
368
58.3k
        (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
369
58.3k
  }
370
18.3k
}
371
372
/*!
373
  \brief    Simple alternative to the real SBR concealment
374
375
  If the real frameInfo is not available due to a frame loss, a replacement will
376
  be constructed with 1 envelope spanning the whole frame (FIX-FIX).
377
  The delta-coded energies are set to negative values, resulting in a fade-down.
378
  In case of coupling, the balance-channel will move towards the center.
379
*/
380
static void leanSbrConcealment(
381
    HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */
382
    HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */
383
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
384
76.9k
) {
385
76.9k
  FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
386
76.9k
  FIXP_SGL step;   /* speed of fade */
387
76.9k
  int i;
388
389
76.9k
  int currentStartPos =
390
76.9k
      fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
391
76.9k
  int currentStopPos = hHeaderData->numberTimeSlots;
392
393
  /* Use some settings of the previous frame */
394
76.9k
  h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
395
76.9k
  h_sbr_data->coupling = h_prev_data->coupling;
396
461k
  for (i = 0; i < MAX_INVF_BANDS; i++)
397
384k
    h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
398
399
  /* Generate concealing control data */
400
401
76.9k
  h_sbr_data->frameInfo.nEnvelopes = 1;
402
76.9k
  h_sbr_data->frameInfo.borders[0] = currentStartPos;
403
76.9k
  h_sbr_data->frameInfo.borders[1] = currentStopPos;
404
76.9k
  h_sbr_data->frameInfo.freqRes[0] = 1;
405
76.9k
  h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
406
76.9k
  h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
407
76.9k
  h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
408
76.9k
  h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
409
410
76.9k
  h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];
411
412
  /* Generate fake envelope data */
413
414
76.9k
  h_sbr_data->domain_vec[0] = 1;
415
416
76.9k
  if (h_sbr_data->coupling == COUPLING_BAL) {
417
10.5k
    target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
418
10.5k
    step = (FIXP_SGL)DECAY_COUPLING;
419
66.3k
  } else {
420
66.3k
    target = FL2FXCONST_SGL(0.0f);
421
66.3k
    step = (FIXP_SGL)DECAY;
422
66.3k
  }
423
76.9k
  if (hHeaderData->bs_info.ampResolution == 0) {
424
40.8k
    target <<= 1;
425
40.8k
    step <<= 1;
426
40.8k
  }
427
428
927k
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
429
851k
    if (h_prev_data->sfb_nrg_prev[i] > target)
430
433k
      h_sbr_data->iEnvelope[i] = -step;
431
417k
    else
432
417k
      h_sbr_data->iEnvelope[i] = step;
433
851k
  }
434
435
  /* Noisefloor levels are always cleared ... */
436
437
76.9k
  h_sbr_data->domain_vec_noise[0] = 1;
438
76.9k
  FDKmemclear(h_sbr_data->sbrNoiseFloorLevel,
439
76.9k
              sizeof(h_sbr_data->sbrNoiseFloorLevel));
440
441
  /* ... and so are the sines */
442
76.9k
  FDKmemclear(h_sbr_data->addHarmonics,
443
76.9k
              sizeof(ULONG) * ADD_HARMONICS_FLAGS_SIZE);
444
76.9k
}
445
446
/*!
447
  \brief   Build reference energies and noise levels from bitstream elements
448
*/
449
static void decodeEnvelope(
450
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
451
    HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to current data */
452
    HANDLE_SBR_PREV_FRAME_DATA
453
        h_prev_data, /*!< pointer to data of last frame */
454
    HANDLE_SBR_PREV_FRAME_DATA
455
        otherChannel /*!< other channel's last frame data */
456
174k
) {
457
174k
  int i;
458
174k
  int fFrameError = hHeaderData->frameErrorFlag;
459
174k
  FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
460
461
174k
  if (!fFrameError) {
462
    /*
463
      To avoid distortions after bad frames, set the error flag if delta coding
464
      in time occurs. However, SBR can take a little longer to come up again.
465
    */
466
108k
    if (h_prev_data->frameErrorFlag) {
467
44.5k
      if (h_sbr_data->domain_vec[0] != 0) {
468
4.05k
        fFrameError = 1;
469
4.05k
      }
470
63.4k
    } else {
471
      /* Check that the previous stop position and the current start position
472
         match. (Could be done in checkFrameInfo(), but the previous frame data
473
         is not available there) */
474
63.4k
      if (h_sbr_data->frameInfo.borders[0] !=
475
63.4k
          h_prev_data->stopPos - hHeaderData->numberTimeSlots) {
476
        /* Both the previous as well as the current frame are flagged to be ok,
477
         * but they do not match! */
478
6.63k
        if (h_sbr_data->domain_vec[0] == 1) {
479
          /* Prefer concealment over delta-time coding between the mismatching
480
           * frames */
481
36
          fFrameError = 1;
482
6.60k
        } else {
483
          /* Close the gap in time by triggering timeCompensateFirstEnvelope()
484
           */
485
6.60k
          fFrameError = 1;
486
6.60k
        }
487
6.63k
      }
488
63.4k
    }
489
108k
  }
490
491
174k
  if (fFrameError) /* Error is detected */
492
76.9k
  {
493
76.9k
    leanSbrConcealment(hHeaderData, h_sbr_data, h_prev_data);
494
495
    /* decode the envelope data to linear PCM */
496
76.9k
    deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
497
76.9k
  } else /*Do a temporary dummy decoding and check that the envelope values are
498
            within limits */
499
97.3k
  {
500
97.3k
    if (h_prev_data->frameErrorFlag) {
501
40.4k
      timeCompensateFirstEnvelope(hHeaderData, h_sbr_data, h_prev_data);
502
40.4k
      if (h_sbr_data->coupling != h_prev_data->coupling) {
503
        /*
504
          Coupling mode has changed during concealment.
505
           The stored energy levels need to be converted.
506
         */
507
90.7k
        for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
508
          /* Former Level-Channel will be used for both channels */
509
84.8k
          if (h_prev_data->coupling == COUPLING_BAL) {
510
4.18k
            h_prev_data->sfb_nrg_prev[i] =
511
4.18k
                (otherChannel != NULL) ? otherChannel->sfb_nrg_prev[i]
512
4.18k
                                       : (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
513
4.18k
          }
514
          /* Former L/R will be combined as the new Level-Channel */
515
80.6k
          else if (h_sbr_data->coupling == COUPLING_LEVEL &&
516
11.8k
                   otherChannel != NULL) {
517
11.8k
            h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] +
518
11.8k
                                            otherChannel->sfb_nrg_prev[i]) >>
519
11.8k
                                           1;
520
68.7k
          } else if (h_sbr_data->coupling == COUPLING_BAL) {
521
7.32k
            h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
522
7.32k
          }
523
84.8k
        }
524
5.90k
      }
525
40.4k
    }
526
97.3k
    FDKmemcpy(tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
527
97.3k
              MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
528
529
97.3k
    deltaToLinearPcmEnvelopeDecoding(hHeaderData, h_sbr_data, h_prev_data);
530
531
97.3k
    fFrameError = checkEnvelopeData(hHeaderData, h_sbr_data, h_prev_data);
532
533
97.3k
    if (fFrameError) {
534
19.3k
      hHeaderData->frameErrorFlag = 1;
535
19.3k
      FDKmemcpy(h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
536
19.3k
                MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
537
19.3k
      decodeEnvelope(hHeaderData, h_sbr_data, h_prev_data, otherChannel);
538
19.3k
      return;
539
19.3k
    }
540
97.3k
  }
541
542
154k
  requantizeEnvelopeData(h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
543
544
154k
  hHeaderData->frameErrorFlag = fFrameError;
545
154k
}
546
547
/*!
548
  \brief   Verify that envelope energies are within the allowed range
549
  \return  0 if all is fine, 1 if an envelope value was too high
550
*/
551
static int checkEnvelopeData(
552
    HANDLE_SBR_HEADER_DATA hHeaderData,    /*!< Static control data */
553
    HANDLE_SBR_FRAME_DATA h_sbr_data,      /*!< pointer to current data */
554
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
555
97.3k
) {
556
97.3k
  FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
557
97.3k
  FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
558
97.3k
  int i = 0, errorFlag = 0;
559
97.3k
  FIXP_SGL sbr_max_energy = (h_sbr_data->ampResolutionCurrentFrame == 1)
560
97.3k
                                ? SBR_MAX_ENERGY
561
97.3k
                                : (SBR_MAX_ENERGY << 1);
562
563
  /*
564
    Range check for current energies
565
  */
566
1.40M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
567
1.31M
    if (iEnvelope[i] > sbr_max_energy) {
568
65.9k
      errorFlag = 1;
569
65.9k
    }
570
1.31M
    if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) {
571
64.7k
      errorFlag = 1;
572
      /* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */
573
64.7k
    }
574
1.31M
  }
575
576
  /*
577
    Range check for previous energies
578
  */
579
1.26M
  for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
580
1.16M
    sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));
581
1.16M
    sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);
582
1.16M
  }
583
584
97.3k
  return (errorFlag);
585
97.3k
}
586
587
/*!
588
  \brief   Verify that the noise levels are within the allowed range
589
590
  The function is equivalent to checkEnvelopeData().
591
  When the noise-levels are being decoded, it is already too late for
592
  concealment. Therefore the noise levels are simply limited here.
593
*/
594
static void limitNoiseLevels(
595
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
596
    HANDLE_SBR_FRAME_DATA h_sbr_data)   /*!< pointer to current data */
597
223k
{
598
223k
  int i;
599
223k
  int nNfb = hHeaderData->freqBandData.nNfb;
600
601
/*
602
  Set range limits. The exact values depend on the coupling mode.
603
  However this limitation is primarily intended to avoid unlimited
604
  accumulation of the delta-coded noise levels.
605
*/
606
223k
#define lowerLimit \
607
223k
  ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
608
223k
#define upperLimit \
609
223k
  ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
610
611
  /*
612
    Range check for current noise levels
613
  */
614
1.01M
  for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
615
792k
    h_sbr_data->sbrNoiseFloorLevel[i] =
616
792k
        fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
617
792k
    h_sbr_data->sbrNoiseFloorLevel[i] =
618
792k
        fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
619
792k
  }
620
223k
}
621
622
/*!
623
  \brief   Compensate for the wrong timing that might occur after a frame error.
624
*/
625
static void timeCompensateFirstEnvelope(
626
    HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
627
    HANDLE_SBR_FRAME_DATA h_sbr_data,   /*!< pointer to actual data */
628
    HANDLE_SBR_PREV_FRAME_DATA
629
        h_prev_data) /*!< pointer to data of last frame */
630
40.4k
{
631
40.4k
  int i, nScalefactors;
632
40.4k
  FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
633
40.4k
  UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
634
40.4k
  int estimatedStartPos =
635
40.4k
      fMax(0, h_prev_data->stopPos - hHeaderData->numberTimeSlots);
636
40.4k
  int refLen, newLen, shift;
637
40.4k
  FIXP_SGL deltaExp;
638
639
  /* Original length of first envelope according to bitstream */
640
40.4k
  refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
641
  /* Corrected length of first envelope (concealing can make the first envelope
642
   * longer) */
643
40.4k
  newLen = pFrameInfo->borders[1] - estimatedStartPos;
644
645
40.4k
  if (newLen <= 0) {
646
    /* An envelope length of <= 0 would not work, so we don't use it.
647
       May occur if the previous frame was flagged bad due to a mismatch
648
       of the old and new frame infos. */
649
6
    newLen = refLen;
650
6
    estimatedStartPos = pFrameInfo->borders[0];
651
6
  }
652
653
40.4k
  deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
654
655
  /* Shift by -3 to rescale ld-table, ampRes-1 to enable coarser steps */
656
40.4k
  shift = (FRACT_BITS - 1 - ENV_EXP_FRACT - 1 +
657
40.4k
           h_sbr_data->ampResolutionCurrentFrame - 3);
658
40.4k
  deltaExp = deltaExp >> shift;
659
40.4k
  pFrameInfo->borders[0] = estimatedStartPos;
660
40.4k
  pFrameInfo->bordersNoise[0] = estimatedStartPos;
661
662
40.4k
  if (h_sbr_data->coupling != COUPLING_BAL) {
663
34.3k
    nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];
664
665
309k
    for (i = 0; i < nScalefactors; i++)
666
275k
      h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;
667
34.3k
  }
668
40.4k
}
669
670
/*!
671
  \brief   Convert each envelope value from logarithmic to linear domain
672
673
  Energy levels are transmitted in powers of 2, i.e. only the exponent
674
  is extracted from the bitstream.
675
  Therefore, normally only integer exponents can occur. However during
676
  fading (in case of a corrupt bitstream), a fractional part can also
677
  occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT
678
  compared to an integer representation so that numbers smaller than 1
679
  can be represented.
680
681
  This function calculates a mantissa corresponding to the fractional
682
  part of the exponent for each reference energy. The array iEnvelope
683
  is converted in place to save memory. Input and output data must
684
  be interpreted differently, as shown in the below figure:
685
686
  \image html  EnvelopeData.png
687
688
  The data is then used in calculateSbrEnvelope().
689
*/
690
static void requantizeEnvelopeData(HANDLE_SBR_FRAME_DATA h_sbr_data,
691
154k
                                   int ampResolution) {
692
154k
  int i;
693
154k
  FIXP_SGL mantissa;
694
154k
  int ampShift = 1 - ampResolution;
695
154k
  int exponent;
696
697
  /* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,
698
     the initialization of this array has to be adapted!
699
  */
700
#if ENV_EXP_FRACT
701
  static const FIXP_SGL pow2[ENV_EXP_FRACT] = {
702
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
703
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
704
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
705
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
706
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
707
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
708
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
709
      FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
710
  };
711
712
  int bit, mask;
713
#endif
714
715
1.97M
  for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
716
1.82M
    exponent = (LONG)h_sbr_data->iEnvelope[i];
717
718
#if ENV_EXP_FRACT
719
720
    exponent = exponent >> ampShift;
721
    mantissa = 0.5f;
722
723
    /* Amplify mantissa according to the fractional part of the
724
       exponent (result will be between 0.500000 and 0.999999)
725
    */
726
    mask = 1; /* begin with lowest bit of exponent */
727
728
    for (bit = ENV_EXP_FRACT - 1; bit >= 0; bit--) {
729
      if (exponent & mask) {
730
        /* The current bit of the exponent is set,
731
           multiply mantissa with the corresponding factor: */
732
        mantissa = (FIXP_SGL)((mantissa * pow2[bit]) << 1);
733
      }
734
      /* Advance to next bit */
735
      mask = mask << 1;
736
    }
737
738
    /* Make integer part of exponent right aligned */
739
    exponent = exponent >> ENV_EXP_FRACT;
740
741
#else
742
    /* In case of the high amplitude resolution, 1 bit of the exponent gets lost
743
       by the shift. This will be compensated by a mantissa of 0.5*sqrt(2)
744
       instead of 0.5 if that bit is 1. */
745
1.82M
    mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f)
746
1.82M
                                     : FL2FXCONST_SGL(0.5f);
747
1.82M
    exponent = exponent >> ampShift;
748
1.82M
#endif
749
750
    /*
751
      Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by
752
      1). Multiply by L=nChannels=64 by increasing exponent by another 6.
753
      => Increase exponent by 7
754
    */
755
1.82M
    exponent += 7 + NRG_EXP_OFFSET;
756
757
    /* Combine mantissa and exponent and write back the result */
758
1.82M
    h_sbr_data->iEnvelope[i] =
759
1.82M
        ((FIXP_SGL)((SHORT)(FIXP_SGL)mantissa & MASK_M)) +
760
1.82M
        (FIXP_SGL)((SHORT)(FIXP_SGL)exponent & MASK_E);
761
1.82M
  }
762
154k
}
763
764
/*!
765
  \brief   Build new reference energies from old ones and delta coded data
766
*/
767
static void deltaToLinearPcmEnvelopeDecoding(
768
    HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */
769
    HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */
770
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
771
174k
{
772
174k
  int i, domain, no_of_bands, band, freqRes;
773
774
174k
  FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
775
174k
  FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
776
777
174k
  int offset =
778
174k
      2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
779
780
410k
  for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
781
235k
    domain = h_sbr_data->domain_vec[i];
782
235k
    freqRes = h_sbr_data->frameInfo.freqRes[i];
783
784
235k
    FDK_ASSERT(freqRes >= 0 && freqRes <= 1);
785
786
235k
    no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];
787
788
235k
    FDK_ASSERT(no_of_bands < (64));
789
790
235k
    if (domain == 0) {
791
126k
      mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
792
126k
      ptr_nrg++;
793
963k
      for (band = 1; band < no_of_bands; band++) {
794
837k
        *ptr_nrg = *ptr_nrg + *(ptr_nrg - 1);
795
837k
        mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
796
837k
        ptr_nrg++;
797
837k
      }
798
126k
    } else {
799
1.30M
      for (band = 0; band < no_of_bands; band++) {
800
1.19M
        *ptr_nrg =
801
1.19M
            *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
802
1.19M
        mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
803
1.19M
        ptr_nrg++;
804
1.19M
      }
805
109k
    }
806
235k
  }
807
174k
}
808
809
/*!
810
  \brief   Build new noise levels from old ones and delta coded data
811
*/
812
static void decodeNoiseFloorlevels(
813
    HANDLE_SBR_HEADER_DATA hHeaderData,     /*!< Static control data */
814
    HANDLE_SBR_FRAME_DATA h_sbr_data,       /*!< pointer to current data */
815
    HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
816
223k
{
817
223k
  int i;
818
223k
  int nNfb = hHeaderData->freqBandData.nNfb;
819
223k
  int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;
820
821
  /* Decode first noise envelope */
822
823
223k
  if (h_sbr_data->domain_vec_noise[0] == 0) {
824
147k
    FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];
825
390k
    for (i = 1; i < nNfb; i++) {
826
242k
      noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
827
242k
      h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
828
242k
    }
829
147k
  } else {
830
239k
    for (i = 0; i < nNfb; i++) {
831
163k
      h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
832
163k
    }
833
76.1k
  }
834
835
  /* If present, decode the second noise envelope
836
     Note:  nNoiseFloorEnvelopes can only be 1 or 2 */
837
838
223k
  if (nNoiseFloorEnvelopes > 1) {
839
94.7k
    if (h_sbr_data->domain_vec_noise[1] == 0) {
840
33.6k
      FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
841
115k
      for (i = nNfb + 1; i < 2 * nNfb; i++) {
842
81.8k
        noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
843
81.8k
        h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
844
81.8k
      }
845
61.0k
    } else {
846
184k
      for (i = 0; i < nNfb; i++) {
847
123k
        h_sbr_data->sbrNoiseFloorLevel[i + nNfb] +=
848
123k
            h_sbr_data->sbrNoiseFloorLevel[i];
849
123k
      }
850
61.0k
    }
851
94.7k
  }
852
853
223k
  limitNoiseLevels(hHeaderData, h_sbr_data);
854
855
  /* Update prevNoiseLevel with the last noise envelope */
856
777k
  for (i = 0; i < nNfb; i++)
857
553k
    h_prev_data->prevNoiseLevel[i] =
858
553k
        h_sbr_data->sbrNoiseFloorLevel[i + nNfb * (nNoiseFloorEnvelopes - 1)];
859
860
  /* Requantize the noise floor levels in COUPLING_OFF-mode */
861
223k
  if (!h_sbr_data->coupling) {
862
186k
    int nf_e;
863
864
859k
    for (i = 0; i < nNoiseFloorEnvelopes * nNfb; i++) {
865
672k
      nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
866
      /* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
867
868
672k
      h_sbr_data->sbrNoiseFloorLevel[i] =
869
672k
          (FIXP_SGL)(((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
870
672k
                     (nf_e & MASK_E));              /* exponent */
871
672k
    }
872
186k
  }
873
223k
}