Coverage Report

Created: 2024-02-06 06:20

/src/libgit2/deps/zlib/deflate.c
Line
Count
Source (jump to first uncovered line)
1
/* deflate.c -- compress data using the deflation algorithm
2
 * Copyright (C) 1995-2023 Jean-loup Gailly and Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/*
7
 *  ALGORITHM
8
 *
9
 *      The "deflation" process depends on being able to identify portions
10
 *      of the input text which are identical to earlier input (within a
11
 *      sliding window trailing behind the input currently being processed).
12
 *
13
 *      The most straightforward technique turns out to be the fastest for
14
 *      most input files: try all possible matches and select the longest.
15
 *      The key feature of this algorithm is that insertions into the string
16
 *      dictionary are very simple and thus fast, and deletions are avoided
17
 *      completely. Insertions are performed at each input character, whereas
18
 *      string matches are performed only when the previous match ends. So it
19
 *      is preferable to spend more time in matches to allow very fast string
20
 *      insertions and avoid deletions. The matching algorithm for small
21
 *      strings is inspired from that of Rabin & Karp. A brute force approach
22
 *      is used to find longer strings when a small match has been found.
23
 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
 *      (by Leonid Broukhis).
25
 *         A previous version of this file used a more sophisticated algorithm
26
 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27
 *      time, but has a larger average cost, uses more memory and is patented.
28
 *      However the F&G algorithm may be faster for some highly redundant
29
 *      files if the parameter max_chain_length (described below) is too large.
30
 *
31
 *  ACKNOWLEDGEMENTS
32
 *
33
 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
 *      I found it in 'freeze' written by Leonid Broukhis.
35
 *      Thanks to many people for bug reports and testing.
36
 *
37
 *  REFERENCES
38
 *
39
 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
 *      Available in http://tools.ietf.org/html/rfc1951
41
 *
42
 *      A description of the Rabin and Karp algorithm is given in the book
43
 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
 *
45
 *      Fiala,E.R., and Greene,D.H.
46
 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
 *
48
 */
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
   " deflate 1.3 Copyright 1995-2023 Jean-loup Gailly and Mark Adler ";
56
/*
57
  If you use the zlib library in a product, an acknowledgment is welcome
58
  in the documentation of your product. If for some reason you cannot
59
  include such an acknowledgment, I would appreciate that you keep this
60
  copyright string in the executable of your product.
61
 */
62
63
typedef enum {
64
    need_more,      /* block not completed, need more input or more output */
65
    block_done,     /* block flush performed */
66
    finish_started, /* finish started, need only more output at next deflate */
67
    finish_done     /* finish done, accept no more input or output */
68
} block_state;
69
70
typedef block_state (*compress_func)(deflate_state *s, int flush);
71
/* Compression function. Returns the block state after the call. */
72
73
local block_state deflate_stored(deflate_state *s, int flush);
74
local block_state deflate_fast(deflate_state *s, int flush);
75
#ifndef FASTEST
76
local block_state deflate_slow(deflate_state *s, int flush);
77
#endif
78
local block_state deflate_rle(deflate_state *s, int flush);
79
local block_state deflate_huff(deflate_state *s, int flush);
80
81
/* ===========================================================================
82
 * Local data
83
 */
84
85
0
#define NIL 0
86
/* Tail of hash chains */
87
88
#ifndef TOO_FAR
89
0
#  define TOO_FAR 4096
90
#endif
91
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93
/* Values for max_lazy_match, good_match and max_chain_length, depending on
94
 * the desired pack level (0..9). The values given below have been tuned to
95
 * exclude worst case performance for pathological files. Better values may be
96
 * found for specific files.
97
 */
98
typedef struct config_s {
99
   ush good_length; /* reduce lazy search above this match length */
100
   ush max_lazy;    /* do not perform lazy search above this match length */
101
   ush nice_length; /* quit search above this match length */
102
   ush max_chain;
103
   compress_func func;
104
} config;
105
106
#ifdef FASTEST
107
local const config configuration_table[2] = {
108
/*      good lazy nice chain */
109
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
110
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
111
#else
112
local const config configuration_table[10] = {
113
/*      good lazy nice chain */
114
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
115
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
116
/* 2 */ {4,    5, 16,    8, deflate_fast},
117
/* 3 */ {4,    6, 32,   32, deflate_fast},
118
119
/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
120
/* 5 */ {8,   16, 32,   32, deflate_slow},
121
/* 6 */ {8,   16, 128, 128, deflate_slow},
122
/* 7 */ {8,   32, 128, 256, deflate_slow},
123
/* 8 */ {32, 128, 258, 1024, deflate_slow},
124
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125
#endif
126
127
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128
 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129
 * meaning.
130
 */
131
132
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133
0
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135
/* ===========================================================================
136
 * Update a hash value with the given input byte
137
 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
138
 *    characters, so that a running hash key can be computed from the previous
139
 *    key instead of complete recalculation each time.
140
 */
141
0
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144
/* ===========================================================================
145
 * Insert string str in the dictionary and set match_head to the previous head
146
 * of the hash chain (the most recent string with same hash key). Return
147
 * the previous length of the hash chain.
148
 * If this file is compiled with -DFASTEST, the compression level is forced
149
 * to 1, and no hash chains are maintained.
150
 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
151
 *    characters and the first MIN_MATCH bytes of str are valid (except for
152
 *    the last MIN_MATCH-1 bytes of the input file).
153
 */
154
#ifdef FASTEST
155
#define INSERT_STRING(s, str, match_head) \
156
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157
    match_head = s->head[s->ins_h], \
158
    s->head[s->ins_h] = (Pos)(str))
159
#else
160
#define INSERT_STRING(s, str, match_head) \
161
0
   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162
0
    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163
0
    s->head[s->ins_h] = (Pos)(str))
164
#endif
165
166
/* ===========================================================================
167
 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168
 * prev[] will be initialized on the fly.
169
 */
170
#define CLEAR_HASH(s) \
171
0
    do { \
172
0
        s->head[s->hash_size - 1] = NIL; \
173
0
        zmemzero((Bytef *)s->head, \
174
0
                 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175
0
    } while (0)
176
177
/* ===========================================================================
178
 * Slide the hash table when sliding the window down (could be avoided with 32
179
 * bit values at the expense of memory usage). We slide even when level == 0 to
180
 * keep the hash table consistent if we switch back to level > 0 later.
181
 */
182
#if defined(__has_feature)
183
#  if __has_feature(memory_sanitizer)
184
     __attribute__((no_sanitize("memory")))
185
#  endif
186
#endif
187
0
local void slide_hash(deflate_state *s) {
188
0
    unsigned n, m;
189
0
    Posf *p;
190
0
    uInt wsize = s->w_size;
191
192
0
    n = s->hash_size;
193
0
    p = &s->head[n];
194
0
    do {
195
0
        m = *--p;
196
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
197
0
    } while (--n);
198
0
    n = wsize;
199
0
#ifndef FASTEST
200
0
    p = &s->prev[n];
201
0
    do {
202
0
        m = *--p;
203
0
        *p = (Pos)(m >= wsize ? m - wsize : NIL);
204
        /* If n is not on any hash chain, prev[n] is garbage but
205
         * its value will never be used.
206
         */
207
0
    } while (--n);
208
0
#endif
209
0
}
210
211
/* ===========================================================================
212
 * Read a new buffer from the current input stream, update the adler32
213
 * and total number of bytes read.  All deflate() input goes through
214
 * this function so some applications may wish to modify it to avoid
215
 * allocating a large strm->next_in buffer and copying from it.
216
 * (See also flush_pending()).
217
 */
218
0
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
219
0
    unsigned len = strm->avail_in;
220
221
0
    if (len > size) len = size;
222
0
    if (len == 0) return 0;
223
224
0
    strm->avail_in  -= len;
225
226
0
    zmemcpy(buf, strm->next_in, len);
227
0
    if (strm->state->wrap == 1) {
228
0
        strm->adler = adler32(strm->adler, buf, len);
229
0
    }
230
#ifdef GZIP
231
    else if (strm->state->wrap == 2) {
232
        strm->adler = crc32(strm->adler, buf, len);
233
    }
234
#endif
235
0
    strm->next_in  += len;
236
0
    strm->total_in += len;
237
238
0
    return len;
239
0
}
240
241
/* ===========================================================================
242
 * Fill the window when the lookahead becomes insufficient.
243
 * Updates strstart and lookahead.
244
 *
245
 * IN assertion: lookahead < MIN_LOOKAHEAD
246
 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
247
 *    At least one byte has been read, or avail_in == 0; reads are
248
 *    performed for at least two bytes (required for the zip translate_eol
249
 *    option -- not supported here).
250
 */
251
0
local void fill_window(deflate_state *s) {
252
0
    unsigned n;
253
0
    unsigned more;    /* Amount of free space at the end of the window. */
254
0
    uInt wsize = s->w_size;
255
256
0
    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
257
258
0
    do {
259
0
        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
260
261
        /* Deal with !@#$% 64K limit: */
262
0
        if (sizeof(int) <= 2) {
263
0
            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
264
0
                more = wsize;
265
266
0
            } else if (more == (unsigned)(-1)) {
267
                /* Very unlikely, but possible on 16 bit machine if
268
                 * strstart == 0 && lookahead == 1 (input done a byte at time)
269
                 */
270
0
                more--;
271
0
            }
272
0
        }
273
274
        /* If the window is almost full and there is insufficient lookahead,
275
         * move the upper half to the lower one to make room in the upper half.
276
         */
277
0
        if (s->strstart >= wsize + MAX_DIST(s)) {
278
279
0
            zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
280
0
            s->match_start -= wsize;
281
0
            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
282
0
            s->block_start -= (long) wsize;
283
0
            if (s->insert > s->strstart)
284
0
                s->insert = s->strstart;
285
0
            slide_hash(s);
286
0
            more += wsize;
287
0
        }
288
0
        if (s->strm->avail_in == 0) break;
289
290
        /* If there was no sliding:
291
         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
292
         *    more == window_size - lookahead - strstart
293
         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
294
         * => more >= window_size - 2*WSIZE + 2
295
         * In the BIG_MEM or MMAP case (not yet supported),
296
         *   window_size == input_size + MIN_LOOKAHEAD  &&
297
         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
298
         * Otherwise, window_size == 2*WSIZE so more >= 2.
299
         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
300
         */
301
0
        Assert(more >= 2, "more < 2");
302
303
0
        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
304
0
        s->lookahead += n;
305
306
        /* Initialize the hash value now that we have some input: */
307
0
        if (s->lookahead + s->insert >= MIN_MATCH) {
308
0
            uInt str = s->strstart - s->insert;
309
0
            s->ins_h = s->window[str];
310
0
            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
311
#if MIN_MATCH != 3
312
            Call UPDATE_HASH() MIN_MATCH-3 more times
313
#endif
314
0
            while (s->insert) {
315
0
                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
316
0
#ifndef FASTEST
317
0
                s->prev[str & s->w_mask] = s->head[s->ins_h];
318
0
#endif
319
0
                s->head[s->ins_h] = (Pos)str;
320
0
                str++;
321
0
                s->insert--;
322
0
                if (s->lookahead + s->insert < MIN_MATCH)
323
0
                    break;
324
0
            }
325
0
        }
326
        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
327
         * but this is not important since only literal bytes will be emitted.
328
         */
329
330
0
    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
331
332
    /* If the WIN_INIT bytes after the end of the current data have never been
333
     * written, then zero those bytes in order to avoid memory check reports of
334
     * the use of uninitialized (or uninitialised as Julian writes) bytes by
335
     * the longest match routines.  Update the high water mark for the next
336
     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
337
     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
338
     */
339
0
    if (s->high_water < s->window_size) {
340
0
        ulg curr = s->strstart + (ulg)(s->lookahead);
341
0
        ulg init;
342
343
0
        if (s->high_water < curr) {
344
            /* Previous high water mark below current data -- zero WIN_INIT
345
             * bytes or up to end of window, whichever is less.
346
             */
347
0
            init = s->window_size - curr;
348
0
            if (init > WIN_INIT)
349
0
                init = WIN_INIT;
350
0
            zmemzero(s->window + curr, (unsigned)init);
351
0
            s->high_water = curr + init;
352
0
        }
353
0
        else if (s->high_water < (ulg)curr + WIN_INIT) {
354
            /* High water mark at or above current data, but below current data
355
             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
356
             * to end of window, whichever is less.
357
             */
358
0
            init = (ulg)curr + WIN_INIT - s->high_water;
359
0
            if (init > s->window_size - s->high_water)
360
0
                init = s->window_size - s->high_water;
361
0
            zmemzero(s->window + s->high_water, (unsigned)init);
362
0
            s->high_water += init;
363
0
        }
364
0
    }
365
366
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
367
0
           "not enough room for search");
368
0
}
369
370
/* ========================================================================= */
371
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
372
0
                         int stream_size) {
373
0
    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
374
0
                         Z_DEFAULT_STRATEGY, version, stream_size);
375
    /* To do: ignore strm->next_in if we use it as window */
376
0
}
377
378
/* ========================================================================= */
379
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
380
                          int windowBits, int memLevel, int strategy,
381
0
                          const char *version, int stream_size) {
382
0
    deflate_state *s;
383
0
    int wrap = 1;
384
0
    static const char my_version[] = ZLIB_VERSION;
385
386
0
    if (version == Z_NULL || version[0] != my_version[0] ||
387
0
        stream_size != sizeof(z_stream)) {
388
0
        return Z_VERSION_ERROR;
389
0
    }
390
0
    if (strm == Z_NULL) return Z_STREAM_ERROR;
391
392
0
    strm->msg = Z_NULL;
393
0
    if (strm->zalloc == (alloc_func)0) {
394
#ifdef Z_SOLO
395
        return Z_STREAM_ERROR;
396
#else
397
0
        strm->zalloc = zcalloc;
398
0
        strm->opaque = (voidpf)0;
399
0
#endif
400
0
    }
401
0
    if (strm->zfree == (free_func)0)
402
#ifdef Z_SOLO
403
        return Z_STREAM_ERROR;
404
#else
405
0
        strm->zfree = zcfree;
406
0
#endif
407
408
#ifdef FASTEST
409
    if (level != 0) level = 1;
410
#else
411
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
412
0
#endif
413
414
0
    if (windowBits < 0) { /* suppress zlib wrapper */
415
0
        wrap = 0;
416
0
        if (windowBits < -15)
417
0
            return Z_STREAM_ERROR;
418
0
        windowBits = -windowBits;
419
0
    }
420
#ifdef GZIP
421
    else if (windowBits > 15) {
422
        wrap = 2;       /* write gzip wrapper instead */
423
        windowBits -= 16;
424
    }
425
#endif
426
0
    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
427
0
        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
428
0
        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
429
0
        return Z_STREAM_ERROR;
430
0
    }
431
0
    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
432
0
    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
433
0
    if (s == Z_NULL) return Z_MEM_ERROR;
434
0
    strm->state = (struct internal_state FAR *)s;
435
0
    s->strm = strm;
436
0
    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
437
438
0
    s->wrap = wrap;
439
0
    s->gzhead = Z_NULL;
440
0
    s->w_bits = (uInt)windowBits;
441
0
    s->w_size = 1 << s->w_bits;
442
0
    s->w_mask = s->w_size - 1;
443
444
0
    s->hash_bits = (uInt)memLevel + 7;
445
0
    s->hash_size = 1 << s->hash_bits;
446
0
    s->hash_mask = s->hash_size - 1;
447
0
    s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
448
449
0
    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
450
0
    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
451
0
    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
452
453
0
    s->high_water = 0;      /* nothing written to s->window yet */
454
455
0
    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
456
457
    /* We overlay pending_buf and sym_buf. This works since the average size
458
     * for length/distance pairs over any compressed block is assured to be 31
459
     * bits or less.
460
     *
461
     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
462
     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
463
     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
464
     * possible fixed-codes length/distance pair is then 31 bits total.
465
     *
466
     * sym_buf starts one-fourth of the way into pending_buf. So there are
467
     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
468
     * in sym_buf is three bytes -- two for the distance and one for the
469
     * literal/length. As each symbol is consumed, the pointer to the next
470
     * sym_buf value to read moves forward three bytes. From that symbol, up to
471
     * 31 bits are written to pending_buf. The closest the written pending_buf
472
     * bits gets to the next sym_buf symbol to read is just before the last
473
     * code is written. At that time, 31*(n - 2) bits have been written, just
474
     * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
475
     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
476
     * symbols are written.) The closest the writing gets to what is unread is
477
     * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
478
     * can range from 128 to 32768.
479
     *
480
     * Therefore, at a minimum, there are 142 bits of space between what is
481
     * written and what is read in the overlain buffers, so the symbols cannot
482
     * be overwritten by the compressed data. That space is actually 139 bits,
483
     * due to the three-bit fixed-code block header.
484
     *
485
     * That covers the case where either Z_FIXED is specified, forcing fixed
486
     * codes, or when the use of fixed codes is chosen, because that choice
487
     * results in a smaller compressed block than dynamic codes. That latter
488
     * condition then assures that the above analysis also covers all dynamic
489
     * blocks. A dynamic-code block will only be chosen to be emitted if it has
490
     * fewer bits than a fixed-code block would for the same set of symbols.
491
     * Therefore its average symbol length is assured to be less than 31. So
492
     * the compressed data for a dynamic block also cannot overwrite the
493
     * symbols from which it is being constructed.
494
     */
495
496
0
    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
497
0
    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
498
499
0
    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
500
0
        s->pending_buf == Z_NULL) {
501
0
        s->status = FINISH_STATE;
502
0
        strm->msg = ERR_MSG(Z_MEM_ERROR);
503
0
        deflateEnd (strm);
504
0
        return Z_MEM_ERROR;
505
0
    }
506
0
    s->sym_buf = s->pending_buf + s->lit_bufsize;
507
0
    s->sym_end = (s->lit_bufsize - 1) * 3;
508
    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
509
     * on 16 bit machines and because stored blocks are restricted to
510
     * 64K-1 bytes.
511
     */
512
513
0
    s->level = level;
514
0
    s->strategy = strategy;
515
0
    s->method = (Byte)method;
516
517
0
    return deflateReset(strm);
518
0
}
519
520
/* =========================================================================
521
 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
522
 */
523
0
local int deflateStateCheck(z_streamp strm) {
524
0
    deflate_state *s;
525
0
    if (strm == Z_NULL ||
526
0
        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
527
0
        return 1;
528
0
    s = strm->state;
529
0
    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
530
#ifdef GZIP
531
                                           s->status != GZIP_STATE &&
532
#endif
533
0
                                           s->status != EXTRA_STATE &&
534
0
                                           s->status != NAME_STATE &&
535
0
                                           s->status != COMMENT_STATE &&
536
0
                                           s->status != HCRC_STATE &&
537
0
                                           s->status != BUSY_STATE &&
538
0
                                           s->status != FINISH_STATE))
539
0
        return 1;
540
0
    return 0;
541
0
}
542
543
/* ========================================================================= */
544
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
545
0
                                 uInt  dictLength) {
546
0
    deflate_state *s;
547
0
    uInt str, n;
548
0
    int wrap;
549
0
    unsigned avail;
550
0
    z_const unsigned char *next;
551
552
0
    if (deflateStateCheck(strm) || dictionary == Z_NULL)
553
0
        return Z_STREAM_ERROR;
554
0
    s = strm->state;
555
0
    wrap = s->wrap;
556
0
    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
557
0
        return Z_STREAM_ERROR;
558
559
    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
560
0
    if (wrap == 1)
561
0
        strm->adler = adler32(strm->adler, dictionary, dictLength);
562
0
    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
563
564
    /* if dictionary would fill window, just replace the history */
565
0
    if (dictLength >= s->w_size) {
566
0
        if (wrap == 0) {            /* already empty otherwise */
567
0
            CLEAR_HASH(s);
568
0
            s->strstart = 0;
569
0
            s->block_start = 0L;
570
0
            s->insert = 0;
571
0
        }
572
0
        dictionary += dictLength - s->w_size;  /* use the tail */
573
0
        dictLength = s->w_size;
574
0
    }
575
576
    /* insert dictionary into window and hash */
577
0
    avail = strm->avail_in;
578
0
    next = strm->next_in;
579
0
    strm->avail_in = dictLength;
580
0
    strm->next_in = (z_const Bytef *)dictionary;
581
0
    fill_window(s);
582
0
    while (s->lookahead >= MIN_MATCH) {
583
0
        str = s->strstart;
584
0
        n = s->lookahead - (MIN_MATCH-1);
585
0
        do {
586
0
            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
587
0
#ifndef FASTEST
588
0
            s->prev[str & s->w_mask] = s->head[s->ins_h];
589
0
#endif
590
0
            s->head[s->ins_h] = (Pos)str;
591
0
            str++;
592
0
        } while (--n);
593
0
        s->strstart = str;
594
0
        s->lookahead = MIN_MATCH-1;
595
0
        fill_window(s);
596
0
    }
597
0
    s->strstart += s->lookahead;
598
0
    s->block_start = (long)s->strstart;
599
0
    s->insert = s->lookahead;
600
0
    s->lookahead = 0;
601
0
    s->match_length = s->prev_length = MIN_MATCH-1;
602
0
    s->match_available = 0;
603
0
    strm->next_in = next;
604
0
    strm->avail_in = avail;
605
0
    s->wrap = wrap;
606
0
    return Z_OK;
607
0
}
608
609
/* ========================================================================= */
610
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
611
0
                                 uInt *dictLength) {
612
0
    deflate_state *s;
613
0
    uInt len;
614
615
0
    if (deflateStateCheck(strm))
616
0
        return Z_STREAM_ERROR;
617
0
    s = strm->state;
618
0
    len = s->strstart + s->lookahead;
619
0
    if (len > s->w_size)
620
0
        len = s->w_size;
621
0
    if (dictionary != Z_NULL && len)
622
0
        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
623
0
    if (dictLength != Z_NULL)
624
0
        *dictLength = len;
625
0
    return Z_OK;
626
0
}
627
628
/* ========================================================================= */
629
0
int ZEXPORT deflateResetKeep(z_streamp strm) {
630
0
    deflate_state *s;
631
632
0
    if (deflateStateCheck(strm)) {
633
0
        return Z_STREAM_ERROR;
634
0
    }
635
636
0
    strm->total_in = strm->total_out = 0;
637
0
    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
638
0
    strm->data_type = Z_UNKNOWN;
639
640
0
    s = (deflate_state *)strm->state;
641
0
    s->pending = 0;
642
0
    s->pending_out = s->pending_buf;
643
644
0
    if (s->wrap < 0) {
645
0
        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
646
0
    }
647
0
    s->status =
648
#ifdef GZIP
649
        s->wrap == 2 ? GZIP_STATE :
650
#endif
651
0
        INIT_STATE;
652
0
    strm->adler =
653
#ifdef GZIP
654
        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
655
#endif
656
0
        adler32(0L, Z_NULL, 0);
657
0
    s->last_flush = -2;
658
659
0
    _tr_init(s);
660
661
0
    return Z_OK;
662
0
}
663
664
/* ===========================================================================
665
 * Initialize the "longest match" routines for a new zlib stream
666
 */
667
0
local void lm_init(deflate_state *s) {
668
0
    s->window_size = (ulg)2L*s->w_size;
669
670
0
    CLEAR_HASH(s);
671
672
    /* Set the default configuration parameters:
673
     */
674
0
    s->max_lazy_match   = configuration_table[s->level].max_lazy;
675
0
    s->good_match       = configuration_table[s->level].good_length;
676
0
    s->nice_match       = configuration_table[s->level].nice_length;
677
0
    s->max_chain_length = configuration_table[s->level].max_chain;
678
679
0
    s->strstart = 0;
680
0
    s->block_start = 0L;
681
0
    s->lookahead = 0;
682
0
    s->insert = 0;
683
0
    s->match_length = s->prev_length = MIN_MATCH-1;
684
0
    s->match_available = 0;
685
0
    s->ins_h = 0;
686
0
}
687
688
/* ========================================================================= */
689
0
int ZEXPORT deflateReset(z_streamp strm) {
690
0
    int ret;
691
692
0
    ret = deflateResetKeep(strm);
693
0
    if (ret == Z_OK)
694
0
        lm_init(strm->state);
695
0
    return ret;
696
0
}
697
698
/* ========================================================================= */
699
0
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
700
0
    if (deflateStateCheck(strm) || strm->state->wrap != 2)
701
0
        return Z_STREAM_ERROR;
702
0
    strm->state->gzhead = head;
703
0
    return Z_OK;
704
0
}
705
706
/* ========================================================================= */
707
0
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
708
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
709
0
    if (pending != Z_NULL)
710
0
        *pending = strm->state->pending;
711
0
    if (bits != Z_NULL)
712
0
        *bits = strm->state->bi_valid;
713
0
    return Z_OK;
714
0
}
715
716
/* ========================================================================= */
717
0
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
718
0
    deflate_state *s;
719
0
    int put;
720
721
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
722
0
    s = strm->state;
723
0
    if (bits < 0 || bits > 16 ||
724
0
        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
725
0
        return Z_BUF_ERROR;
726
0
    do {
727
0
        put = Buf_size - s->bi_valid;
728
0
        if (put > bits)
729
0
            put = bits;
730
0
        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
731
0
        s->bi_valid += put;
732
0
        _tr_flush_bits(s);
733
0
        value >>= put;
734
0
        bits -= put;
735
0
    } while (bits);
736
0
    return Z_OK;
737
0
}
738
739
/* ========================================================================= */
740
0
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
741
0
    deflate_state *s;
742
0
    compress_func func;
743
744
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
745
0
    s = strm->state;
746
747
#ifdef FASTEST
748
    if (level != 0) level = 1;
749
#else
750
0
    if (level == Z_DEFAULT_COMPRESSION) level = 6;
751
0
#endif
752
0
    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
753
0
        return Z_STREAM_ERROR;
754
0
    }
755
0
    func = configuration_table[s->level].func;
756
757
0
    if ((strategy != s->strategy || func != configuration_table[level].func) &&
758
0
        s->last_flush != -2) {
759
        /* Flush the last buffer: */
760
0
        int err = deflate(strm, Z_BLOCK);
761
0
        if (err == Z_STREAM_ERROR)
762
0
            return err;
763
0
        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
764
0
            return Z_BUF_ERROR;
765
0
    }
766
0
    if (s->level != level) {
767
0
        if (s->level == 0 && s->matches != 0) {
768
0
            if (s->matches == 1)
769
0
                slide_hash(s);
770
0
            else
771
0
                CLEAR_HASH(s);
772
0
            s->matches = 0;
773
0
        }
774
0
        s->level = level;
775
0
        s->max_lazy_match   = configuration_table[level].max_lazy;
776
0
        s->good_match       = configuration_table[level].good_length;
777
0
        s->nice_match       = configuration_table[level].nice_length;
778
0
        s->max_chain_length = configuration_table[level].max_chain;
779
0
    }
780
0
    s->strategy = strategy;
781
0
    return Z_OK;
782
0
}
783
784
/* ========================================================================= */
785
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
786
0
                        int nice_length, int max_chain) {
787
0
    deflate_state *s;
788
789
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
790
0
    s = strm->state;
791
0
    s->good_match = (uInt)good_length;
792
0
    s->max_lazy_match = (uInt)max_lazy;
793
0
    s->nice_match = nice_length;
794
0
    s->max_chain_length = (uInt)max_chain;
795
0
    return Z_OK;
796
0
}
797
798
/* =========================================================================
799
 * For the default windowBits of 15 and memLevel of 8, this function returns a
800
 * close to exact, as well as small, upper bound on the compressed size. This
801
 * is an expansion of ~0.03%, plus a small constant.
802
 *
803
 * For any setting other than those defaults for windowBits and memLevel, one
804
 * of two worst case bounds is returned. This is at most an expansion of ~4% or
805
 * ~13%, plus a small constant.
806
 *
807
 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
808
 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
809
 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
810
 * expansion results from five bytes of header for each stored block.
811
 *
812
 * The larger expansion of 13% results from a window size less than or equal to
813
 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
814
 * the data being compressed may have slid out of the sliding window, impeding
815
 * a stored block from being emitted. Then the only choice is a fixed or
816
 * dynamic block, where a fixed block limits the maximum expansion to 9 bits
817
 * per 8-bit byte, plus 10 bits for every block. The smallest block size for
818
 * which this can occur is 255 (memLevel == 2).
819
 *
820
 * Shifts are used to approximate divisions, for speed.
821
 */
822
0
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
823
0
    deflate_state *s;
824
0
    uLong fixedlen, storelen, wraplen;
825
826
    /* upper bound for fixed blocks with 9-bit literals and length 255
827
       (memLevel == 2, which is the lowest that may not use stored blocks) --
828
       ~13% overhead plus a small constant */
829
0
    fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
830
0
               (sourceLen >> 9) + 4;
831
832
    /* upper bound for stored blocks with length 127 (memLevel == 1) --
833
       ~4% overhead plus a small constant */
834
0
    storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
835
0
               (sourceLen >> 11) + 7;
836
837
    /* if can't get parameters, return larger bound plus a zlib wrapper */
838
0
    if (deflateStateCheck(strm))
839
0
        return (fixedlen > storelen ? fixedlen : storelen) + 6;
840
841
    /* compute wrapper length */
842
0
    s = strm->state;
843
0
    switch (s->wrap) {
844
0
    case 0:                                 /* raw deflate */
845
0
        wraplen = 0;
846
0
        break;
847
0
    case 1:                                 /* zlib wrapper */
848
0
        wraplen = 6 + (s->strstart ? 4 : 0);
849
0
        break;
850
#ifdef GZIP
851
    case 2:                                 /* gzip wrapper */
852
        wraplen = 18;
853
        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
854
            Bytef *str;
855
            if (s->gzhead->extra != Z_NULL)
856
                wraplen += 2 + s->gzhead->extra_len;
857
            str = s->gzhead->name;
858
            if (str != Z_NULL)
859
                do {
860
                    wraplen++;
861
                } while (*str++);
862
            str = s->gzhead->comment;
863
            if (str != Z_NULL)
864
                do {
865
                    wraplen++;
866
                } while (*str++);
867
            if (s->gzhead->hcrc)
868
                wraplen += 2;
869
        }
870
        break;
871
#endif
872
0
    default:                                /* for compiler happiness */
873
0
        wraplen = 6;
874
0
    }
875
876
    /* if not default parameters, return one of the conservative bounds */
877
0
    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
878
0
        return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
879
0
               wraplen;
880
881
    /* default settings: return tight bound for that case -- ~0.03% overhead
882
       plus a small constant */
883
0
    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
884
0
           (sourceLen >> 25) + 13 - 6 + wraplen;
885
0
}
886
887
/* =========================================================================
888
 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
889
 * IN assertion: the stream state is correct and there is enough room in
890
 * pending_buf.
891
 */
892
0
local void putShortMSB(deflate_state *s, uInt b) {
893
0
    put_byte(s, (Byte)(b >> 8));
894
0
    put_byte(s, (Byte)(b & 0xff));
895
0
}
896
897
/* =========================================================================
898
 * Flush as much pending output as possible. All deflate() output, except for
899
 * some deflate_stored() output, goes through this function so some
900
 * applications may wish to modify it to avoid allocating a large
901
 * strm->next_out buffer and copying into it. (See also read_buf()).
902
 */
903
0
local void flush_pending(z_streamp strm) {
904
0
    unsigned len;
905
0
    deflate_state *s = strm->state;
906
907
0
    _tr_flush_bits(s);
908
0
    len = s->pending;
909
0
    if (len > strm->avail_out) len = strm->avail_out;
910
0
    if (len == 0) return;
911
912
0
    zmemcpy(strm->next_out, s->pending_out, len);
913
0
    strm->next_out  += len;
914
0
    s->pending_out  += len;
915
0
    strm->total_out += len;
916
0
    strm->avail_out -= len;
917
0
    s->pending      -= len;
918
0
    if (s->pending == 0) {
919
0
        s->pending_out = s->pending_buf;
920
0
    }
921
0
}
922
923
/* ===========================================================================
924
 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
925
 */
926
#define HCRC_UPDATE(beg) \
927
    do { \
928
        if (s->gzhead->hcrc && s->pending > (beg)) \
929
            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
930
                                s->pending - (beg)); \
931
    } while (0)
932
933
/* ========================================================================= */
934
0
int ZEXPORT deflate(z_streamp strm, int flush) {
935
0
    int old_flush; /* value of flush param for previous deflate call */
936
0
    deflate_state *s;
937
938
0
    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
939
0
        return Z_STREAM_ERROR;
940
0
    }
941
0
    s = strm->state;
942
943
0
    if (strm->next_out == Z_NULL ||
944
0
        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
945
0
        (s->status == FINISH_STATE && flush != Z_FINISH)) {
946
0
        ERR_RETURN(strm, Z_STREAM_ERROR);
947
0
    }
948
0
    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
949
950
0
    old_flush = s->last_flush;
951
0
    s->last_flush = flush;
952
953
    /* Flush as much pending output as possible */
954
0
    if (s->pending != 0) {
955
0
        flush_pending(strm);
956
0
        if (strm->avail_out == 0) {
957
            /* Since avail_out is 0, deflate will be called again with
958
             * more output space, but possibly with both pending and
959
             * avail_in equal to zero. There won't be anything to do,
960
             * but this is not an error situation so make sure we
961
             * return OK instead of BUF_ERROR at next call of deflate:
962
             */
963
0
            s->last_flush = -1;
964
0
            return Z_OK;
965
0
        }
966
967
    /* Make sure there is something to do and avoid duplicate consecutive
968
     * flushes. For repeated and useless calls with Z_FINISH, we keep
969
     * returning Z_STREAM_END instead of Z_BUF_ERROR.
970
     */
971
0
    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
972
0
               flush != Z_FINISH) {
973
0
        ERR_RETURN(strm, Z_BUF_ERROR);
974
0
    }
975
976
    /* User must not provide more input after the first FINISH: */
977
0
    if (s->status == FINISH_STATE && strm->avail_in != 0) {
978
0
        ERR_RETURN(strm, Z_BUF_ERROR);
979
0
    }
980
981
    /* Write the header */
982
0
    if (s->status == INIT_STATE && s->wrap == 0)
983
0
        s->status = BUSY_STATE;
984
0
    if (s->status == INIT_STATE) {
985
        /* zlib header */
986
0
        uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
987
0
        uInt level_flags;
988
989
0
        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
990
0
            level_flags = 0;
991
0
        else if (s->level < 6)
992
0
            level_flags = 1;
993
0
        else if (s->level == 6)
994
0
            level_flags = 2;
995
0
        else
996
0
            level_flags = 3;
997
0
        header |= (level_flags << 6);
998
0
        if (s->strstart != 0) header |= PRESET_DICT;
999
0
        header += 31 - (header % 31);
1000
1001
0
        putShortMSB(s, header);
1002
1003
        /* Save the adler32 of the preset dictionary: */
1004
0
        if (s->strstart != 0) {
1005
0
            putShortMSB(s, (uInt)(strm->adler >> 16));
1006
0
            putShortMSB(s, (uInt)(strm->adler & 0xffff));
1007
0
        }
1008
0
        strm->adler = adler32(0L, Z_NULL, 0);
1009
0
        s->status = BUSY_STATE;
1010
1011
        /* Compression must start with an empty pending buffer */
1012
0
        flush_pending(strm);
1013
0
        if (s->pending != 0) {
1014
0
            s->last_flush = -1;
1015
0
            return Z_OK;
1016
0
        }
1017
0
    }
1018
#ifdef GZIP
1019
    if (s->status == GZIP_STATE) {
1020
        /* gzip header */
1021
        strm->adler = crc32(0L, Z_NULL, 0);
1022
        put_byte(s, 31);
1023
        put_byte(s, 139);
1024
        put_byte(s, 8);
1025
        if (s->gzhead == Z_NULL) {
1026
            put_byte(s, 0);
1027
            put_byte(s, 0);
1028
            put_byte(s, 0);
1029
            put_byte(s, 0);
1030
            put_byte(s, 0);
1031
            put_byte(s, s->level == 9 ? 2 :
1032
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1033
                      4 : 0));
1034
            put_byte(s, OS_CODE);
1035
            s->status = BUSY_STATE;
1036
1037
            /* Compression must start with an empty pending buffer */
1038
            flush_pending(strm);
1039
            if (s->pending != 0) {
1040
                s->last_flush = -1;
1041
                return Z_OK;
1042
            }
1043
        }
1044
        else {
1045
            put_byte(s, (s->gzhead->text ? 1 : 0) +
1046
                     (s->gzhead->hcrc ? 2 : 0) +
1047
                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
1048
                     (s->gzhead->name == Z_NULL ? 0 : 8) +
1049
                     (s->gzhead->comment == Z_NULL ? 0 : 16)
1050
                     );
1051
            put_byte(s, (Byte)(s->gzhead->time & 0xff));
1052
            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1053
            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1054
            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1055
            put_byte(s, s->level == 9 ? 2 :
1056
                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1057
                      4 : 0));
1058
            put_byte(s, s->gzhead->os & 0xff);
1059
            if (s->gzhead->extra != Z_NULL) {
1060
                put_byte(s, s->gzhead->extra_len & 0xff);
1061
                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1062
            }
1063
            if (s->gzhead->hcrc)
1064
                strm->adler = crc32(strm->adler, s->pending_buf,
1065
                                    s->pending);
1066
            s->gzindex = 0;
1067
            s->status = EXTRA_STATE;
1068
        }
1069
    }
1070
    if (s->status == EXTRA_STATE) {
1071
        if (s->gzhead->extra != Z_NULL) {
1072
            ulg beg = s->pending;   /* start of bytes to update crc */
1073
            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1074
            while (s->pending + left > s->pending_buf_size) {
1075
                uInt copy = s->pending_buf_size - s->pending;
1076
                zmemcpy(s->pending_buf + s->pending,
1077
                        s->gzhead->extra + s->gzindex, copy);
1078
                s->pending = s->pending_buf_size;
1079
                HCRC_UPDATE(beg);
1080
                s->gzindex += copy;
1081
                flush_pending(strm);
1082
                if (s->pending != 0) {
1083
                    s->last_flush = -1;
1084
                    return Z_OK;
1085
                }
1086
                beg = 0;
1087
                left -= copy;
1088
            }
1089
            zmemcpy(s->pending_buf + s->pending,
1090
                    s->gzhead->extra + s->gzindex, left);
1091
            s->pending += left;
1092
            HCRC_UPDATE(beg);
1093
            s->gzindex = 0;
1094
        }
1095
        s->status = NAME_STATE;
1096
    }
1097
    if (s->status == NAME_STATE) {
1098
        if (s->gzhead->name != Z_NULL) {
1099
            ulg beg = s->pending;   /* start of bytes to update crc */
1100
            int val;
1101
            do {
1102
                if (s->pending == s->pending_buf_size) {
1103
                    HCRC_UPDATE(beg);
1104
                    flush_pending(strm);
1105
                    if (s->pending != 0) {
1106
                        s->last_flush = -1;
1107
                        return Z_OK;
1108
                    }
1109
                    beg = 0;
1110
                }
1111
                val = s->gzhead->name[s->gzindex++];
1112
                put_byte(s, val);
1113
            } while (val != 0);
1114
            HCRC_UPDATE(beg);
1115
            s->gzindex = 0;
1116
        }
1117
        s->status = COMMENT_STATE;
1118
    }
1119
    if (s->status == COMMENT_STATE) {
1120
        if (s->gzhead->comment != Z_NULL) {
1121
            ulg beg = s->pending;   /* start of bytes to update crc */
1122
            int val;
1123
            do {
1124
                if (s->pending == s->pending_buf_size) {
1125
                    HCRC_UPDATE(beg);
1126
                    flush_pending(strm);
1127
                    if (s->pending != 0) {
1128
                        s->last_flush = -1;
1129
                        return Z_OK;
1130
                    }
1131
                    beg = 0;
1132
                }
1133
                val = s->gzhead->comment[s->gzindex++];
1134
                put_byte(s, val);
1135
            } while (val != 0);
1136
            HCRC_UPDATE(beg);
1137
        }
1138
        s->status = HCRC_STATE;
1139
    }
1140
    if (s->status == HCRC_STATE) {
1141
        if (s->gzhead->hcrc) {
1142
            if (s->pending + 2 > s->pending_buf_size) {
1143
                flush_pending(strm);
1144
                if (s->pending != 0) {
1145
                    s->last_flush = -1;
1146
                    return Z_OK;
1147
                }
1148
            }
1149
            put_byte(s, (Byte)(strm->adler & 0xff));
1150
            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1151
            strm->adler = crc32(0L, Z_NULL, 0);
1152
        }
1153
        s->status = BUSY_STATE;
1154
1155
        /* Compression must start with an empty pending buffer */
1156
        flush_pending(strm);
1157
        if (s->pending != 0) {
1158
            s->last_flush = -1;
1159
            return Z_OK;
1160
        }
1161
    }
1162
#endif
1163
1164
    /* Start a new block or continue the current one.
1165
     */
1166
0
    if (strm->avail_in != 0 || s->lookahead != 0 ||
1167
0
        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1168
0
        block_state bstate;
1169
1170
0
        bstate = s->level == 0 ? deflate_stored(s, flush) :
1171
0
                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1172
0
                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1173
0
                 (*(configuration_table[s->level].func))(s, flush);
1174
1175
0
        if (bstate == finish_started || bstate == finish_done) {
1176
0
            s->status = FINISH_STATE;
1177
0
        }
1178
0
        if (bstate == need_more || bstate == finish_started) {
1179
0
            if (strm->avail_out == 0) {
1180
0
                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1181
0
            }
1182
0
            return Z_OK;
1183
            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1184
             * of deflate should use the same flush parameter to make sure
1185
             * that the flush is complete. So we don't have to output an
1186
             * empty block here, this will be done at next call. This also
1187
             * ensures that for a very small output buffer, we emit at most
1188
             * one empty block.
1189
             */
1190
0
        }
1191
0
        if (bstate == block_done) {
1192
0
            if (flush == Z_PARTIAL_FLUSH) {
1193
0
                _tr_align(s);
1194
0
            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1195
0
                _tr_stored_block(s, (char*)0, 0L, 0);
1196
                /* For a full flush, this empty block will be recognized
1197
                 * as a special marker by inflate_sync().
1198
                 */
1199
0
                if (flush == Z_FULL_FLUSH) {
1200
0
                    CLEAR_HASH(s);             /* forget history */
1201
0
                    if (s->lookahead == 0) {
1202
0
                        s->strstart = 0;
1203
0
                        s->block_start = 0L;
1204
0
                        s->insert = 0;
1205
0
                    }
1206
0
                }
1207
0
            }
1208
0
            flush_pending(strm);
1209
0
            if (strm->avail_out == 0) {
1210
0
              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1211
0
              return Z_OK;
1212
0
            }
1213
0
        }
1214
0
    }
1215
1216
0
    if (flush != Z_FINISH) return Z_OK;
1217
0
    if (s->wrap <= 0) return Z_STREAM_END;
1218
1219
    /* Write the trailer */
1220
#ifdef GZIP
1221
    if (s->wrap == 2) {
1222
        put_byte(s, (Byte)(strm->adler & 0xff));
1223
        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1224
        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1225
        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1226
        put_byte(s, (Byte)(strm->total_in & 0xff));
1227
        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1228
        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1229
        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1230
    }
1231
    else
1232
#endif
1233
0
    {
1234
0
        putShortMSB(s, (uInt)(strm->adler >> 16));
1235
0
        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1236
0
    }
1237
0
    flush_pending(strm);
1238
    /* If avail_out is zero, the application will call deflate again
1239
     * to flush the rest.
1240
     */
1241
0
    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1242
0
    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1243
0
}
1244
1245
/* ========================================================================= */
1246
0
int ZEXPORT deflateEnd(z_streamp strm) {
1247
0
    int status;
1248
1249
0
    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1250
1251
0
    status = strm->state->status;
1252
1253
    /* Deallocate in reverse order of allocations: */
1254
0
    TRY_FREE(strm, strm->state->pending_buf);
1255
0
    TRY_FREE(strm, strm->state->head);
1256
0
    TRY_FREE(strm, strm->state->prev);
1257
0
    TRY_FREE(strm, strm->state->window);
1258
1259
0
    ZFREE(strm, strm->state);
1260
0
    strm->state = Z_NULL;
1261
1262
0
    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1263
0
}
1264
1265
/* =========================================================================
1266
 * Copy the source state to the destination state.
1267
 * To simplify the source, this is not supported for 16-bit MSDOS (which
1268
 * doesn't have enough memory anyway to duplicate compression states).
1269
 */
1270
0
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1271
#ifdef MAXSEG_64K
1272
    (void)dest;
1273
    (void)source;
1274
    return Z_STREAM_ERROR;
1275
#else
1276
0
    deflate_state *ds;
1277
0
    deflate_state *ss;
1278
1279
1280
0
    if (deflateStateCheck(source) || dest == Z_NULL) {
1281
0
        return Z_STREAM_ERROR;
1282
0
    }
1283
1284
0
    ss = source->state;
1285
1286
0
    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1287
1288
0
    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1289
0
    if (ds == Z_NULL) return Z_MEM_ERROR;
1290
0
    dest->state = (struct internal_state FAR *) ds;
1291
0
    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1292
0
    ds->strm = dest;
1293
1294
0
    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1295
0
    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1296
0
    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1297
0
    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1298
1299
0
    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1300
0
        ds->pending_buf == Z_NULL) {
1301
0
        deflateEnd (dest);
1302
0
        return Z_MEM_ERROR;
1303
0
    }
1304
    /* following zmemcpy do not work for 16-bit MSDOS */
1305
0
    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1306
0
    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1307
0
    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1308
0
    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1309
1310
0
    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1311
0
    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1312
1313
0
    ds->l_desc.dyn_tree = ds->dyn_ltree;
1314
0
    ds->d_desc.dyn_tree = ds->dyn_dtree;
1315
0
    ds->bl_desc.dyn_tree = ds->bl_tree;
1316
1317
0
    return Z_OK;
1318
0
#endif /* MAXSEG_64K */
1319
0
}
1320
1321
#ifndef FASTEST
1322
/* ===========================================================================
1323
 * Set match_start to the longest match starting at the given string and
1324
 * return its length. Matches shorter or equal to prev_length are discarded,
1325
 * in which case the result is equal to prev_length and match_start is
1326
 * garbage.
1327
 * IN assertions: cur_match is the head of the hash chain for the current
1328
 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1329
 * OUT assertion: the match length is not greater than s->lookahead.
1330
 */
1331
0
local uInt longest_match(deflate_state *s, IPos cur_match) {
1332
0
    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1333
0
    register Bytef *scan = s->window + s->strstart; /* current string */
1334
0
    register Bytef *match;                      /* matched string */
1335
0
    register int len;                           /* length of current match */
1336
0
    int best_len = (int)s->prev_length;         /* best match length so far */
1337
0
    int nice_match = s->nice_match;             /* stop if match long enough */
1338
0
    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1339
0
        s->strstart - (IPos)MAX_DIST(s) : NIL;
1340
    /* Stop when cur_match becomes <= limit. To simplify the code,
1341
     * we prevent matches with the string of window index 0.
1342
     */
1343
0
    Posf *prev = s->prev;
1344
0
    uInt wmask = s->w_mask;
1345
1346
#ifdef UNALIGNED_OK
1347
    /* Compare two bytes at a time. Note: this is not always beneficial.
1348
     * Try with and without -DUNALIGNED_OK to check.
1349
     */
1350
    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1351
    register ush scan_start = *(ushf*)scan;
1352
    register ush scan_end   = *(ushf*)(scan + best_len - 1);
1353
#else
1354
0
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1355
0
    register Byte scan_end1  = scan[best_len - 1];
1356
0
    register Byte scan_end   = scan[best_len];
1357
0
#endif
1358
1359
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1360
     * It is easy to get rid of this optimization if necessary.
1361
     */
1362
0
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1363
1364
    /* Do not waste too much time if we already have a good match: */
1365
0
    if (s->prev_length >= s->good_match) {
1366
0
        chain_length >>= 2;
1367
0
    }
1368
    /* Do not look for matches beyond the end of the input. This is necessary
1369
     * to make deflate deterministic.
1370
     */
1371
0
    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1372
1373
0
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1374
0
           "need lookahead");
1375
1376
0
    do {
1377
0
        Assert(cur_match < s->strstart, "no future");
1378
0
        match = s->window + cur_match;
1379
1380
        /* Skip to next match if the match length cannot increase
1381
         * or if the match length is less than 2.  Note that the checks below
1382
         * for insufficient lookahead only occur occasionally for performance
1383
         * reasons.  Therefore uninitialized memory will be accessed, and
1384
         * conditional jumps will be made that depend on those values.
1385
         * However the length of the match is limited to the lookahead, so
1386
         * the output of deflate is not affected by the uninitialized values.
1387
         */
1388
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1389
        /* This code assumes sizeof(unsigned short) == 2. Do not use
1390
         * UNALIGNED_OK if your compiler uses a different size.
1391
         */
1392
        if (*(ushf*)(match + best_len - 1) != scan_end ||
1393
            *(ushf*)match != scan_start) continue;
1394
1395
        /* It is not necessary to compare scan[2] and match[2] since they are
1396
         * always equal when the other bytes match, given that the hash keys
1397
         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1398
         * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1399
         * lookahead only every 4th comparison; the 128th check will be made
1400
         * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1401
         * necessary to put more guard bytes at the end of the window, or
1402
         * to check more often for insufficient lookahead.
1403
         */
1404
        Assert(scan[2] == match[2], "scan[2]?");
1405
        scan++, match++;
1406
        do {
1407
        } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1408
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1409
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1410
                 *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1411
                 scan < strend);
1412
        /* The funny "do {}" generates better code on most compilers */
1413
1414
        /* Here, scan <= window + strstart + 257 */
1415
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1416
               "wild scan");
1417
        if (*scan == *match) scan++;
1418
1419
        len = (MAX_MATCH - 1) - (int)(strend - scan);
1420
        scan = strend - (MAX_MATCH-1);
1421
1422
#else /* UNALIGNED_OK */
1423
1424
0
        if (match[best_len]     != scan_end  ||
1425
0
            match[best_len - 1] != scan_end1 ||
1426
0
            *match              != *scan     ||
1427
0
            *++match            != scan[1])      continue;
1428
1429
        /* The check at best_len - 1 can be removed because it will be made
1430
         * again later. (This heuristic is not always a win.)
1431
         * It is not necessary to compare scan[2] and match[2] since they
1432
         * are always equal when the other bytes match, given that
1433
         * the hash keys are equal and that HASH_BITS >= 8.
1434
         */
1435
0
        scan += 2, match++;
1436
0
        Assert(*scan == *match, "match[2]?");
1437
1438
        /* We check for insufficient lookahead only every 8th comparison;
1439
         * the 256th check will be made at strstart + 258.
1440
         */
1441
0
        do {
1442
0
        } while (*++scan == *++match && *++scan == *++match &&
1443
0
                 *++scan == *++match && *++scan == *++match &&
1444
0
                 *++scan == *++match && *++scan == *++match &&
1445
0
                 *++scan == *++match && *++scan == *++match &&
1446
0
                 scan < strend);
1447
1448
0
        Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1449
0
               "wild scan");
1450
1451
0
        len = MAX_MATCH - (int)(strend - scan);
1452
0
        scan = strend - MAX_MATCH;
1453
1454
0
#endif /* UNALIGNED_OK */
1455
1456
0
        if (len > best_len) {
1457
0
            s->match_start = cur_match;
1458
0
            best_len = len;
1459
0
            if (len >= nice_match) break;
1460
#ifdef UNALIGNED_OK
1461
            scan_end = *(ushf*)(scan + best_len - 1);
1462
#else
1463
0
            scan_end1  = scan[best_len - 1];
1464
0
            scan_end   = scan[best_len];
1465
0
#endif
1466
0
        }
1467
0
    } while ((cur_match = prev[cur_match & wmask]) > limit
1468
0
             && --chain_length != 0);
1469
1470
0
    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1471
0
    return s->lookahead;
1472
0
}
1473
1474
#else /* FASTEST */
1475
1476
/* ---------------------------------------------------------------------------
1477
 * Optimized version for FASTEST only
1478
 */
1479
local uInt longest_match(deflate_state *s, IPos cur_match) {
1480
    register Bytef *scan = s->window + s->strstart; /* current string */
1481
    register Bytef *match;                       /* matched string */
1482
    register int len;                           /* length of current match */
1483
    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1484
1485
    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1486
     * It is easy to get rid of this optimization if necessary.
1487
     */
1488
    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1489
1490
    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1491
           "need lookahead");
1492
1493
    Assert(cur_match < s->strstart, "no future");
1494
1495
    match = s->window + cur_match;
1496
1497
    /* Return failure if the match length is less than 2:
1498
     */
1499
    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1500
1501
    /* The check at best_len - 1 can be removed because it will be made
1502
     * again later. (This heuristic is not always a win.)
1503
     * It is not necessary to compare scan[2] and match[2] since they
1504
     * are always equal when the other bytes match, given that
1505
     * the hash keys are equal and that HASH_BITS >= 8.
1506
     */
1507
    scan += 2, match += 2;
1508
    Assert(*scan == *match, "match[2]?");
1509
1510
    /* We check for insufficient lookahead only every 8th comparison;
1511
     * the 256th check will be made at strstart + 258.
1512
     */
1513
    do {
1514
    } while (*++scan == *++match && *++scan == *++match &&
1515
             *++scan == *++match && *++scan == *++match &&
1516
             *++scan == *++match && *++scan == *++match &&
1517
             *++scan == *++match && *++scan == *++match &&
1518
             scan < strend);
1519
1520
    Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1521
1522
    len = MAX_MATCH - (int)(strend - scan);
1523
1524
    if (len < MIN_MATCH) return MIN_MATCH - 1;
1525
1526
    s->match_start = cur_match;
1527
    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1528
}
1529
1530
#endif /* FASTEST */
1531
1532
#ifdef ZLIB_DEBUG
1533
1534
#define EQUAL 0
1535
/* result of memcmp for equal strings */
1536
1537
/* ===========================================================================
1538
 * Check that the match at match_start is indeed a match.
1539
 */
1540
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1541
    /* check that the match is indeed a match */
1542
    if (zmemcmp(s->window + match,
1543
                s->window + start, length) != EQUAL) {
1544
        fprintf(stderr, " start %u, match %u, length %d\n",
1545
                start, match, length);
1546
        do {
1547
            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1548
        } while (--length != 0);
1549
        z_error("invalid match");
1550
    }
1551
    if (z_verbose > 1) {
1552
        fprintf(stderr,"\\[%d,%d]", start - match, length);
1553
        do { putc(s->window[start++], stderr); } while (--length != 0);
1554
    }
1555
}
1556
#else
1557
#  define check_match(s, start, match, length)
1558
#endif /* ZLIB_DEBUG */
1559
1560
/* ===========================================================================
1561
 * Flush the current block, with given end-of-file flag.
1562
 * IN assertion: strstart is set to the end of the current match.
1563
 */
1564
0
#define FLUSH_BLOCK_ONLY(s, last) { \
1565
0
   _tr_flush_block(s, (s->block_start >= 0L ? \
1566
0
                   (charf *)&s->window[(unsigned)s->block_start] : \
1567
0
                   (charf *)Z_NULL), \
1568
0
                (ulg)((long)s->strstart - s->block_start), \
1569
0
                (last)); \
1570
0
   s->block_start = s->strstart; \
1571
0
   flush_pending(s->strm); \
1572
0
   Tracev((stderr,"[FLUSH]")); \
1573
0
}
1574
1575
/* Same but force premature exit if necessary. */
1576
0
#define FLUSH_BLOCK(s, last) { \
1577
0
   FLUSH_BLOCK_ONLY(s, last); \
1578
0
   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1579
0
}
1580
1581
/* Maximum stored block length in deflate format (not including header). */
1582
0
#define MAX_STORED 65535
1583
1584
/* Minimum of a and b. */
1585
0
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1586
1587
/* ===========================================================================
1588
 * Copy without compression as much as possible from the input stream, return
1589
 * the current block state.
1590
 *
1591
 * In case deflateParams() is used to later switch to a non-zero compression
1592
 * level, s->matches (otherwise unused when storing) keeps track of the number
1593
 * of hash table slides to perform. If s->matches is 1, then one hash table
1594
 * slide will be done when switching. If s->matches is 2, the maximum value
1595
 * allowed here, then the hash table will be cleared, since two or more slides
1596
 * is the same as a clear.
1597
 *
1598
 * deflate_stored() is written to minimize the number of times an input byte is
1599
 * copied. It is most efficient with large input and output buffers, which
1600
 * maximizes the opportunities to have a single copy from next_in to next_out.
1601
 */
1602
0
local block_state deflate_stored(deflate_state *s, int flush) {
1603
    /* Smallest worthy block size when not flushing or finishing. By default
1604
     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1605
     * large input and output buffers, the stored block size will be larger.
1606
     */
1607
0
    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1608
1609
    /* Copy as many min_block or larger stored blocks directly to next_out as
1610
     * possible. If flushing, copy the remaining available input to next_out as
1611
     * stored blocks, if there is enough space.
1612
     */
1613
0
    unsigned len, left, have, last = 0;
1614
0
    unsigned used = s->strm->avail_in;
1615
0
    do {
1616
        /* Set len to the maximum size block that we can copy directly with the
1617
         * available input data and output space. Set left to how much of that
1618
         * would be copied from what's left in the window.
1619
         */
1620
0
        len = MAX_STORED;       /* maximum deflate stored block length */
1621
0
        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1622
0
        if (s->strm->avail_out < have)          /* need room for header */
1623
0
            break;
1624
            /* maximum stored block length that will fit in avail_out: */
1625
0
        have = s->strm->avail_out - have;
1626
0
        left = s->strstart - s->block_start;    /* bytes left in window */
1627
0
        if (len > (ulg)left + s->strm->avail_in)
1628
0
            len = left + s->strm->avail_in;     /* limit len to the input */
1629
0
        if (len > have)
1630
0
            len = have;                         /* limit len to the output */
1631
1632
        /* If the stored block would be less than min_block in length, or if
1633
         * unable to copy all of the available input when flushing, then try
1634
         * copying to the window and the pending buffer instead. Also don't
1635
         * write an empty block when flushing -- deflate() does that.
1636
         */
1637
0
        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1638
0
                                flush == Z_NO_FLUSH ||
1639
0
                                len != left + s->strm->avail_in))
1640
0
            break;
1641
1642
        /* Make a dummy stored block in pending to get the header bytes,
1643
         * including any pending bits. This also updates the debugging counts.
1644
         */
1645
0
        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1646
0
        _tr_stored_block(s, (char *)0, 0L, last);
1647
1648
        /* Replace the lengths in the dummy stored block with len. */
1649
0
        s->pending_buf[s->pending - 4] = len;
1650
0
        s->pending_buf[s->pending - 3] = len >> 8;
1651
0
        s->pending_buf[s->pending - 2] = ~len;
1652
0
        s->pending_buf[s->pending - 1] = ~len >> 8;
1653
1654
        /* Write the stored block header bytes. */
1655
0
        flush_pending(s->strm);
1656
1657
#ifdef ZLIB_DEBUG
1658
        /* Update debugging counts for the data about to be copied. */
1659
        s->compressed_len += len << 3;
1660
        s->bits_sent += len << 3;
1661
#endif
1662
1663
        /* Copy uncompressed bytes from the window to next_out. */
1664
0
        if (left) {
1665
0
            if (left > len)
1666
0
                left = len;
1667
0
            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1668
0
            s->strm->next_out += left;
1669
0
            s->strm->avail_out -= left;
1670
0
            s->strm->total_out += left;
1671
0
            s->block_start += left;
1672
0
            len -= left;
1673
0
        }
1674
1675
        /* Copy uncompressed bytes directly from next_in to next_out, updating
1676
         * the check value.
1677
         */
1678
0
        if (len) {
1679
0
            read_buf(s->strm, s->strm->next_out, len);
1680
0
            s->strm->next_out += len;
1681
0
            s->strm->avail_out -= len;
1682
0
            s->strm->total_out += len;
1683
0
        }
1684
0
    } while (last == 0);
1685
1686
    /* Update the sliding window with the last s->w_size bytes of the copied
1687
     * data, or append all of the copied data to the existing window if less
1688
     * than s->w_size bytes were copied. Also update the number of bytes to
1689
     * insert in the hash tables, in the event that deflateParams() switches to
1690
     * a non-zero compression level.
1691
     */
1692
0
    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1693
0
    if (used) {
1694
        /* If any input was used, then no unused input remains in the window,
1695
         * therefore s->block_start == s->strstart.
1696
         */
1697
0
        if (used >= s->w_size) {    /* supplant the previous history */
1698
0
            s->matches = 2;         /* clear hash */
1699
0
            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1700
0
            s->strstart = s->w_size;
1701
0
            s->insert = s->strstart;
1702
0
        }
1703
0
        else {
1704
0
            if (s->window_size - s->strstart <= used) {
1705
                /* Slide the window down. */
1706
0
                s->strstart -= s->w_size;
1707
0
                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1708
0
                if (s->matches < 2)
1709
0
                    s->matches++;   /* add a pending slide_hash() */
1710
0
                if (s->insert > s->strstart)
1711
0
                    s->insert = s->strstart;
1712
0
            }
1713
0
            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1714
0
            s->strstart += used;
1715
0
            s->insert += MIN(used, s->w_size - s->insert);
1716
0
        }
1717
0
        s->block_start = s->strstart;
1718
0
    }
1719
0
    if (s->high_water < s->strstart)
1720
0
        s->high_water = s->strstart;
1721
1722
    /* If the last block was written to next_out, then done. */
1723
0
    if (last)
1724
0
        return finish_done;
1725
1726
    /* If flushing and all input has been consumed, then done. */
1727
0
    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1728
0
        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1729
0
        return block_done;
1730
1731
    /* Fill the window with any remaining input. */
1732
0
    have = s->window_size - s->strstart;
1733
0
    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1734
        /* Slide the window down. */
1735
0
        s->block_start -= s->w_size;
1736
0
        s->strstart -= s->w_size;
1737
0
        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1738
0
        if (s->matches < 2)
1739
0
            s->matches++;           /* add a pending slide_hash() */
1740
0
        have += s->w_size;          /* more space now */
1741
0
        if (s->insert > s->strstart)
1742
0
            s->insert = s->strstart;
1743
0
    }
1744
0
    if (have > s->strm->avail_in)
1745
0
        have = s->strm->avail_in;
1746
0
    if (have) {
1747
0
        read_buf(s->strm, s->window + s->strstart, have);
1748
0
        s->strstart += have;
1749
0
        s->insert += MIN(have, s->w_size - s->insert);
1750
0
    }
1751
0
    if (s->high_water < s->strstart)
1752
0
        s->high_water = s->strstart;
1753
1754
    /* There was not enough avail_out to write a complete worthy or flushed
1755
     * stored block to next_out. Write a stored block to pending instead, if we
1756
     * have enough input for a worthy block, or if flushing and there is enough
1757
     * room for the remaining input as a stored block in the pending buffer.
1758
     */
1759
0
    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1760
        /* maximum stored block length that will fit in pending: */
1761
0
    have = MIN(s->pending_buf_size - have, MAX_STORED);
1762
0
    min_block = MIN(have, s->w_size);
1763
0
    left = s->strstart - s->block_start;
1764
0
    if (left >= min_block ||
1765
0
        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1766
0
         s->strm->avail_in == 0 && left <= have)) {
1767
0
        len = MIN(left, have);
1768
0
        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1769
0
               len == left ? 1 : 0;
1770
0
        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1771
0
        s->block_start += len;
1772
0
        flush_pending(s->strm);
1773
0
    }
1774
1775
    /* We've done all we can with the available input and output. */
1776
0
    return last ? finish_started : need_more;
1777
0
}
1778
1779
/* ===========================================================================
1780
 * Compress as much as possible from the input stream, return the current
1781
 * block state.
1782
 * This function does not perform lazy evaluation of matches and inserts
1783
 * new strings in the dictionary only for unmatched strings or for short
1784
 * matches. It is used only for the fast compression options.
1785
 */
1786
0
local block_state deflate_fast(deflate_state *s, int flush) {
1787
0
    IPos hash_head;       /* head of the hash chain */
1788
0
    int bflush;           /* set if current block must be flushed */
1789
1790
0
    for (;;) {
1791
        /* Make sure that we always have enough lookahead, except
1792
         * at the end of the input file. We need MAX_MATCH bytes
1793
         * for the next match, plus MIN_MATCH bytes to insert the
1794
         * string following the next match.
1795
         */
1796
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1797
0
            fill_window(s);
1798
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1799
0
                return need_more;
1800
0
            }
1801
0
            if (s->lookahead == 0) break; /* flush the current block */
1802
0
        }
1803
1804
        /* Insert the string window[strstart .. strstart + 2] in the
1805
         * dictionary, and set hash_head to the head of the hash chain:
1806
         */
1807
0
        hash_head = NIL;
1808
0
        if (s->lookahead >= MIN_MATCH) {
1809
0
            INSERT_STRING(s, s->strstart, hash_head);
1810
0
        }
1811
1812
        /* Find the longest match, discarding those <= prev_length.
1813
         * At this point we have always match_length < MIN_MATCH
1814
         */
1815
0
        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1816
            /* To simplify the code, we prevent matches with the string
1817
             * of window index 0 (in particular we have to avoid a match
1818
             * of the string with itself at the start of the input file).
1819
             */
1820
0
            s->match_length = longest_match (s, hash_head);
1821
            /* longest_match() sets match_start */
1822
0
        }
1823
0
        if (s->match_length >= MIN_MATCH) {
1824
0
            check_match(s, s->strstart, s->match_start, s->match_length);
1825
1826
0
            _tr_tally_dist(s, s->strstart - s->match_start,
1827
0
                           s->match_length - MIN_MATCH, bflush);
1828
1829
0
            s->lookahead -= s->match_length;
1830
1831
            /* Insert new strings in the hash table only if the match length
1832
             * is not too large. This saves time but degrades compression.
1833
             */
1834
0
#ifndef FASTEST
1835
0
            if (s->match_length <= s->max_insert_length &&
1836
0
                s->lookahead >= MIN_MATCH) {
1837
0
                s->match_length--; /* string at strstart already in table */
1838
0
                do {
1839
0
                    s->strstart++;
1840
0
                    INSERT_STRING(s, s->strstart, hash_head);
1841
                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1842
                     * always MIN_MATCH bytes ahead.
1843
                     */
1844
0
                } while (--s->match_length != 0);
1845
0
                s->strstart++;
1846
0
            } else
1847
0
#endif
1848
0
            {
1849
0
                s->strstart += s->match_length;
1850
0
                s->match_length = 0;
1851
0
                s->ins_h = s->window[s->strstart];
1852
0
                UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1853
#if MIN_MATCH != 3
1854
                Call UPDATE_HASH() MIN_MATCH-3 more times
1855
#endif
1856
                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1857
                 * matter since it will be recomputed at next deflate call.
1858
                 */
1859
0
            }
1860
0
        } else {
1861
            /* No match, output a literal byte */
1862
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
1863
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
1864
0
            s->lookahead--;
1865
0
            s->strstart++;
1866
0
        }
1867
0
        if (bflush) FLUSH_BLOCK(s, 0);
1868
0
    }
1869
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1870
0
    if (flush == Z_FINISH) {
1871
0
        FLUSH_BLOCK(s, 1);
1872
0
        return finish_done;
1873
0
    }
1874
0
    if (s->sym_next)
1875
0
        FLUSH_BLOCK(s, 0);
1876
0
    return block_done;
1877
0
}
1878
1879
#ifndef FASTEST
1880
/* ===========================================================================
1881
 * Same as above, but achieves better compression. We use a lazy
1882
 * evaluation for matches: a match is finally adopted only if there is
1883
 * no better match at the next window position.
1884
 */
1885
0
local block_state deflate_slow(deflate_state *s, int flush) {
1886
0
    IPos hash_head;          /* head of hash chain */
1887
0
    int bflush;              /* set if current block must be flushed */
1888
1889
    /* Process the input block. */
1890
0
    for (;;) {
1891
        /* Make sure that we always have enough lookahead, except
1892
         * at the end of the input file. We need MAX_MATCH bytes
1893
         * for the next match, plus MIN_MATCH bytes to insert the
1894
         * string following the next match.
1895
         */
1896
0
        if (s->lookahead < MIN_LOOKAHEAD) {
1897
0
            fill_window(s);
1898
0
            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1899
0
                return need_more;
1900
0
            }
1901
0
            if (s->lookahead == 0) break; /* flush the current block */
1902
0
        }
1903
1904
        /* Insert the string window[strstart .. strstart + 2] in the
1905
         * dictionary, and set hash_head to the head of the hash chain:
1906
         */
1907
0
        hash_head = NIL;
1908
0
        if (s->lookahead >= MIN_MATCH) {
1909
0
            INSERT_STRING(s, s->strstart, hash_head);
1910
0
        }
1911
1912
        /* Find the longest match, discarding those <= prev_length.
1913
         */
1914
0
        s->prev_length = s->match_length, s->prev_match = s->match_start;
1915
0
        s->match_length = MIN_MATCH-1;
1916
1917
0
        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1918
0
            s->strstart - hash_head <= MAX_DIST(s)) {
1919
            /* To simplify the code, we prevent matches with the string
1920
             * of window index 0 (in particular we have to avoid a match
1921
             * of the string with itself at the start of the input file).
1922
             */
1923
0
            s->match_length = longest_match (s, hash_head);
1924
            /* longest_match() sets match_start */
1925
1926
0
            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1927
0
#if TOO_FAR <= 32767
1928
0
                || (s->match_length == MIN_MATCH &&
1929
0
                    s->strstart - s->match_start > TOO_FAR)
1930
0
#endif
1931
0
                )) {
1932
1933
                /* If prev_match is also MIN_MATCH, match_start is garbage
1934
                 * but we will ignore the current match anyway.
1935
                 */
1936
0
                s->match_length = MIN_MATCH-1;
1937
0
            }
1938
0
        }
1939
        /* If there was a match at the previous step and the current
1940
         * match is not better, output the previous match:
1941
         */
1942
0
        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1943
0
            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1944
            /* Do not insert strings in hash table beyond this. */
1945
1946
0
            check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1947
1948
0
            _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1949
0
                           s->prev_length - MIN_MATCH, bflush);
1950
1951
            /* Insert in hash table all strings up to the end of the match.
1952
             * strstart - 1 and strstart are already inserted. If there is not
1953
             * enough lookahead, the last two strings are not inserted in
1954
             * the hash table.
1955
             */
1956
0
            s->lookahead -= s->prev_length - 1;
1957
0
            s->prev_length -= 2;
1958
0
            do {
1959
0
                if (++s->strstart <= max_insert) {
1960
0
                    INSERT_STRING(s, s->strstart, hash_head);
1961
0
                }
1962
0
            } while (--s->prev_length != 0);
1963
0
            s->match_available = 0;
1964
0
            s->match_length = MIN_MATCH-1;
1965
0
            s->strstart++;
1966
1967
0
            if (bflush) FLUSH_BLOCK(s, 0);
1968
1969
0
        } else if (s->match_available) {
1970
            /* If there was no match at the previous position, output a
1971
             * single literal. If there was a match but the current match
1972
             * is longer, truncate the previous match to a single literal.
1973
             */
1974
0
            Tracevv((stderr,"%c", s->window[s->strstart - 1]));
1975
0
            _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
1976
0
            if (bflush) {
1977
0
                FLUSH_BLOCK_ONLY(s, 0);
1978
0
            }
1979
0
            s->strstart++;
1980
0
            s->lookahead--;
1981
0
            if (s->strm->avail_out == 0) return need_more;
1982
0
        } else {
1983
            /* There is no previous match to compare with, wait for
1984
             * the next step to decide.
1985
             */
1986
0
            s->match_available = 1;
1987
0
            s->strstart++;
1988
0
            s->lookahead--;
1989
0
        }
1990
0
    }
1991
0
    Assert (flush != Z_NO_FLUSH, "no flush?");
1992
0
    if (s->match_available) {
1993
0
        Tracevv((stderr,"%c", s->window[s->strstart - 1]));
1994
0
        _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
1995
0
        s->match_available = 0;
1996
0
    }
1997
0
    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1998
0
    if (flush == Z_FINISH) {
1999
0
        FLUSH_BLOCK(s, 1);
2000
0
        return finish_done;
2001
0
    }
2002
0
    if (s->sym_next)
2003
0
        FLUSH_BLOCK(s, 0);
2004
0
    return block_done;
2005
0
}
2006
#endif /* FASTEST */
2007
2008
/* ===========================================================================
2009
 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2010
 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2011
 * deflate switches away from Z_RLE.)
2012
 */
2013
0
local block_state deflate_rle(deflate_state *s, int flush) {
2014
0
    int bflush;             /* set if current block must be flushed */
2015
0
    uInt prev;              /* byte at distance one to match */
2016
0
    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2017
2018
0
    for (;;) {
2019
        /* Make sure that we always have enough lookahead, except
2020
         * at the end of the input file. We need MAX_MATCH bytes
2021
         * for the longest run, plus one for the unrolled loop.
2022
         */
2023
0
        if (s->lookahead <= MAX_MATCH) {
2024
0
            fill_window(s);
2025
0
            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2026
0
                return need_more;
2027
0
            }
2028
0
            if (s->lookahead == 0) break; /* flush the current block */
2029
0
        }
2030
2031
        /* See how many times the previous byte repeats */
2032
0
        s->match_length = 0;
2033
0
        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2034
0
            scan = s->window + s->strstart - 1;
2035
0
            prev = *scan;
2036
0
            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2037
0
                strend = s->window + s->strstart + MAX_MATCH;
2038
0
                do {
2039
0
                } while (prev == *++scan && prev == *++scan &&
2040
0
                         prev == *++scan && prev == *++scan &&
2041
0
                         prev == *++scan && prev == *++scan &&
2042
0
                         prev == *++scan && prev == *++scan &&
2043
0
                         scan < strend);
2044
0
                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2045
0
                if (s->match_length > s->lookahead)
2046
0
                    s->match_length = s->lookahead;
2047
0
            }
2048
0
            Assert(scan <= s->window + (uInt)(s->window_size - 1),
2049
0
                   "wild scan");
2050
0
        }
2051
2052
        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2053
0
        if (s->match_length >= MIN_MATCH) {
2054
0
            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2055
2056
0
            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2057
2058
0
            s->lookahead -= s->match_length;
2059
0
            s->strstart += s->match_length;
2060
0
            s->match_length = 0;
2061
0
        } else {
2062
            /* No match, output a literal byte */
2063
0
            Tracevv((stderr,"%c", s->window[s->strstart]));
2064
0
            _tr_tally_lit(s, s->window[s->strstart], bflush);
2065
0
            s->lookahead--;
2066
0
            s->strstart++;
2067
0
        }
2068
0
        if (bflush) FLUSH_BLOCK(s, 0);
2069
0
    }
2070
0
    s->insert = 0;
2071
0
    if (flush == Z_FINISH) {
2072
0
        FLUSH_BLOCK(s, 1);
2073
0
        return finish_done;
2074
0
    }
2075
0
    if (s->sym_next)
2076
0
        FLUSH_BLOCK(s, 0);
2077
0
    return block_done;
2078
0
}
2079
2080
/* ===========================================================================
2081
 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2082
 * (It will be regenerated if this run of deflate switches away from Huffman.)
2083
 */
2084
0
local block_state deflate_huff(deflate_state *s, int flush) {
2085
0
    int bflush;             /* set if current block must be flushed */
2086
2087
0
    for (;;) {
2088
        /* Make sure that we have a literal to write. */
2089
0
        if (s->lookahead == 0) {
2090
0
            fill_window(s);
2091
0
            if (s->lookahead == 0) {
2092
0
                if (flush == Z_NO_FLUSH)
2093
0
                    return need_more;
2094
0
                break;      /* flush the current block */
2095
0
            }
2096
0
        }
2097
2098
        /* Output a literal byte */
2099
0
        s->match_length = 0;
2100
0
        Tracevv((stderr,"%c", s->window[s->strstart]));
2101
0
        _tr_tally_lit(s, s->window[s->strstart], bflush);
2102
0
        s->lookahead--;
2103
0
        s->strstart++;
2104
0
        if (bflush) FLUSH_BLOCK(s, 0);
2105
0
    }
2106
0
    s->insert = 0;
2107
0
    if (flush == Z_FINISH) {
2108
0
        FLUSH_BLOCK(s, 1);
2109
0
        return finish_done;
2110
0
    }
2111
0
    if (s->sym_next)
2112
0
        FLUSH_BLOCK(s, 0);
2113
0
    return block_done;
2114
0
}