/src/aom/av1/encoder/thirdpass.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
3 | | * |
4 | | * This source code is subject to the terms of the BSD 2 Clause License and |
5 | | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
6 | | * was not distributed with this source code in the LICENSE file, you can |
7 | | * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
8 | | * Media Patent License 1.0 was not distributed with this source code in the |
9 | | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
10 | | */ |
11 | | |
12 | | #include "aom/aom_codec.h" |
13 | | #include "aom/aomdx.h" |
14 | | #include "aom_dsp/psnr.h" |
15 | | #include "aom_mem/aom_mem.h" |
16 | | #include "av1/av1_iface_common.h" |
17 | | #include "av1/encoder/encoder.h" |
18 | | #include "av1/encoder/firstpass.h" |
19 | | #include "av1/encoder/thirdpass.h" |
20 | | #include "av1/common/blockd.h" |
21 | | |
22 | | #if CONFIG_THREE_PASS |
23 | | #include "common/ivfdec.h" |
24 | | #endif |
25 | | |
26 | | #if CONFIG_THREE_PASS |
27 | | static void setup_two_pass_stream_input( |
28 | | struct AvxInputContext **input_ctx_ptr, const char *input_file_name, |
29 | | struct aom_internal_error_info *err_info) { |
30 | | FILE *infile; |
31 | | infile = fopen(input_file_name, "rb"); |
32 | | if (!infile) { |
33 | | aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, |
34 | | "Failed to open input file '%s'.", input_file_name); |
35 | | } |
36 | | struct AvxInputContext *aom_input_ctx = aom_malloc(sizeof(*aom_input_ctx)); |
37 | | if (!aom_input_ctx) { |
38 | | fclose(infile); |
39 | | aom_internal_error(err_info, AOM_CODEC_MEM_ERROR, |
40 | | "Failed to allocate memory for third-pass context."); |
41 | | } |
42 | | memset(aom_input_ctx, 0, sizeof(*aom_input_ctx)); |
43 | | aom_input_ctx->filename = input_file_name; |
44 | | aom_input_ctx->file = infile; |
45 | | |
46 | | if (file_is_ivf(aom_input_ctx)) { |
47 | | aom_input_ctx->file_type = FILE_TYPE_IVF; |
48 | | } else { |
49 | | fclose(infile); |
50 | | aom_free(aom_input_ctx); |
51 | | aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, |
52 | | "Unrecognized input file type."); |
53 | | } |
54 | | *input_ctx_ptr = aom_input_ctx; |
55 | | } |
56 | | |
57 | | static void init_third_pass(THIRD_PASS_DEC_CTX *ctx) { |
58 | | if (!ctx->input_ctx) { |
59 | | if (ctx->input_file_name == NULL) { |
60 | | aom_internal_error(ctx->err_info, AOM_CODEC_INVALID_PARAM, |
61 | | "No third pass input specified."); |
62 | | } |
63 | | setup_two_pass_stream_input(&ctx->input_ctx, ctx->input_file_name, |
64 | | ctx->err_info); |
65 | | } |
66 | | |
67 | | #if CONFIG_AV1_DECODER |
68 | | if (!ctx->decoder.iface) { |
69 | | aom_codec_iface_t *decoder_iface = &aom_codec_av1_inspect_algo; |
70 | | if (aom_codec_dec_init(&ctx->decoder, decoder_iface, NULL, 0)) { |
71 | | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
72 | | "Failed to initialize decoder."); |
73 | | } |
74 | | } |
75 | | #else |
76 | | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
77 | | "To utilize three-pass encoding, libaom must be built " |
78 | | "with CONFIG_AV1_DECODER=1."); |
79 | | #endif |
80 | | } |
81 | | #endif // CONFIG_THREE_PASS |
82 | | |
83 | | // Return 0: success |
84 | | // 1: cannot read because this is end of file |
85 | | // -1: failure to read the frame |
86 | 0 | static int read_frame(THIRD_PASS_DEC_CTX *ctx) { |
87 | | #if CONFIG_THREE_PASS |
88 | | if (!ctx->input_ctx || !ctx->decoder.iface) { |
89 | | init_third_pass(ctx); |
90 | | } |
91 | | if (!ctx->have_frame) { |
92 | | if (ivf_read_frame(ctx->input_ctx->file, &ctx->buf, &ctx->bytes_in_buffer, |
93 | | &ctx->buffer_size, NULL) != 0) { |
94 | | if (feof(ctx->input_ctx->file)) { |
95 | | return 1; |
96 | | } else { |
97 | | return -1; |
98 | | } |
99 | | } |
100 | | ctx->frame = ctx->buf; |
101 | | ctx->end_frame = ctx->frame + ctx->bytes_in_buffer; |
102 | | ctx->have_frame = 1; |
103 | | } |
104 | | #else |
105 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
106 | 0 | "Cannot parse bitstream without CONFIG_THREE_PASS."); |
107 | 0 | #endif |
108 | 0 | Av1DecodeReturn adr; |
109 | 0 | if (aom_codec_decode(&ctx->decoder, ctx->frame, |
110 | 0 | (unsigned int)ctx->bytes_in_buffer, |
111 | 0 | &adr) != AOM_CODEC_OK) { |
112 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
113 | 0 | "Failed to decode frame for third pass."); |
114 | 0 | } |
115 | 0 | ctx->this_frame_bits = (int)(adr.buf - ctx->frame) << 3; |
116 | 0 | ctx->frame = adr.buf; |
117 | 0 | ctx->bytes_in_buffer = ctx->end_frame - ctx->frame; |
118 | 0 | if (ctx->frame == ctx->end_frame) ctx->have_frame = 0; |
119 | 0 | return 0; |
120 | 0 | } |
121 | | |
122 | 0 | static void free_frame_info(THIRD_PASS_FRAME_INFO *frame_info) { |
123 | 0 | if (!frame_info) return; |
124 | 0 | aom_free(frame_info->mi_info); |
125 | 0 | frame_info->mi_info = NULL; |
126 | 0 | } |
127 | | |
128 | | // This function gets the information needed from the recently decoded frame, |
129 | | // via various decoder APIs, and saves the info into ctx->frame_info. |
130 | | // Return 0: success |
131 | | // 1: cannot read because this is end of file |
132 | | // -1: failure to read the frame |
133 | 0 | static int get_frame_info(THIRD_PASS_DEC_CTX *ctx) { |
134 | 0 | int ret = read_frame(ctx); |
135 | 0 | if (ret != 0) return ret; |
136 | 0 | int cur = ctx->frame_info_count; |
137 | |
|
138 | 0 | ctx->frame_info[cur].actual_bits = ctx->this_frame_bits; |
139 | |
|
140 | 0 | if (cur >= MAX_THIRD_PASS_BUF) { |
141 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
142 | 0 | "Third pass frame info ran out of available slots."); |
143 | 0 | } |
144 | 0 | int frame_type_flags = 0; |
145 | 0 | if (aom_codec_control(&ctx->decoder, AOMD_GET_FRAME_FLAGS, |
146 | 0 | &frame_type_flags) != AOM_CODEC_OK) { |
147 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
148 | 0 | "Failed to read frame flags."); |
149 | 0 | } |
150 | 0 | if (frame_type_flags & AOM_FRAME_IS_KEY) { |
151 | 0 | ctx->frame_info[cur].frame_type = KEY_FRAME; |
152 | 0 | } else if (frame_type_flags & AOM_FRAME_IS_INTRAONLY) { |
153 | 0 | ctx->frame_info[cur].frame_type = INTRA_ONLY_FRAME; |
154 | 0 | } else if (frame_type_flags & AOM_FRAME_IS_SWITCH) { |
155 | 0 | ctx->frame_info[cur].frame_type = S_FRAME; |
156 | 0 | } else { |
157 | 0 | ctx->frame_info[cur].frame_type = INTER_FRAME; |
158 | 0 | } |
159 | | |
160 | | // Get frame width and height |
161 | 0 | int frame_size[2]; |
162 | 0 | if (aom_codec_control(&ctx->decoder, AV1D_GET_FRAME_SIZE, frame_size) != |
163 | 0 | AOM_CODEC_OK) { |
164 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
165 | 0 | "Failed to read frame size."); |
166 | 0 | } |
167 | | |
168 | | // Check if we need to re-alloc the mi fields. |
169 | 0 | const int mi_cols = (frame_size[0] + 3) >> 2; |
170 | 0 | const int mi_rows = (frame_size[1] + 3) >> 2; |
171 | 0 | ctx->frame_info[cur].mi_stride = mi_cols; |
172 | 0 | ctx->frame_info[cur].mi_rows = mi_rows; |
173 | 0 | ctx->frame_info[cur].mi_cols = mi_cols; |
174 | |
|
175 | 0 | if (ctx->frame_info[cur].width != frame_size[0] || |
176 | 0 | ctx->frame_info[cur].height != frame_size[1] || |
177 | 0 | !ctx->frame_info[cur].mi_info) { |
178 | 0 | free_frame_info(&ctx->frame_info[cur]); |
179 | |
|
180 | 0 | ctx->frame_info[cur].mi_info = |
181 | 0 | aom_malloc(mi_cols * mi_rows * sizeof(*ctx->frame_info[cur].mi_info)); |
182 | |
|
183 | 0 | if (!ctx->frame_info[cur].mi_info) { |
184 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_MEM_ERROR, |
185 | 0 | "Failed to allocate mi buffer for the third pass."); |
186 | 0 | } |
187 | 0 | } |
188 | |
|
189 | 0 | ctx->frame_info[cur].width = frame_size[0]; |
190 | 0 | ctx->frame_info[cur].height = frame_size[1]; |
191 | | |
192 | | // Get frame base q idx |
193 | 0 | if (aom_codec_control(&ctx->decoder, AOMD_GET_BASE_Q_IDX, |
194 | 0 | &ctx->frame_info[cur].base_q_idx) != AOM_CODEC_OK) { |
195 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
196 | 0 | "Failed to read base q index."); |
197 | 0 | } |
198 | | |
199 | | // Get show existing frame flag |
200 | 0 | if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_EXISTING_FRAME_FLAG, |
201 | 0 | &ctx->frame_info[cur].is_show_existing_frame) != |
202 | 0 | AOM_CODEC_OK) { |
203 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
204 | 0 | "Failed to read show existing frame flag."); |
205 | 0 | } |
206 | | |
207 | | // Get show frame flag |
208 | 0 | if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_FRAME_FLAG, |
209 | 0 | &ctx->frame_info[cur].is_show_frame) != AOM_CODEC_OK) { |
210 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
211 | 0 | "Failed to read show frame flag."); |
212 | 0 | } |
213 | | |
214 | | // Get order hint |
215 | 0 | if (aom_codec_control(&ctx->decoder, AOMD_GET_ORDER_HINT, |
216 | 0 | &ctx->frame_info[cur].order_hint) != AOM_CODEC_OK) { |
217 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
218 | 0 | "Failed to read order hint."); |
219 | 0 | } |
220 | | |
221 | | // Clear MI info |
222 | 0 | for (int mi_row = 0; mi_row < mi_rows; mi_row++) { |
223 | 0 | for (int mi_col = 0; mi_col < mi_cols; mi_col++) { |
224 | 0 | ctx->frame_info[cur].mi_info[mi_row * mi_cols + mi_col].bsize = |
225 | 0 | BLOCK_INVALID; |
226 | 0 | } |
227 | 0 | } |
228 | | |
229 | | // Get relevant information regarding each 4x4 MI |
230 | 0 | MB_MODE_INFO cur_mi_info; |
231 | 0 | THIRD_PASS_MI_INFO *const this_mi = ctx->frame_info[cur].mi_info; |
232 | 0 | for (int mi_row = 0; mi_row < mi_rows; mi_row++) { |
233 | 0 | for (int mi_col = 0; mi_col < mi_cols; mi_col++) { |
234 | 0 | const int offset = mi_row * mi_cols + mi_col; |
235 | 0 | if (this_mi[offset].bsize != BLOCK_INVALID) { |
236 | 0 | continue; |
237 | 0 | } |
238 | | // Get info of this MI |
239 | 0 | if (aom_codec_control(&ctx->decoder, AV1D_GET_MI_INFO, mi_row, mi_col, |
240 | 0 | &cur_mi_info) != AOM_CODEC_OK) { |
241 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
242 | 0 | "Failed to read mi info."); |
243 | 0 | } |
244 | 0 | const int blk_mi_rows = mi_size_high[cur_mi_info.bsize]; |
245 | 0 | const int blk_mi_cols = mi_size_wide[cur_mi_info.bsize]; |
246 | |
|
247 | 0 | for (int h = 0; h < blk_mi_rows; h++) { |
248 | 0 | for (int w = 0; w < blk_mi_cols; w++) { |
249 | 0 | if (h + mi_row >= mi_rows || w + mi_col >= mi_cols) { |
250 | 0 | continue; |
251 | 0 | } |
252 | 0 | const int this_offset = offset + h * mi_cols + w; |
253 | 0 | this_mi[this_offset].bsize = cur_mi_info.bsize; |
254 | 0 | this_mi[this_offset].partition = cur_mi_info.partition; |
255 | 0 | this_mi[this_offset].mi_row_start = mi_row; |
256 | 0 | this_mi[this_offset].mi_col_start = mi_col; |
257 | 0 | this_mi[this_offset].mv[0] = cur_mi_info.mv[0]; |
258 | 0 | this_mi[this_offset].mv[1] = cur_mi_info.mv[1]; |
259 | 0 | this_mi[this_offset].ref_frame[0] = cur_mi_info.ref_frame[0]; |
260 | 0 | this_mi[this_offset].ref_frame[1] = cur_mi_info.ref_frame[1]; |
261 | 0 | this_mi[this_offset].pred_mode = cur_mi_info.mode; |
262 | 0 | } |
263 | 0 | } |
264 | 0 | } |
265 | 0 | } |
266 | |
|
267 | 0 | ctx->frame_info_count++; |
268 | |
|
269 | 0 | return 0; |
270 | 0 | } |
271 | | |
272 | | #define USE_SECOND_PASS_FILE 1 |
273 | | |
274 | | #if !USE_SECOND_PASS_FILE |
275 | | // Parse the frames in the gop and determine the last frame of the current GOP. |
276 | | // Decode more frames if necessary. The variable max_num is the maximum static |
277 | | // GOP length if we detect an IPPP structure, and it is expected that max_mum >= |
278 | | // MAX_GF_INTERVAL. |
279 | | static void get_current_gop_end(THIRD_PASS_DEC_CTX *ctx, int max_num, |
280 | | int *last_idx) { |
281 | | assert(max_num >= MAX_GF_INTERVAL); |
282 | | *last_idx = 0; |
283 | | int cur_idx = 0; |
284 | | int arf_order_hint = -1; |
285 | | int num_show_frames = 0; |
286 | | while (num_show_frames < max_num) { |
287 | | assert(cur_idx < MAX_THIRD_PASS_BUF); |
288 | | // Read in from bitstream if needed. |
289 | | if (cur_idx >= ctx->frame_info_count) { |
290 | | int ret = get_frame_info(ctx); |
291 | | if (ret == 1) { |
292 | | // At the end of the file, GOP ends in the prev frame. |
293 | | if (arf_order_hint >= 0) { |
294 | | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
295 | | "Failed to derive GOP length."); |
296 | | } |
297 | | *last_idx = cur_idx - 1; |
298 | | return; |
299 | | } |
300 | | if (ret < 0) { |
301 | | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
302 | | "Failed to read frame for third pass."); |
303 | | } |
304 | | } |
305 | | |
306 | | // TODO(bohanli): verify that fwd_kf works here. |
307 | | if (ctx->frame_info[cur_idx].frame_type == KEY_FRAME && |
308 | | ctx->frame_info[cur_idx].is_show_frame) { |
309 | | if (cur_idx != 0) { |
310 | | // If this is a key frame and is not the first kf in this kf group, we |
311 | | // have reached the next key frame. Stop here. |
312 | | *last_idx = cur_idx - 1; |
313 | | return; |
314 | | } |
315 | | } else if (!ctx->frame_info[cur_idx].is_show_frame && |
316 | | arf_order_hint == -1) { |
317 | | // If this is an arf (the first no show) |
318 | | if (num_show_frames <= 1) { |
319 | | // This is an arf and we should end the GOP with its overlay. |
320 | | arf_order_hint = ctx->frame_info[cur_idx].order_hint; |
321 | | } else { |
322 | | // There are multiple show frames before the this arf, so we treat the |
323 | | // frames previous to this arf as a GOP. |
324 | | *last_idx = cur_idx - 1; |
325 | | return; |
326 | | } |
327 | | } else if (arf_order_hint >= 0 && ctx->frame_info[cur_idx].order_hint == |
328 | | (unsigned int)arf_order_hint) { |
329 | | // If this is the overlay/show existing of the arf |
330 | | assert(ctx->frame_info[cur_idx].is_show_frame); |
331 | | *last_idx = cur_idx; |
332 | | return; |
333 | | } else { |
334 | | // This frame is part of the GOP. |
335 | | if (ctx->frame_info[cur_idx].is_show_frame) num_show_frames++; |
336 | | } |
337 | | cur_idx++; |
338 | | } |
339 | | // This is a long IPPP GOP and we will use a length of max_num here. |
340 | | assert(arf_order_hint < 0); |
341 | | *last_idx = max_num - 1; |
342 | | return; |
343 | | } |
344 | | #endif |
345 | | |
346 | 0 | static AOM_INLINE void read_gop_frames(THIRD_PASS_DEC_CTX *ctx) { |
347 | 0 | int cur_idx = 0; |
348 | 0 | while (cur_idx < ctx->gop_info.num_frames) { |
349 | 0 | assert(cur_idx < MAX_THIRD_PASS_BUF); |
350 | | // Read in from bitstream if needed. |
351 | 0 | if (cur_idx >= ctx->frame_info_count) { |
352 | 0 | int ret = get_frame_info(ctx); |
353 | 0 | if (ret != 0) { |
354 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
355 | 0 | "Failed to read frame for third pass."); |
356 | 0 | } |
357 | 0 | } |
358 | 0 | cur_idx++; |
359 | 0 | } |
360 | 0 | return; |
361 | 0 | } |
362 | | |
363 | 0 | void av1_set_gop_third_pass(THIRD_PASS_DEC_CTX *ctx) { |
364 | | // Read in future frames in the current GOP. |
365 | 0 | read_gop_frames(ctx); |
366 | |
|
367 | 0 | int gf_len = 0; |
368 | | // Check the GOP length against the value read from second_pass_file |
369 | 0 | for (int i = 0; i < ctx->gop_info.num_frames; i++) { |
370 | 0 | if (ctx->frame_info[i].is_show_frame) gf_len++; |
371 | 0 | } |
372 | |
|
373 | 0 | if (gf_len != ctx->gop_info.gf_length) { |
374 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
375 | 0 | "Mismatch in third pass GOP length!"); |
376 | 0 | } |
377 | 0 | } |
378 | | |
379 | 0 | void av1_pop_third_pass_info(THIRD_PASS_DEC_CTX *ctx) { |
380 | 0 | if (ctx->frame_info_count == 0) { |
381 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
382 | 0 | "No available frame info for third pass."); |
383 | 0 | } |
384 | 0 | ctx->frame_info_count--; |
385 | 0 | free_frame_info(&ctx->frame_info[0]); |
386 | 0 | for (int i = 0; i < ctx->frame_info_count; i++) { |
387 | 0 | ctx->frame_info[i] = ctx->frame_info[i + 1]; |
388 | 0 | } |
389 | 0 | ctx->frame_info[ctx->frame_info_count].mi_info = NULL; |
390 | 0 | } |
391 | | |
392 | | void av1_init_thirdpass_ctx(AV1_COMMON *cm, THIRD_PASS_DEC_CTX **ctx, |
393 | 0 | const char *file) { |
394 | 0 | av1_free_thirdpass_ctx(*ctx); |
395 | 0 | CHECK_MEM_ERROR(cm, *ctx, aom_calloc(1, sizeof(**ctx))); |
396 | 0 | THIRD_PASS_DEC_CTX *ctx_ptr = *ctx; |
397 | 0 | ctx_ptr->input_file_name = file; |
398 | 0 | ctx_ptr->prev_gop_end = -1; |
399 | 0 | ctx_ptr->err_info = cm->error; |
400 | 0 | } |
401 | | |
402 | 0 | void av1_free_thirdpass_ctx(THIRD_PASS_DEC_CTX *ctx) { |
403 | 0 | if (ctx == NULL) return; |
404 | 0 | if (ctx->decoder.iface) { |
405 | 0 | aom_codec_destroy(&ctx->decoder); |
406 | 0 | } |
407 | | #if CONFIG_THREE_PASS |
408 | | if (ctx->input_ctx && ctx->input_ctx->file) fclose(ctx->input_ctx->file); |
409 | | aom_free(ctx->input_ctx); |
410 | | #endif |
411 | 0 | if (ctx->buf) free(ctx->buf); |
412 | 0 | for (int i = 0; i < MAX_THIRD_PASS_BUF; i++) { |
413 | 0 | free_frame_info(&ctx->frame_info[i]); |
414 | 0 | } |
415 | 0 | aom_free(ctx); |
416 | 0 | } |
417 | | |
418 | 0 | void av1_write_second_pass_gop_info(AV1_COMP *cpi) { |
419 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
420 | 0 | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
421 | 0 | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
422 | |
|
423 | 0 | if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { |
424 | | // Write the GOP length to a log file. |
425 | 0 | av1_open_second_pass_log(cpi, 0); |
426 | |
|
427 | 0 | THIRD_PASS_GOP_INFO gop_info; |
428 | |
|
429 | 0 | gop_info.num_frames = gf_group->size; |
430 | 0 | gop_info.use_arf = (gf_group->arf_index >= 0); |
431 | 0 | gop_info.gf_length = p_rc->baseline_gf_interval; |
432 | |
|
433 | 0 | size_t count = |
434 | 0 | fwrite(&gop_info, sizeof(gop_info), 1, cpi->second_pass_log_stream); |
435 | 0 | if (count < 1) { |
436 | 0 | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
437 | 0 | "Could not write to second pass log file!"); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | 0 | void av1_write_second_pass_per_frame_info(AV1_COMP *cpi, int gf_index) { |
443 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
444 | 0 | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
445 | |
|
446 | 0 | if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { |
447 | | // write target bitrate |
448 | 0 | int bits = gf_group->bit_allocation[gf_index]; |
449 | 0 | size_t count = fwrite(&bits, sizeof(bits), 1, cpi->second_pass_log_stream); |
450 | 0 | if (count < 1) { |
451 | 0 | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
452 | 0 | "Could not write to second pass log file!"); |
453 | 0 | } |
454 | | |
455 | | // write sse |
456 | 0 | uint64_t sse = 0; |
457 | 0 | int pkt_idx = cpi->ppi->output_pkt_list->cnt - 1; |
458 | 0 | if (pkt_idx >= 0 && |
459 | 0 | cpi->ppi->output_pkt_list->pkts[pkt_idx].kind == AOM_CODEC_PSNR_PKT) { |
460 | 0 | sse = cpi->ppi->output_pkt_list->pkts[pkt_idx].data.psnr.sse[0]; |
461 | | #if CONFIG_INTERNAL_STATS |
462 | | } else if (cpi->ppi->b_calculate_psnr) { |
463 | | sse = cpi->ppi->total_sq_error[0]; |
464 | | #endif |
465 | 0 | } else { |
466 | 0 | const YV12_BUFFER_CONFIG *orig = cpi->source; |
467 | 0 | const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf; |
468 | 0 | PSNR_STATS psnr; |
469 | 0 | #if CONFIG_AV1_HIGHBITDEPTH |
470 | 0 | const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; |
471 | 0 | const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; |
472 | 0 | aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); |
473 | | #else |
474 | | aom_calc_psnr(orig, recon, &psnr); |
475 | | #endif |
476 | 0 | sse = psnr.sse[0]; |
477 | 0 | } |
478 | |
|
479 | 0 | count = fwrite(&sse, sizeof(sse), 1, cpi->second_pass_log_stream); |
480 | 0 | if (count < 1) { |
481 | 0 | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
482 | 0 | "Could not write to second pass log file!"); |
483 | 0 | } |
484 | | |
485 | | // write bpm_factor |
486 | 0 | double factor = cpi->ppi->twopass.bpm_factor; |
487 | 0 | count = fwrite(&factor, sizeof(factor), 1, cpi->second_pass_log_stream); |
488 | 0 | if (count < 1) { |
489 | 0 | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
490 | 0 | "Could not write to second pass log file!"); |
491 | 0 | } |
492 | 0 | } |
493 | 0 | } |
494 | 0 | void av1_open_second_pass_log(AV1_COMP *cpi, int is_read) { |
495 | 0 | const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
496 | 0 | if (oxcf->second_pass_log == NULL) { |
497 | 0 | aom_internal_error(cpi->common.error, AOM_CODEC_INVALID_PARAM, |
498 | 0 | "No second pass log file specified for the third pass!"); |
499 | 0 | } |
500 | | // Read the GOP length from a file. |
501 | 0 | if (!cpi->second_pass_log_stream) { |
502 | 0 | if (is_read) { |
503 | 0 | cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "rb"); |
504 | 0 | } else { |
505 | 0 | cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "wb"); |
506 | 0 | } |
507 | 0 | if (!cpi->second_pass_log_stream) { |
508 | 0 | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
509 | 0 | "Could not open second pass log file!"); |
510 | 0 | } |
511 | 0 | } |
512 | 0 | } |
513 | | |
514 | 0 | void av1_close_second_pass_log(AV1_COMP *cpi) { |
515 | 0 | if (cpi->second_pass_log_stream) { |
516 | 0 | int ret = fclose(cpi->second_pass_log_stream); |
517 | 0 | if (ret != 0) { |
518 | 0 | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
519 | 0 | "Could not close second pass log file!"); |
520 | 0 | } |
521 | 0 | cpi->second_pass_log_stream = 0; |
522 | 0 | } |
523 | 0 | } |
524 | | |
525 | | void av1_read_second_pass_gop_info(FILE *second_pass_log_stream, |
526 | | THIRD_PASS_GOP_INFO *gop_info, |
527 | 0 | struct aom_internal_error_info *error) { |
528 | 0 | size_t count = fread(gop_info, sizeof(*gop_info), 1, second_pass_log_stream); |
529 | 0 | if (count < 1) { |
530 | 0 | aom_internal_error(error, AOM_CODEC_ERROR, |
531 | 0 | "Could not read from second pass log file!"); |
532 | 0 | } |
533 | 0 | } |
534 | | |
535 | | void av1_read_second_pass_per_frame_info( |
536 | | FILE *second_pass_log_stream, THIRD_PASS_FRAME_INFO *frame_info_arr, |
537 | 0 | int frame_info_count, struct aom_internal_error_info *error) { |
538 | 0 | for (int i = 0; i < frame_info_count; i++) { |
539 | | // read target bits |
540 | 0 | int bits = 0; |
541 | 0 | size_t count = fread(&bits, sizeof(bits), 1, second_pass_log_stream); |
542 | 0 | if (count < 1) { |
543 | 0 | aom_internal_error(error, AOM_CODEC_ERROR, |
544 | 0 | "Could not read from second pass log file!"); |
545 | 0 | } |
546 | 0 | frame_info_arr[i].bits_allocated = bits; |
547 | | |
548 | | // read distortion |
549 | 0 | uint64_t sse; |
550 | 0 | count = fread(&sse, sizeof(sse), 1, second_pass_log_stream); |
551 | 0 | if (count < 1) { |
552 | 0 | aom_internal_error(error, AOM_CODEC_ERROR, |
553 | 0 | "Could not read from second pass log file!"); |
554 | 0 | } |
555 | 0 | frame_info_arr[i].sse = sse; |
556 | | |
557 | | // read bpm factor |
558 | 0 | double factor; |
559 | 0 | count = fread(&factor, sizeof(factor), 1, second_pass_log_stream); |
560 | 0 | if (count < 1) { |
561 | 0 | aom_internal_error(error, AOM_CODEC_ERROR, |
562 | 0 | "Could not read from second pass log file!"); |
563 | 0 | } |
564 | 0 | frame_info_arr[i].bpm_factor = factor; |
565 | 0 | } |
566 | 0 | } |
567 | | |
568 | 0 | int av1_check_use_arf(THIRD_PASS_DEC_CTX *ctx) { |
569 | 0 | if (ctx == NULL) return -1; |
570 | 0 | int use_arf = 0; |
571 | 0 | for (int i = 0; i < ctx->gop_info.gf_length; i++) { |
572 | 0 | if (ctx->frame_info[i].order_hint != 0 && |
573 | 0 | ctx->frame_info[i].is_show_frame == 0) { |
574 | 0 | use_arf = 1; |
575 | 0 | } |
576 | 0 | } |
577 | 0 | if (use_arf != ctx->gop_info.use_arf) { |
578 | 0 | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
579 | 0 | "Mismatch in third pass GOP length!"); |
580 | 0 | } |
581 | 0 | return use_arf; |
582 | 0 | } |
583 | | |
584 | | void av1_get_third_pass_ratio(THIRD_PASS_DEC_CTX *ctx, int fidx, int fheight, |
585 | 0 | int fwidth, double *ratio_h, double *ratio_w) { |
586 | 0 | assert(ctx); |
587 | 0 | assert(fidx < ctx->frame_info_count); |
588 | 0 | const int fheight_second_pass = ctx->frame_info[fidx].height; |
589 | 0 | const int fwidth_second_pass = ctx->frame_info[fidx].width; |
590 | 0 | assert(fheight_second_pass <= fheight && fwidth_second_pass <= fwidth); |
591 | |
|
592 | 0 | *ratio_h = (double)fheight / fheight_second_pass; |
593 | 0 | *ratio_w = (double)fwidth / fwidth_second_pass; |
594 | 0 | } |
595 | | |
596 | | THIRD_PASS_MI_INFO *av1_get_third_pass_mi(THIRD_PASS_DEC_CTX *ctx, int fidx, |
597 | | int mi_row, int mi_col, |
598 | 0 | double ratio_h, double ratio_w) { |
599 | 0 | assert(ctx); |
600 | 0 | assert(fidx < ctx->frame_info_count); |
601 | |
|
602 | 0 | const int mi_rows_second_pass = ctx->frame_info[fidx].mi_rows; |
603 | 0 | const int mi_cols_second_pass = ctx->frame_info[fidx].mi_cols; |
604 | |
|
605 | 0 | const int mi_row_second_pass = |
606 | 0 | clamp((int)round(mi_row / ratio_h), 0, mi_rows_second_pass - 1); |
607 | 0 | const int mi_col_second_pass = |
608 | 0 | clamp((int)round(mi_col / ratio_w), 0, mi_cols_second_pass - 1); |
609 | |
|
610 | 0 | const int mi_stride_second_pass = ctx->frame_info[fidx].mi_stride; |
611 | 0 | THIRD_PASS_MI_INFO *this_mi = ctx->frame_info[fidx].mi_info + |
612 | 0 | mi_row_second_pass * mi_stride_second_pass + |
613 | 0 | mi_col_second_pass; |
614 | 0 | return this_mi; |
615 | 0 | } |
616 | | |
617 | | void av1_third_pass_get_adjusted_mi(THIRD_PASS_MI_INFO *third_pass_mi, |
618 | | double ratio_h, double ratio_w, int *mi_row, |
619 | 0 | int *mi_col) { |
620 | 0 | *mi_row = (int)round(third_pass_mi->mi_row_start * ratio_h); |
621 | 0 | *mi_col = (int)round(third_pass_mi->mi_col_start * ratio_w); |
622 | 0 | } |
623 | | |
624 | | int_mv av1_get_third_pass_adjusted_mv(THIRD_PASS_MI_INFO *this_mi, |
625 | | double ratio_h, double ratio_w, |
626 | 0 | MV_REFERENCE_FRAME frame) { |
627 | 0 | assert(this_mi != NULL); |
628 | 0 | int_mv cur_mv; |
629 | 0 | cur_mv.as_int = INVALID_MV; |
630 | |
|
631 | 0 | if (frame < LAST_FRAME || frame > ALTREF_FRAME) return cur_mv; |
632 | | |
633 | 0 | for (int r = 0; r < 2; r++) { |
634 | 0 | if (this_mi->ref_frame[r] == frame) { |
635 | 0 | cur_mv.as_mv.row = (int16_t)round(this_mi->mv[r].as_mv.row * ratio_h); |
636 | 0 | cur_mv.as_mv.col = (int16_t)round(this_mi->mv[r].as_mv.col * ratio_w); |
637 | 0 | } |
638 | 0 | } |
639 | |
|
640 | 0 | return cur_mv; |
641 | 0 | } |
642 | | |
643 | | BLOCK_SIZE av1_get_third_pass_adjusted_blk_size(THIRD_PASS_MI_INFO *this_mi, |
644 | | double ratio_h, |
645 | 0 | double ratio_w) { |
646 | 0 | assert(this_mi != NULL); |
647 | 0 | BLOCK_SIZE bsize = BLOCK_INVALID; |
648 | |
|
649 | 0 | const BLOCK_SIZE bsize_second_pass = this_mi->bsize; |
650 | 0 | assert(bsize_second_pass != BLOCK_INVALID); |
651 | |
|
652 | 0 | const int w_second_pass = block_size_wide[bsize_second_pass]; |
653 | 0 | const int h_second_pass = block_size_high[bsize_second_pass]; |
654 | |
|
655 | 0 | int part_type; |
656 | |
|
657 | 0 | if (w_second_pass == h_second_pass) { |
658 | 0 | part_type = PARTITION_NONE; |
659 | 0 | } else if (w_second_pass / h_second_pass == 2) { |
660 | 0 | part_type = PARTITION_HORZ; |
661 | 0 | } else if (w_second_pass / h_second_pass == 4) { |
662 | 0 | part_type = PARTITION_HORZ_4; |
663 | 0 | } else if (h_second_pass / w_second_pass == 2) { |
664 | 0 | part_type = PARTITION_VERT; |
665 | 0 | } else if (h_second_pass / w_second_pass == 4) { |
666 | 0 | part_type = PARTITION_VERT_4; |
667 | 0 | } else { |
668 | 0 | part_type = PARTITION_INVALID; |
669 | 0 | } |
670 | 0 | assert(part_type != PARTITION_INVALID); |
671 | |
|
672 | 0 | const int w = (int)(round(w_second_pass * ratio_w)); |
673 | 0 | const int h = (int)(round(h_second_pass * ratio_h)); |
674 | |
|
675 | 0 | for (int i = 0; i < SQR_BLOCK_SIZES; i++) { |
676 | 0 | const BLOCK_SIZE this_bsize = subsize_lookup[part_type][i]; |
677 | 0 | if (this_bsize == BLOCK_INVALID) continue; |
678 | | |
679 | 0 | const int this_w = block_size_wide[this_bsize]; |
680 | 0 | const int this_h = block_size_high[this_bsize]; |
681 | |
|
682 | 0 | if (this_w >= w && this_h >= h) { |
683 | | // find the smallest block size that contains the mapped block |
684 | 0 | bsize = this_bsize; |
685 | 0 | break; |
686 | 0 | } |
687 | 0 | } |
688 | 0 | if (bsize == BLOCK_INVALID) { |
689 | | // could not find a proper one, just use the largest then. |
690 | 0 | bsize = BLOCK_128X128; |
691 | 0 | } |
692 | |
|
693 | 0 | return bsize; |
694 | 0 | } |
695 | | |
696 | | PARTITION_TYPE av1_third_pass_get_sb_part_type(THIRD_PASS_DEC_CTX *ctx, |
697 | 0 | THIRD_PASS_MI_INFO *this_mi) { |
698 | 0 | int mi_stride = ctx->frame_info[0].mi_stride; |
699 | |
|
700 | 0 | int mi_row = this_mi->mi_row_start; |
701 | 0 | int mi_col = this_mi->mi_col_start; |
702 | |
|
703 | 0 | THIRD_PASS_MI_INFO *corner_mi = |
704 | 0 | &ctx->frame_info[0].mi_info[mi_row * mi_stride + mi_col]; |
705 | |
|
706 | 0 | return corner_mi->partition; |
707 | 0 | } |