Coverage Report

Created: 2022-08-24 06:11

/src/x265/source/common/yuv.cpp
Line
Count
Source (jump to first uncovered line)
1
/*****************************************************************************
2
 * Copyright (C) 2013-2020 MulticoreWare, Inc
3
 *
4
 * Authors: Steve Borho <steve@borho.org>
5
 *          Min Chen <chenm003@163.com>
6
 *
7
 * This program is free software; you can redistribute it and/or modify
8
 * it under the terms of the GNU General Public License as published by
9
 * the Free Software Foundation; either version 2 of the License, or
10
 * (at your option) any later version.
11
 *
12
 * This program is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU General Public License
18
 * along with this program; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
20
 *
21
 * This program is also available under a commercial proprietary license.
22
 * For more information, contact us at license @ x265.com.
23
 *****************************************************************************/
24
25
26
#include "common.h"
27
#include "yuv.h"
28
#include "shortyuv.h"
29
#include "picyuv.h"
30
#include "primitives.h"
31
32
using namespace X265_NS;
33
34
Yuv::Yuv()
35
0
{
36
0
    m_buf[0] = NULL;
37
0
    m_buf[1] = NULL;
38
0
    m_buf[2] = NULL;
39
0
}
40
41
bool Yuv::create(uint32_t size, int csp)
42
0
{
43
0
    m_csp = csp;
44
0
    m_hChromaShift = CHROMA_H_SHIFT(csp);
45
0
    m_vChromaShift = CHROMA_V_SHIFT(csp);
46
47
0
    m_size  = size;
48
0
    m_part = partitionFromSizes(size, size);
49
50
0
    for (int i = 0; i < 2; i++)
51
0
        for (int j = 0; j < MAX_NUM_REF; j++)
52
0
            for (int k = 0; k < INTEGRAL_PLANE_NUM; k++)
53
0
                m_integral[i][j][k] = NULL;
54
55
0
    if (csp == X265_CSP_I400)
56
0
    {
57
0
        CHECKED_MALLOC(m_buf[0], pixel, size * size + 8);
58
0
        m_buf[1] = m_buf[2] = 0;
59
0
        m_csize = 0;
60
0
        return true;
61
0
    }
62
0
    else
63
0
    {
64
0
        m_csize = size >> m_hChromaShift;
65
66
0
        size_t sizeL = size * size;
67
0
        size_t sizeC = sizeL >> (m_vChromaShift + m_hChromaShift);
68
69
0
        X265_CHECK((sizeC & 15) == 0, "invalid size");
70
71
        // memory allocation (padded for SIMD reads)
72
0
        CHECKED_MALLOC(m_buf[0], pixel, sizeL + sizeC * 2 + 8);
73
0
        m_buf[1] = m_buf[0] + sizeL;
74
0
        m_buf[2] = m_buf[0] + sizeL + sizeC;
75
0
        return true;
76
0
    }
77
78
0
fail:
79
0
    return false;
80
0
}
81
82
void Yuv::destroy()
83
0
{
84
0
    X265_FREE(m_buf[0]);
85
0
}
86
87
void Yuv::copyToPicYuv(PicYuv& dstPic, uint32_t cuAddr, uint32_t absPartIdx) const
88
0
{
89
0
    pixel* dstY = dstPic.getLumaAddr(cuAddr, absPartIdx);
90
0
    primitives.cu[m_part].copy_pp(dstY, dstPic.m_stride, m_buf[0], m_size);
91
0
    if (m_csp != X265_CSP_I400)
92
0
    {
93
0
        pixel* dstU = dstPic.getCbAddr(cuAddr, absPartIdx);
94
0
        pixel* dstV = dstPic.getCrAddr(cuAddr, absPartIdx);
95
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstPic.m_strideC, m_buf[1], m_csize);
96
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstPic.m_strideC, m_buf[2], m_csize);
97
0
    }
98
0
}
99
100
void Yuv::copyFromPicYuv(const PicYuv& srcPic, uint32_t cuAddr, uint32_t absPartIdx)
101
0
{
102
0
    const pixel* srcY = srcPic.getLumaAddr(cuAddr, absPartIdx);
103
0
    primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcY, srcPic.m_stride);
104
0
    if (m_csp != X265_CSP_I400)
105
0
    {
106
0
        const pixel* srcU = srcPic.getCbAddr(cuAddr, absPartIdx);
107
0
        const pixel* srcV = srcPic.getCrAddr(cuAddr, absPartIdx);
108
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcU, srcPic.m_strideC);
109
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcV, srcPic.m_strideC);
110
0
    }
111
0
}
112
113
void Yuv::copyFromYuv(const Yuv& srcYuv)
114
0
{
115
0
    X265_CHECK(m_size >= srcYuv.m_size, "invalid size\n");
116
117
0
    primitives.cu[m_part].copy_pp(m_buf[0], m_size, srcYuv.m_buf[0], srcYuv.m_size);
118
0
    if (m_csp != X265_CSP_I400)
119
0
    {
120
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcYuv.m_buf[1], srcYuv.m_csize);
121
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcYuv.m_buf[2], srcYuv.m_csize);
122
0
    }
123
0
}
124
125
/* This version is intended for use by ME, which required FENC_STRIDE for luma fenc pixels */
126
void Yuv::copyPUFromYuv(const Yuv& srcYuv, uint32_t absPartIdx, int partEnum, bool bChroma)
127
0
{
128
0
    X265_CHECK(m_size == FENC_STRIDE && m_size >= srcYuv.m_size, "PU buffer size mismatch\n");
129
130
0
    const pixel* srcY = srcYuv.m_buf[0] + getAddrOffset(absPartIdx, srcYuv.m_size);
131
0
    primitives.pu[partEnum].copy_pp(m_buf[0], m_size, srcY, srcYuv.m_size);
132
133
0
    if (bChroma)
134
0
    {
135
0
        const pixel* srcU = srcYuv.m_buf[1] + srcYuv.getChromaAddrOffset(absPartIdx);
136
0
        const pixel* srcV = srcYuv.m_buf[2] + srcYuv.getChromaAddrOffset(absPartIdx);
137
0
        primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[1], m_csize, srcU, srcYuv.m_csize);
138
0
        primitives.chroma[m_csp].pu[partEnum].copy_pp(m_buf[2], m_csize, srcV, srcYuv.m_csize);
139
0
    }
140
0
}
141
142
void Yuv::copyToPartYuv(Yuv& dstYuv, uint32_t absPartIdx) const
143
0
{
144
0
    pixel* dstY = dstYuv.getLumaAddr(absPartIdx);
145
0
    primitives.cu[m_part].copy_pp(dstY, dstYuv.m_size, m_buf[0], m_size);
146
0
    if (m_csp != X265_CSP_I400)
147
0
    {
148
0
        pixel* dstU = dstYuv.getCbAddr(absPartIdx);
149
0
        pixel* dstV = dstYuv.getCrAddr(absPartIdx);
150
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstU, dstYuv.m_csize, m_buf[1], m_csize);
151
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(dstV, dstYuv.m_csize, m_buf[2], m_csize);
152
0
    }
153
0
}
154
155
void Yuv::copyPartToYuv(Yuv& dstYuv, uint32_t absPartIdx) const
156
0
{
157
0
    pixel* srcY = m_buf[0] + getAddrOffset(absPartIdx, m_size);
158
0
    pixel* dstY = dstYuv.m_buf[0];
159
0
    primitives.cu[dstYuv.m_part].copy_pp(dstY, dstYuv.m_size, srcY, m_size);
160
0
    if (m_csp != X265_CSP_I400)
161
0
    {
162
0
        pixel* srcU = m_buf[1] + getChromaAddrOffset(absPartIdx);
163
0
        pixel* srcV = m_buf[2] + getChromaAddrOffset(absPartIdx);
164
0
        pixel* dstU = dstYuv.m_buf[1];
165
0
        pixel* dstV = dstYuv.m_buf[2];
166
0
        primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize);
167
0
        primitives.chroma[m_csp].cu[dstYuv.m_part].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize);
168
0
    }
169
0
}
170
171
void Yuv::addClip(const Yuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t log2SizeL, int picCsp)
172
0
{
173
0
    primitives.cu[log2SizeL - 2].add_ps[(m_size % 64 == 0) && (srcYuv0.m_size % 64 == 0) && (srcYuv1.m_size % 64 == 0)](m_buf[0],
174
0
                                         m_size, srcYuv0.m_buf[0], srcYuv1.m_buf[0], srcYuv0.m_size, srcYuv1.m_size);
175
0
    if (m_csp != X265_CSP_I400 && picCsp != X265_CSP_I400)
176
0
    {
177
0
        primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps[(m_csize % 64 == 0) && (srcYuv0.m_csize % 64 ==0) && (srcYuv1.m_csize % 64 == 0)](m_buf[1],
178
0
                                                           m_csize, srcYuv0.m_buf[1], srcYuv1.m_buf[1], srcYuv0.m_csize, srcYuv1.m_csize);
179
0
        primitives.chroma[m_csp].cu[log2SizeL - 2].add_ps[(m_csize % 64 == 0) && (srcYuv0.m_csize % 64 == 0) && (srcYuv1.m_csize % 64 == 0)](m_buf[2],
180
0
                                                           m_csize, srcYuv0.m_buf[2], srcYuv1.m_buf[2], srcYuv0.m_csize, srcYuv1.m_csize);
181
0
    }
182
0
    if (picCsp == X265_CSP_I400 && m_csp != X265_CSP_I400)
183
0
    {
184
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[1], m_csize, srcYuv0.m_buf[1], srcYuv0.m_csize);
185
0
        primitives.chroma[m_csp].cu[m_part].copy_pp(m_buf[2], m_csize, srcYuv0.m_buf[2], srcYuv0.m_csize);
186
0
    }
187
0
}
188
189
void Yuv::addAvg(const ShortYuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t absPartIdx, uint32_t width, uint32_t height, bool bLuma, bool bChroma)
190
0
{
191
0
    int part = partitionFromSizes(width, height);
192
193
0
    if (bLuma)
194
0
    {
195
0
        const int16_t* srcY0 = srcYuv0.getLumaAddr(absPartIdx);
196
0
        const int16_t* srcY1 = srcYuv1.getLumaAddr(absPartIdx);
197
0
        pixel* dstY = getLumaAddr(absPartIdx);
198
0
        primitives.pu[part].addAvg[(srcYuv0.m_size % 64 == 0) && (srcYuv1.m_size % 64 == 0) && (m_size % 64 == 0)](srcY0, srcY1, dstY, srcYuv0.m_size, srcYuv1.m_size, m_size);
199
0
    }
200
0
    if (bChroma)
201
0
    {
202
0
        const int16_t* srcU0 = srcYuv0.getCbAddr(absPartIdx);
203
0
        const int16_t* srcV0 = srcYuv0.getCrAddr(absPartIdx);
204
0
        const int16_t* srcU1 = srcYuv1.getCbAddr(absPartIdx);
205
0
        const int16_t* srcV1 = srcYuv1.getCrAddr(absPartIdx);
206
0
        pixel* dstU = getCbAddr(absPartIdx);
207
0
        pixel* dstV = getCrAddr(absPartIdx);
208
0
        primitives.chroma[m_csp].pu[part].addAvg[(srcYuv0.m_csize % 64 == 0) && (srcYuv1.m_csize % 64 == 0) && (m_csize % 64 == 0)](srcU0, srcU1, dstU, srcYuv0.m_csize, srcYuv1.m_csize, m_csize);
209
0
        primitives.chroma[m_csp].pu[part].addAvg[(srcYuv0.m_csize % 64 == 0) && (srcYuv1.m_csize % 64 == 0) && (m_csize % 64 == 0)](srcV0, srcV1, dstV, srcYuv0.m_csize, srcYuv1.m_csize, m_csize);
210
0
    }
211
0
}
212
213
void Yuv::copyPartToPartLuma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2Size) const
214
0
{
215
0
    const pixel* src = getLumaAddr(absPartIdx);
216
0
    pixel* dst = dstYuv.getLumaAddr(absPartIdx);
217
0
    primitives.cu[log2Size - 2].copy_pp(dst, dstYuv.m_size, src, m_size);
218
0
}
219
220
void Yuv::copyPartToPartChroma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2SizeL) const
221
0
{
222
0
    const pixel* srcU = getCbAddr(absPartIdx);
223
0
    const pixel* srcV = getCrAddr(absPartIdx);
224
0
    pixel* dstU = dstYuv.getCbAddr(absPartIdx);
225
0
    pixel* dstV = dstYuv.getCrAddr(absPartIdx);
226
0
    primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstU, dstYuv.m_csize, srcU, m_csize);
227
0
    primitives.chroma[m_csp].cu[log2SizeL - 2].copy_pp(dstV, dstYuv.m_csize, srcV, m_csize);
228
0
}