Coverage Report

Created: 2022-08-24 06:15

/src/libde265/libde265/md5.cc
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3
 * MD5 Message-Digest Algorithm (RFC 1321).
4
 *
5
 * Homepage:
6
 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7
 *
8
 * Author:
9
 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10
 *
11
 * This software was written by Alexander Peslyak in 2001.  No copyright is
12
 * claimed, and the software is hereby placed in the public domain.
13
 * In case this attempt to disclaim copyright and place the software in the
14
 * public domain is deemed null and void, then the software is
15
 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16
 * general public under the following terms:
17
 *
18
 * Redistribution and use in source and binary forms, with or without
19
 * modification, are permitted.
20
 *
21
 * There's ABSOLUTELY NO WARRANTY, express or implied.
22
 *
23
 * (This is a heavily cut-down "BSD license".)
24
 *
25
 * This differs from Colin Plumb's older public domain implementation in that
26
 * no exactly 32-bit integer data type is required (any 32-bit or wider
27
 * unsigned integer data type will do), there's no compile-time endianness
28
 * configuration, and the function prototypes match OpenSSL's.  No code from
29
 * Colin Plumb's implementation has been reused; this comment merely compares
30
 * the properties of the two independent implementations.
31
 *
32
 * The primary goals of this implementation are portability and ease of use.
33
 * It is meant to be fast, but not as fast as possible.  Some known
34
 * optimizations are not included to reduce source code size and avoid
35
 * compile-time configuration.
36
 */
37
38
#ifndef HAVE_OPENSSL
39
40
#include <string.h>
41
42
#include "md5.h"
43
44
/*
45
 * The basic MD5 functions.
46
 *
47
 * F and G are optimized compared to their RFC 1321 definitions for
48
 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
49
 * implementation.
50
 */
51
0
#define F(x, y, z)      ((z) ^ ((x) & ((y) ^ (z))))
52
0
#define G(x, y, z)      ((y) ^ ((z) & ((x) ^ (y))))
53
0
#define H(x, y, z)      ((x) ^ (y) ^ (z))
54
0
#define I(x, y, z)      ((y) ^ ((x) | ~(z)))
55
56
/*
57
 * The MD5 transformation for all four rounds.
58
 */
59
#define STEP(f, a, b, c, d, x, t, s) \
60
0
  (a) += f((b), (c), (d)) + (x) + (t); \
61
0
  (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
62
0
  (a) += (b);
63
64
/*
65
 * SET reads 4 input bytes in little-endian byte order and stores them
66
 * in a properly aligned word in host byte order.
67
 *
68
 * The check for little-endian architectures that tolerate unaligned
69
 * memory accesses is just an optimization.  Nothing will break if it
70
 * doesn't work.
71
 */
72
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
73
#define SET(n) \
74
  (*(MD5_u32plus *)&ptr[(n) * 4])
75
#define GET(n) \
76
  SET(n)
77
#else
78
#define SET(n) \
79
  (ctx->block[(n)] = \
80
  (MD5_u32plus)ptr[(n) * 4] | \
81
  ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
82
  ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
83
  ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
84
#define GET(n) \
85
  (ctx->block[(n)])
86
#endif
87
88
/*
89
 * This processes one or more 64-byte data blocks, but does NOT update
90
 * the bit counters.  There are no alignment requirements.
91
 */
92
static void *body(MD5_CTX *ctx, void *data, unsigned long size)
93
0
{
94
0
  unsigned char *ptr;
95
0
  MD5_u32plus a, b, c, d;
96
0
  MD5_u32plus saved_a, saved_b, saved_c, saved_d;
97
98
0
  ptr = (unsigned char *)data;
99
100
0
  a = ctx->a;
101
0
  b = ctx->b;
102
0
  c = ctx->c;
103
0
  d = ctx->d;
104
105
0
  do {
106
0
    saved_a = a;
107
0
    saved_b = b;
108
0
    saved_c = c;
109
0
    saved_d = d;
110
111
/* Round 1 */
112
0
    STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
113
0
    STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
114
0
    STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
115
0
    STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
116
0
    STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
117
0
    STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
118
0
    STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
119
0
    STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
120
0
    STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
121
0
    STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
122
0
    STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
123
0
    STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
124
0
    STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
125
0
    STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
126
0
    STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
127
0
    STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
128
129
/* Round 2 */
130
0
    STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
131
0
    STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
132
0
    STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
133
0
    STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
134
0
    STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
135
0
    STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
136
0
    STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
137
0
    STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
138
0
    STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
139
0
    STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
140
0
    STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
141
0
    STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
142
0
    STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
143
0
    STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
144
0
    STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
145
0
    STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
146
147
/* Round 3 */
148
0
    STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
149
0
    STEP(H, d, a, b, c, GET(8), 0x8771f681, 11)
150
0
    STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
151
0
    STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23)
152
0
    STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
153
0
    STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11)
154
0
    STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
155
0
    STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23)
156
0
    STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
157
0
    STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11)
158
0
    STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
159
0
    STEP(H, b, c, d, a, GET(6), 0x04881d05, 23)
160
0
    STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
161
0
    STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11)
162
0
    STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
163
0
    STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23)
164
165
/* Round 4 */
166
0
    STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
167
0
    STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
168
0
    STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
169
0
    STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
170
0
    STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
171
0
    STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
172
0
    STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
173
0
    STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
174
0
    STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
175
0
    STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
176
0
    STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
177
0
    STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
178
0
    STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
179
0
    STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
180
0
    STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
181
0
    STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
182
183
0
    a += saved_a;
184
0
    b += saved_b;
185
0
    c += saved_c;
186
0
    d += saved_d;
187
188
0
    ptr += 64;
189
0
  } while (size -= 64);
190
191
0
  ctx->a = a;
192
0
  ctx->b = b;
193
0
  ctx->c = c;
194
0
  ctx->d = d;
195
196
0
  return ptr;
197
0
}
198
199
void MD5_Init(MD5_CTX *ctx)
200
0
{
201
0
  ctx->a = 0x67452301;
202
0
  ctx->b = 0xefcdab89;
203
0
  ctx->c = 0x98badcfe;
204
0
  ctx->d = 0x10325476;
205
206
0
  ctx->lo = 0;
207
0
  ctx->hi = 0;
208
0
}
209
210
void MD5_Update(MD5_CTX *ctx, void *data, unsigned long size)
211
0
{
212
0
  MD5_u32plus saved_lo;
213
0
  unsigned long used, free;
214
215
0
  saved_lo = ctx->lo;
216
0
  if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
217
0
    ctx->hi++;
218
0
  ctx->hi += size >> 29;
219
220
0
  used = saved_lo & 0x3f;
221
222
0
  if (used) {
223
0
    free = 64 - used;
224
225
0
    if (size < free) {
226
0
      memcpy(&ctx->buffer[used], data, size);
227
0
      return;
228
0
    }
229
230
0
    memcpy(&ctx->buffer[used], data, free);
231
0
    data = (unsigned char *)data + free;
232
0
    size -= free;
233
0
    body(ctx, ctx->buffer, 64);
234
0
  }
235
236
0
  if (size >= 64) {
237
0
    data = body(ctx, data, size & ~(unsigned long)0x3f);
238
0
    size &= 0x3f;
239
0
  }
240
241
0
  memcpy(ctx->buffer, data, size);
242
0
}
243
244
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
245
0
{
246
0
  unsigned long used, free;
247
248
0
  used = ctx->lo & 0x3f;
249
250
0
  ctx->buffer[used++] = 0x80;
251
252
0
  free = 64 - used;
253
254
0
  if (free < 8) {
255
0
    memset(&ctx->buffer[used], 0, free);
256
0
    body(ctx, ctx->buffer, 64);
257
0
    used = 0;
258
0
    free = 64;
259
0
  }
260
261
0
  memset(&ctx->buffer[used], 0, free - 8);
262
263
0
  ctx->lo <<= 3;
264
0
  ctx->buffer[56] = ctx->lo;
265
0
  ctx->buffer[57] = ctx->lo >> 8;
266
0
  ctx->buffer[58] = ctx->lo >> 16;
267
0
  ctx->buffer[59] = ctx->lo >> 24;
268
0
  ctx->buffer[60] = ctx->hi;
269
0
  ctx->buffer[61] = ctx->hi >> 8;
270
0
  ctx->buffer[62] = ctx->hi >> 16;
271
0
  ctx->buffer[63] = ctx->hi >> 24;
272
273
0
  body(ctx, ctx->buffer, 64);
274
275
0
  result[0] = ctx->a;
276
0
  result[1] = ctx->a >> 8;
277
0
  result[2] = ctx->a >> 16;
278
0
  result[3] = ctx->a >> 24;
279
0
  result[4] = ctx->b;
280
0
  result[5] = ctx->b >> 8;
281
0
  result[6] = ctx->b >> 16;
282
0
  result[7] = ctx->b >> 24;
283
0
  result[8] = ctx->c;
284
0
  result[9] = ctx->c >> 8;
285
0
  result[10] = ctx->c >> 16;
286
0
  result[11] = ctx->c >> 24;
287
0
  result[12] = ctx->d;
288
0
  result[13] = ctx->d >> 8;
289
0
  result[14] = ctx->d >> 16;
290
0
  result[15] = ctx->d >> 24;
291
292
0
  memset(ctx, 0, sizeof(*ctx));
293
0
}
294
295
#endif