Coverage Report

Created: 2022-08-24 06:17

/src/aom/av1/encoder/segmentation.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <limits.h>
13
14
#include "aom_mem/aom_mem.h"
15
16
#include "av1/common/pred_common.h"
17
#include "av1/common/tile_common.h"
18
19
#include "av1/encoder/cost.h"
20
#include "av1/encoder/segmentation.h"
21
22
0
void av1_enable_segmentation(struct segmentation *seg) {
23
0
  seg->enabled = 1;
24
0
  seg->update_map = 1;
25
0
  seg->update_data = 1;
26
0
  seg->temporal_update = 0;
27
0
}
28
29
0
void av1_disable_segmentation(struct segmentation *seg) {
30
0
  seg->enabled = 0;
31
0
  seg->update_map = 0;
32
0
  seg->update_data = 0;
33
0
  seg->temporal_update = 0;
34
0
}
35
36
void av1_disable_segfeature(struct segmentation *seg, int segment_id,
37
0
                            SEG_LVL_FEATURES feature_id) {
38
0
  seg->feature_mask[segment_id] &= ~(1 << feature_id);
39
0
}
40
41
void av1_clear_segdata(struct segmentation *seg, int segment_id,
42
0
                       SEG_LVL_FEATURES feature_id) {
43
0
  seg->feature_data[segment_id][feature_id] = 0;
44
0
}
45
46
static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd,
47
                       const TileInfo *tile, MB_MODE_INFO **mi,
48
                       unsigned *no_pred_segcounts,
49
                       unsigned (*temporal_predictor_count)[2],
50
                       unsigned *t_unpred_seg_counts, int bw, int bh,
51
0
                       int mi_row, int mi_col) {
52
0
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
53
0
  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
54
55
0
  xd->mi = mi;
56
0
  set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
57
0
                 mi_params->mi_cols);
58
59
  // Count the number of hits on each segment with no prediction
60
0
  const int segment_id = xd->mi[0]->segment_id;
61
0
  no_pred_segcounts[segment_id]++;
62
63
  // Temporal prediction not allowed on key frames
64
0
  if (cm->current_frame.frame_type != KEY_FRAME) {
65
0
    const BLOCK_SIZE bsize = xd->mi[0]->bsize;
66
    // Test to see if the segment id matches the predicted value.
67
0
    const int pred_segment_id =
68
0
        cm->last_frame_seg_map
69
0
            ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
70
0
                             mi_col)
71
0
            : 0;
72
0
    const int pred_flag = pred_segment_id == segment_id;
73
0
    const int pred_context = av1_get_pred_context_seg_id(xd);
74
75
    // Store the prediction status for this mb and update counts
76
    // as appropriate
77
0
    xd->mi[0]->seg_id_predicted = pred_flag;
78
0
    temporal_predictor_count[pred_context][pred_flag]++;
79
80
    // Update the "unpredicted" segment count
81
0
    if (!pred_flag) t_unpred_seg_counts[segment_id]++;
82
0
  }
83
0
}
84
85
static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
86
                          const TileInfo *tile, MB_MODE_INFO **mi,
87
                          unsigned *no_pred_segcounts,
88
                          unsigned (*temporal_predictor_count)[2],
89
                          unsigned *t_unpred_seg_counts, int mi_row, int mi_col,
90
0
                          BLOCK_SIZE bsize) {
91
0
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
92
0
  const int mis = mi_params->mi_stride;
93
0
  const int bs = mi_size_wide[bsize], hbs = bs / 2;
94
0
  PARTITION_TYPE partition;
95
0
  const int qbs = bs / 4;
96
97
0
  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
98
99
0
#define CSEGS(cs_bw, cs_bh, cs_rowoff, cs_coloff)                              \
100
0
  count_segs(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff),               \
101
0
             no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, \
102
0
             (cs_bw), (cs_bh), mi_row + (cs_rowoff), mi_col + (cs_coloff));
103
104
0
  if (bsize == BLOCK_8X8)
105
0
    partition = PARTITION_NONE;
106
0
  else
107
0
    partition = get_partition(cm, mi_row, mi_col, bsize);
108
0
  switch (partition) {
109
0
    case PARTITION_NONE: CSEGS(bs, bs, 0, 0); break;
110
0
    case PARTITION_HORZ:
111
0
      CSEGS(bs, hbs, 0, 0);
112
0
      CSEGS(bs, hbs, hbs, 0);
113
0
      break;
114
0
    case PARTITION_VERT:
115
0
      CSEGS(hbs, bs, 0, 0);
116
0
      CSEGS(hbs, bs, 0, hbs);
117
0
      break;
118
0
    case PARTITION_HORZ_A:
119
0
      CSEGS(hbs, hbs, 0, 0);
120
0
      CSEGS(hbs, hbs, 0, hbs);
121
0
      CSEGS(bs, hbs, hbs, 0);
122
0
      break;
123
0
    case PARTITION_HORZ_B:
124
0
      CSEGS(bs, hbs, 0, 0);
125
0
      CSEGS(hbs, hbs, hbs, 0);
126
0
      CSEGS(hbs, hbs, hbs, hbs);
127
0
      break;
128
0
    case PARTITION_VERT_A:
129
0
      CSEGS(hbs, hbs, 0, 0);
130
0
      CSEGS(hbs, hbs, hbs, 0);
131
0
      CSEGS(hbs, bs, 0, hbs);
132
0
      break;
133
0
    case PARTITION_VERT_B:
134
0
      CSEGS(hbs, bs, 0, 0);
135
0
      CSEGS(hbs, hbs, 0, hbs);
136
0
      CSEGS(hbs, hbs, hbs, hbs);
137
0
      break;
138
0
    case PARTITION_HORZ_4:
139
0
      CSEGS(bs, qbs, 0, 0);
140
0
      CSEGS(bs, qbs, qbs, 0);
141
0
      CSEGS(bs, qbs, 2 * qbs, 0);
142
0
      if (mi_row + 3 * qbs < mi_params->mi_rows) CSEGS(bs, qbs, 3 * qbs, 0);
143
0
      break;
144
145
0
    case PARTITION_VERT_4:
146
0
      CSEGS(qbs, bs, 0, 0);
147
0
      CSEGS(qbs, bs, 0, qbs);
148
0
      CSEGS(qbs, bs, 0, 2 * qbs);
149
0
      if (mi_col + 3 * qbs < mi_params->mi_cols) CSEGS(qbs, bs, 0, 3 * qbs);
150
0
      break;
151
152
0
    case PARTITION_SPLIT: {
153
0
      const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
154
0
      int n;
155
0
      assert(subsize < BLOCK_SIZES_ALL);
156
157
0
      for (n = 0; n < 4; n++) {
158
0
        const int mi_dc = hbs * (n & 1);
159
0
        const int mi_dr = hbs * (n >> 1);
160
161
0
        count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
162
0
                      temporal_predictor_count, t_unpred_seg_counts,
163
0
                      mi_row + mi_dr, mi_col + mi_dc, subsize);
164
0
      }
165
0
    } break;
166
0
    default: assert(0);
167
0
  }
168
169
0
#undef CSEGS
170
0
}
171
172
0
void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) {
173
0
  struct segmentation *seg = &cm->seg;
174
0
  struct segmentation_probs *segp = &cm->fc->seg;
175
0
  int no_pred_cost;
176
0
  int t_pred_cost = INT_MAX;
177
0
  int tile_col, tile_row, mi_row, mi_col;
178
179
0
  if (!seg->update_map) return;
180
0
  if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
181
0
    seg->temporal_update = 0;
182
0
    assert(seg->update_data == 1);
183
0
    return;
184
0
  }
185
186
0
  unsigned temporal_predictor_count[SEG_TEMPORAL_PRED_CTXS][2] = { { 0 } };
187
0
  unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 };
188
0
  unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
189
0
  (void)xd;
190
0
  int scale_up = cm->prev_frame && (cm->width > cm->prev_frame->width ||
191
0
                                    cm->height > cm->prev_frame->height);
192
  // First of all generate stats regarding how well the last segment map
193
  // predicts this one
194
0
  if (!scale_up) {
195
0
    for (tile_row = 0; tile_row < cm->tiles.rows; tile_row++) {
196
0
      TileInfo tile_info;
197
0
      av1_tile_set_row(&tile_info, cm, tile_row);
198
0
      for (tile_col = 0; tile_col < cm->tiles.cols; tile_col++) {
199
0
        MB_MODE_INFO **mi_ptr;
200
0
        av1_tile_set_col(&tile_info, cm, tile_col);
201
0
        mi_ptr = cm->mi_params.mi_grid_base +
202
0
                 tile_info.mi_row_start * cm->mi_params.mi_stride +
203
0
                 tile_info.mi_col_start;
204
0
        for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
205
0
             mi_row += cm->seq_params->mib_size,
206
0
            mi_ptr += cm->seq_params->mib_size * cm->mi_params.mi_stride) {
207
0
          MB_MODE_INFO **mi = mi_ptr;
208
0
          for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
209
0
               mi_col += cm->seq_params->mib_size,
210
0
              mi += cm->seq_params->mib_size) {
211
0
            count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts,
212
0
                          temporal_predictor_count, t_unpred_seg_counts, mi_row,
213
0
                          mi_col, cm->seq_params->sb_size);
214
0
          }
215
0
        }
216
0
      }
217
0
    }
218
0
  }
219
220
0
  int seg_id_cost[MAX_SEGMENTS];
221
0
  av1_cost_tokens_from_cdf(seg_id_cost, segp->tree_cdf, NULL);
222
0
  no_pred_cost = 0;
223
0
  for (int i = 0; i < MAX_SEGMENTS; ++i)
224
0
    no_pred_cost += no_pred_segcounts[i] * seg_id_cost[i];
225
226
  // Frames without past dependency cannot use temporal prediction
227
0
  if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
228
0
    int pred_flag_cost[SEG_TEMPORAL_PRED_CTXS][2];
229
0
    for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i)
230
0
      av1_cost_tokens_from_cdf(pred_flag_cost[i], segp->pred_cdf[i], NULL);
231
0
    t_pred_cost = 0;
232
    // Cost for signaling the prediction flag.
233
0
    for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) {
234
0
      for (int j = 0; j < 2; ++j)
235
0
        t_pred_cost += temporal_predictor_count[i][j] * pred_flag_cost[i][j];
236
0
    }
237
    // Cost for signaling the unpredicted segment id.
238
0
    for (int i = 0; i < MAX_SEGMENTS; ++i)
239
0
      t_pred_cost += t_unpred_seg_counts[i] * seg_id_cost[i];
240
0
  }
241
242
  // Now choose which coding method to use.
243
0
  if (t_pred_cost < no_pred_cost) {
244
0
    assert(!cm->features.error_resilient_mode);
245
0
    seg->temporal_update = 1;
246
0
  } else {
247
0
    seg->temporal_update = 0;
248
0
  }
249
0
}
250
251
0
void av1_reset_segment_features(AV1_COMMON *cm) {
252
0
  struct segmentation *seg = &cm->seg;
253
254
  // Set up default state for MB feature flags
255
0
  seg->enabled = 0;
256
0
  seg->update_map = 0;
257
0
  seg->update_data = 0;
258
0
  av1_clearall_segfeatures(seg);
259
0
}