Coverage Report

Created: 2022-08-24 06:17

/src/x265/source/common/yuv.h
Line
Count
Source (jump to first uncovered line)
1
/*****************************************************************************
2
 * Copyright (C) 2013-2020 MulticoreWare, Inc
3
 *
4
 * Authors: Steve Borho <steve@borho.org>
5
 *
6
 * This program is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
19
 *
20
 * This program is also available under a commercial proprietary license.
21
 * For more information, contact us at license @ x265.com.
22
 *****************************************************************************/
23
24
#ifndef X265_YUV_H
25
#define X265_YUV_H
26
27
#include "common.h"
28
#include "primitives.h"
29
30
namespace X265_NS {
31
// private namespace
32
33
class ShortYuv;
34
class PicYuv;
35
36
/* A Yuv instance holds pixels for a square CU (64x64 down to 8x8) for all three planes
37
 * these are typically used to hold fenc, predictions, or reconstructed blocks */
38
class Yuv
39
{
40
public:
41
    pixel*   m_buf[3];
42
43
    uint32_t m_size;
44
    uint32_t m_csize;
45
    int      m_part;         // cached partition enum size
46
47
    int      m_csp;
48
    int      m_hChromaShift;
49
    int      m_vChromaShift;
50
    uint32_t *m_integral[2][MAX_NUM_REF][INTEGRAL_PLANE_NUM];
51
52
    Yuv();
53
54
    bool   create(uint32_t size, int csp);
55
    void   destroy();
56
57
    // Copy YUV buffer to picture buffer
58
    void   copyToPicYuv(PicYuv& destPicYuv, uint32_t cuAddr, uint32_t absPartIdx) const;
59
60
    // Copy YUV buffer from picture buffer
61
    void   copyFromPicYuv(const PicYuv& srcPicYuv, uint32_t cuAddr, uint32_t absPartIdx);
62
63
    // Copy from same size YUV buffer
64
    void   copyFromYuv(const Yuv& srcYuv);
65
66
    // Copy portion of srcYuv into ME prediction buffer
67
    void   copyPUFromYuv(const Yuv& srcYuv, uint32_t absPartIdx, int partEnum, bool bChroma);
68
69
    // Copy Small YUV buffer to the part of other Big YUV buffer
70
    void   copyToPartYuv(Yuv& dstYuv, uint32_t absPartIdx) const;
71
72
    // Copy the part of Big YUV buffer to other Small YUV buffer
73
    void   copyPartToYuv(Yuv& dstYuv, uint32_t absPartIdx) const;
74
75
    // Clip(srcYuv0 + srcYuv1) -> m_buf .. aka recon = clip(pred + residual)
76
    void   addClip(const Yuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t log2SizeL, int picCsp);
77
78
    // (srcYuv0 + srcYuv1)/2 for YUV partition (bidir averaging)
79
    void   addAvg(const ShortYuv& srcYuv0, const ShortYuv& srcYuv1, uint32_t absPartIdx, uint32_t width, uint32_t height, bool bLuma, bool bChroma);
80
81
    void copyPartToPartLuma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2Size) const;
82
    void copyPartToPartChroma(Yuv& dstYuv, uint32_t absPartIdx, uint32_t log2SizeL) const;
83
84
0
    pixel* getLumaAddr(uint32_t absPartIdx)                      { return m_buf[0] + getAddrOffset(absPartIdx, m_size); }
85
0
    pixel* getCbAddr(uint32_t absPartIdx)                        { return m_buf[1] + getChromaAddrOffset(absPartIdx); }
86
0
    pixel* getCrAddr(uint32_t absPartIdx)                        { return m_buf[2] + getChromaAddrOffset(absPartIdx); }
87
0
    pixel* getChromaAddr(uint32_t chromaId, uint32_t absPartIdx) { return m_buf[chromaId] + getChromaAddrOffset(absPartIdx); }
88
89
0
    const pixel* getLumaAddr(uint32_t absPartIdx) const                      { return m_buf[0] + getAddrOffset(absPartIdx, m_size); }
90
0
    const pixel* getCbAddr(uint32_t absPartIdx) const                        { return m_buf[1] + getChromaAddrOffset(absPartIdx); }
91
0
    const pixel* getCrAddr(uint32_t absPartIdx) const                        { return m_buf[2] + getChromaAddrOffset(absPartIdx); }
92
0
    const pixel* getChromaAddr(uint32_t chromaId, uint32_t absPartIdx) const { return m_buf[chromaId] + getChromaAddrOffset(absPartIdx); }
93
94
    int getChromaAddrOffset(uint32_t absPartIdx) const
95
0
    {
96
0
        int blkX = g_zscanToPelX[absPartIdx] >> m_hChromaShift;
97
0
        int blkY = g_zscanToPelY[absPartIdx] >> m_vChromaShift;
98
99
0
        return blkX + blkY * m_csize;
100
0
    }
101
102
    static int getAddrOffset(uint32_t absPartIdx, uint32_t width)
103
0
    {
104
0
        int blkX = g_zscanToPelX[absPartIdx];
105
0
        int blkY = g_zscanToPelY[absPartIdx];
106
107
0
        return blkX + blkY * width;
108
0
    }
109
};
110
}
111
112
#endif