Coverage Report

Created: 2022-08-24 06:17

/src/aom/av1/encoder/palette.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <math.h>
13
#include <stdlib.h>
14
15
#include "av1/common/pred_common.h"
16
17
#include "av1/encoder/block.h"
18
#include "av1/encoder/cost.h"
19
#include "av1/encoder/encoder.h"
20
#include "av1/encoder/intra_mode_search.h"
21
#include "av1/encoder/intra_mode_search_utils.h"
22
#include "av1/encoder/palette.h"
23
#include "av1/encoder/random.h"
24
#include "av1/encoder/rdopt_utils.h"
25
#include "av1/encoder/tx_search.h"
26
27
0
#define AV1_K_MEANS_DIM 1
28
#include "av1/encoder/k_means_template.h"
29
#undef AV1_K_MEANS_DIM
30
0
#define AV1_K_MEANS_DIM 2
31
#include "av1/encoder/k_means_template.h"
32
#undef AV1_K_MEANS_DIM
33
34
0
static int int_comparer(const void *a, const void *b) {
35
0
  return (*(int *)a - *(int *)b);
36
0
}
37
38
0
int av1_remove_duplicates(int *centroids, int num_centroids) {
39
0
  int num_unique;  // number of unique centroids
40
0
  int i;
41
0
  qsort(centroids, num_centroids, sizeof(*centroids), int_comparer);
42
  // Remove duplicates.
43
0
  num_unique = 1;
44
0
  for (i = 1; i < num_centroids; ++i) {
45
0
    if (centroids[i] != centroids[i - 1]) {  // found a new unique centroid
46
0
      centroids[num_unique++] = centroids[i];
47
0
    }
48
0
  }
49
0
  return num_unique;
50
0
}
51
52
static int delta_encode_cost(const int *colors, int num, int bit_depth,
53
0
                             int min_val) {
54
0
  if (num <= 0) return 0;
55
0
  int bits_cost = bit_depth;
56
0
  if (num == 1) return bits_cost;
57
0
  bits_cost += 2;
58
0
  int max_delta = 0;
59
0
  int deltas[PALETTE_MAX_SIZE];
60
0
  const int min_bits = bit_depth - 3;
61
0
  for (int i = 1; i < num; ++i) {
62
0
    const int delta = colors[i] - colors[i - 1];
63
0
    deltas[i - 1] = delta;
64
0
    assert(delta >= min_val);
65
0
    if (delta > max_delta) max_delta = delta;
66
0
  }
67
0
  int bits_per_delta = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
68
0
  assert(bits_per_delta <= bit_depth);
69
0
  int range = (1 << bit_depth) - colors[0] - min_val;
70
0
  for (int i = 0; i < num - 1; ++i) {
71
0
    bits_cost += bits_per_delta;
72
0
    range -= deltas[i];
73
0
    bits_per_delta = AOMMIN(bits_per_delta, av1_ceil_log2(range));
74
0
  }
75
0
  return bits_cost;
76
0
}
77
78
int av1_index_color_cache(const uint16_t *color_cache, int n_cache,
79
                          const uint16_t *colors, int n_colors,
80
0
                          uint8_t *cache_color_found, int *out_cache_colors) {
81
0
  if (n_cache <= 0) {
82
0
    for (int i = 0; i < n_colors; ++i) out_cache_colors[i] = colors[i];
83
0
    return n_colors;
84
0
  }
85
0
  memset(cache_color_found, 0, n_cache * sizeof(*cache_color_found));
86
0
  int n_in_cache = 0;
87
0
  int in_cache_flags[PALETTE_MAX_SIZE];
88
0
  memset(in_cache_flags, 0, sizeof(in_cache_flags));
89
0
  for (int i = 0; i < n_cache && n_in_cache < n_colors; ++i) {
90
0
    for (int j = 0; j < n_colors; ++j) {
91
0
      if (colors[j] == color_cache[i]) {
92
0
        in_cache_flags[j] = 1;
93
0
        cache_color_found[i] = 1;
94
0
        ++n_in_cache;
95
0
        break;
96
0
      }
97
0
    }
98
0
  }
99
0
  int j = 0;
100
0
  for (int i = 0; i < n_colors; ++i)
101
0
    if (!in_cache_flags[i]) out_cache_colors[j++] = colors[i];
102
0
  assert(j == n_colors - n_in_cache);
103
0
  return j;
104
0
}
105
106
int av1_get_palette_delta_bits_v(const PALETTE_MODE_INFO *const pmi,
107
                                 int bit_depth, int *zero_count,
108
0
                                 int *min_bits) {
109
0
  const int n = pmi->palette_size[1];
110
0
  const int max_val = 1 << bit_depth;
111
0
  int max_d = 0;
112
0
  *min_bits = bit_depth - 4;
113
0
  *zero_count = 0;
114
0
  for (int i = 1; i < n; ++i) {
115
0
    const int delta = pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] -
116
0
                      pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1];
117
0
    const int v = abs(delta);
118
0
    const int d = AOMMIN(v, max_val - v);
119
0
    if (d > max_d) max_d = d;
120
0
    if (d == 0) ++(*zero_count);
121
0
  }
122
0
  return AOMMAX(av1_ceil_log2(max_d + 1), *min_bits);
123
0
}
124
125
int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi,
126
                             const uint16_t *color_cache, int n_cache,
127
0
                             int bit_depth) {
128
0
  const int n = pmi->palette_size[0];
129
0
  int out_cache_colors[PALETTE_MAX_SIZE];
130
0
  uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
131
0
  const int n_out_cache =
132
0
      av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
133
0
                            cache_color_found, out_cache_colors);
134
0
  const int total_bits =
135
0
      n_cache + delta_encode_cost(out_cache_colors, n_out_cache, bit_depth, 1);
136
0
  return av1_cost_literal(total_bits);
137
0
}
138
139
int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi,
140
                              const uint16_t *color_cache, int n_cache,
141
0
                              int bit_depth) {
142
0
  const int n = pmi->palette_size[1];
143
0
  int total_bits = 0;
144
  // U channel palette color cost.
145
0
  int out_cache_colors[PALETTE_MAX_SIZE];
146
0
  uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
147
0
  const int n_out_cache = av1_index_color_cache(
148
0
      color_cache, n_cache, pmi->palette_colors + PALETTE_MAX_SIZE, n,
149
0
      cache_color_found, out_cache_colors);
150
0
  total_bits +=
151
0
      n_cache + delta_encode_cost(out_cache_colors, n_out_cache, bit_depth, 0);
152
153
  // V channel palette color cost.
154
0
  int zero_count = 0, min_bits_v = 0;
155
0
  const int bits_v =
156
0
      av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
157
0
  const int bits_using_delta =
158
0
      2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
159
0
  const int bits_using_raw = bit_depth * n;
160
0
  total_bits += 1 + AOMMIN(bits_using_delta, bits_using_raw);
161
0
  return av1_cost_literal(total_bits);
162
0
}
163
164
// Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x
165
// new_height'. Extra rows and columns are filled in by copying last valid
166
// row/column.
167
static AOM_INLINE void extend_palette_color_map(uint8_t *const color_map,
168
                                                int orig_width, int orig_height,
169
0
                                                int new_width, int new_height) {
170
0
  int j;
171
0
  assert(new_width >= orig_width);
172
0
  assert(new_height >= orig_height);
173
0
  if (new_width == orig_width && new_height == orig_height) return;
174
175
0
  for (j = orig_height - 1; j >= 0; --j) {
176
0
    memmove(color_map + j * new_width, color_map + j * orig_width, orig_width);
177
    // Copy last column to extra columns.
178
0
    memset(color_map + j * new_width + orig_width,
179
0
           color_map[j * new_width + orig_width - 1], new_width - orig_width);
180
0
  }
181
  // Copy last row to extra rows.
182
0
  for (j = orig_height; j < new_height; ++j) {
183
0
    memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width,
184
0
           new_width);
185
0
  }
186
0
}
187
188
// Bias toward using colors in the cache.
189
// TODO(huisu): Try other schemes to improve compression.
190
static AOM_INLINE void optimize_palette_colors(uint16_t *color_cache,
191
                                               int n_cache, int n_colors,
192
                                               int stride, int *centroids,
193
0
                                               int bit_depth) {
194
0
  if (n_cache <= 0) return;
195
0
  for (int i = 0; i < n_colors * stride; i += stride) {
196
0
    int min_diff = abs(centroids[i] - (int)color_cache[0]);
197
0
    int idx = 0;
198
0
    for (int j = 1; j < n_cache; ++j) {
199
0
      const int this_diff = abs(centroids[i] - color_cache[j]);
200
0
      if (this_diff < min_diff) {
201
0
        min_diff = this_diff;
202
0
        idx = j;
203
0
      }
204
0
    }
205
0
    const int min_threshold = 4 << (bit_depth - 8);
206
0
    if (min_diff <= min_threshold) centroids[i] = color_cache[idx];
207
0
  }
208
0
}
209
210
/*!\brief Calculate the luma palette cost from a given color palette
211
 *
212
 * \ingroup palette_mode_search
213
 * \callergraph
214
 * Given the base colors as specified in centroids[], calculate the RD cost
215
 * of palette mode.
216
 */
217
static AOM_INLINE void palette_rd_y(
218
    const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
219
    BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int *centroids, int n,
220
    uint16_t *color_cache, int n_cache, bool do_header_rd_based_gating,
221
    MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map, int64_t *best_rd,
222
    int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable,
223
    int *beat_best_rd, PICK_MODE_CONTEXT *ctx, uint8_t *blk_skip,
224
    uint8_t *tx_type_map, int *beat_best_palette_rd,
225
0
    bool *do_header_rd_based_breakout) {
226
0
  if (do_header_rd_based_breakout != NULL) *do_header_rd_based_breakout = false;
227
0
  optimize_palette_colors(color_cache, n_cache, n, 1, centroids,
228
0
                          cpi->common.seq_params->bit_depth);
229
0
  const int num_unique_colors = av1_remove_duplicates(centroids, n);
230
0
  if (num_unique_colors < PALETTE_MIN_SIZE) {
231
    // Too few unique colors to create a palette. And DC_PRED will work
232
    // well for that case anyway. So skip.
233
0
    return;
234
0
  }
235
0
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
236
0
  if (cpi->common.seq_params->use_highbitdepth) {
237
0
    for (int i = 0; i < num_unique_colors; ++i) {
238
0
      pmi->palette_colors[i] = clip_pixel_highbd(
239
0
          (int)centroids[i], cpi->common.seq_params->bit_depth);
240
0
    }
241
0
  } else {
242
0
    for (int i = 0; i < num_unique_colors; ++i) {
243
0
      pmi->palette_colors[i] = clip_pixel(centroids[i]);
244
0
    }
245
0
  }
246
0
  pmi->palette_size[0] = num_unique_colors;
247
0
  MACROBLOCKD *const xd = &x->e_mbd;
248
0
  uint8_t *const color_map = xd->plane[0].color_index_map;
249
0
  int block_width, block_height, rows, cols;
250
0
  av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
251
0
                           &cols);
252
0
  av1_calc_indices(data, centroids, color_map, rows * cols, num_unique_colors,
253
0
                   1);
254
0
  extend_palette_color_map(color_map, cols, rows, block_width, block_height);
255
256
0
  RD_STATS tokenonly_rd_stats;
257
0
  int this_rate;
258
259
0
  if (do_header_rd_based_gating) {
260
0
    assert(do_header_rd_based_breakout != NULL);
261
0
    const int palette_mode_rate =
262
0
        intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost);
263
0
    const int64_t header_rd = RDCOST(x->rdmult, palette_mode_rate, 0);
264
    // Less aggressive pruning when prune_luma_palette_size_search_level == 1.
265
0
    const int header_rd_shift =
266
0
        (cpi->sf.intra_sf.prune_luma_palette_size_search_level == 1) ? 1 : 0;
267
    // Terminate further palette_size search, if the header cost corresponding
268
    // to lower palette_size is more than *best_rd << header_rd_shift. This
269
    // logic is implemented with a right shift in the LHS to prevent a possible
270
    // overflow with the left shift in RHS.
271
0
    if ((header_rd >> header_rd_shift) > *best_rd) {
272
0
      *do_header_rd_based_breakout = true;
273
0
      return;
274
0
    }
275
0
    av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize,
276
0
                                      *best_rd);
277
0
    if (tokenonly_rd_stats.rate == INT_MAX) return;
278
0
    this_rate = tokenonly_rd_stats.rate + palette_mode_rate;
279
0
  } else {
280
0
    av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize,
281
0
                                      *best_rd);
282
0
    if (tokenonly_rd_stats.rate == INT_MAX) return;
283
0
    this_rate = tokenonly_rd_stats.rate +
284
0
                intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost);
285
0
  }
286
287
0
  int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
288
0
  if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) {
289
0
    tokenonly_rd_stats.rate -= tx_size_cost(x, bsize, mbmi->tx_size);
290
0
  }
291
  // Collect mode stats for multiwinner mode processing
292
0
  const int txfm_search_done = 1;
293
0
  store_winner_mode_stats(
294
0
      &cpi->common, x, mbmi, NULL, NULL, NULL, THR_DC, color_map, bsize,
295
0
      this_rd, cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
296
0
  if (this_rd < *best_rd) {
297
0
    *best_rd = this_rd;
298
    // Setting beat_best_rd flag because current mode rd is better than best_rd.
299
    // This flag need to be updated only for palette evaluation in key frames
300
0
    if (beat_best_rd) *beat_best_rd = 1;
301
0
    memcpy(best_palette_color_map, color_map,
302
0
           block_width * block_height * sizeof(color_map[0]));
303
0
    *best_mbmi = *mbmi;
304
0
    memcpy(blk_skip, x->txfm_search_info.blk_skip,
305
0
           sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk);
306
0
    av1_copy_array(tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
307
0
    if (rate) *rate = this_rate;
308
0
    if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate;
309
0
    if (distortion) *distortion = tokenonly_rd_stats.dist;
310
0
    if (skippable) *skippable = tokenonly_rd_stats.skip_txfm;
311
0
    if (beat_best_palette_rd) *beat_best_palette_rd = 1;
312
0
  }
313
0
}
314
315
0
static AOM_INLINE int is_iter_over(int curr_idx, int end_idx, int step_size) {
316
0
  assert(step_size != 0);
317
0
  return (step_size > 0) ? curr_idx >= end_idx : curr_idx <= end_idx;
318
0
}
319
320
// Performs count-based palette search with number of colors in interval
321
// [start_n, end_n) with step size step_size. If step_size < 0, then end_n can
322
// be less than start_n. Saves the last numbers searched in last_n_searched and
323
// returns the best number of colors found.
324
static AOM_INLINE int perform_top_color_palette_search(
325
    const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
326
    BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int *top_colors,
327
    int start_n, int end_n, int step_size, bool do_header_rd_based_gating,
328
    int *last_n_searched, uint16_t *color_cache, int n_cache,
329
    MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map, int64_t *best_rd,
330
    int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable,
331
    int *beat_best_rd, PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip,
332
0
    uint8_t *tx_type_map) {
333
0
  int centroids[PALETTE_MAX_SIZE];
334
0
  int n = start_n;
335
0
  int top_color_winner = end_n;
336
  /* clang-format off */
337
0
  assert(IMPLIES(step_size < 0, start_n > end_n));
338
  /* clang-format on */
339
0
  assert(IMPLIES(step_size > 0, start_n < end_n));
340
0
  while (!is_iter_over(n, end_n, step_size)) {
341
0
    int beat_best_palette_rd = 0;
342
0
    bool do_header_rd_based_breakout = false;
343
0
    memcpy(centroids, top_colors, n * sizeof(top_colors[0]));
344
0
    palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
345
0
                 color_cache, n_cache, do_header_rd_based_gating, best_mbmi,
346
0
                 best_palette_color_map, best_rd, rate, rate_tokenonly,
347
0
                 distortion, skippable, beat_best_rd, ctx, best_blk_skip,
348
0
                 tx_type_map, &beat_best_palette_rd,
349
0
                 &do_header_rd_based_breakout);
350
0
    *last_n_searched = n;
351
0
    if (do_header_rd_based_breakout) {
352
      // Terminate palette_size search by setting last_n_searched to end_n.
353
0
      *last_n_searched = end_n;
354
0
      break;
355
0
    }
356
0
    if (beat_best_palette_rd) {
357
0
      top_color_winner = n;
358
0
    } else if (cpi->sf.intra_sf.prune_palette_search_level == 2) {
359
      // At search level 2, we return immediately if we don't see an improvement
360
0
      return top_color_winner;
361
0
    }
362
0
    n += step_size;
363
0
  }
364
0
  return top_color_winner;
365
0
}
366
367
// Performs k-means based palette search with number of colors in interval
368
// [start_n, end_n) with step size step_size. If step_size < 0, then end_n can
369
// be less than start_n. Saves the last numbers searched in last_n_searched and
370
// returns the best number of colors found.
371
static AOM_INLINE int perform_k_means_palette_search(
372
    const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
373
    BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int lower_bound,
374
    int upper_bound, int start_n, int end_n, int step_size,
375
    bool do_header_rd_based_gating, int *last_n_searched, uint16_t *color_cache,
376
    int n_cache, MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map,
377
    int64_t *best_rd, int *rate, int *rate_tokenonly, int64_t *distortion,
378
    int *skippable, int *beat_best_rd, PICK_MODE_CONTEXT *ctx,
379
    uint8_t *best_blk_skip, uint8_t *tx_type_map, uint8_t *color_map,
380
0
    int data_points) {
381
0
  int centroids[PALETTE_MAX_SIZE];
382
0
  const int max_itr = 50;
383
0
  int n = start_n;
384
0
  int top_color_winner = end_n;
385
  /* clang-format off */
386
0
  assert(IMPLIES(step_size < 0, start_n > end_n));
387
  /* clang-format on */
388
0
  assert(IMPLIES(step_size > 0, start_n < end_n));
389
0
  while (!is_iter_over(n, end_n, step_size)) {
390
0
    int beat_best_palette_rd = 0;
391
0
    bool do_header_rd_based_breakout = false;
392
0
    for (int i = 0; i < n; ++i) {
393
0
      centroids[i] =
394
0
          lower_bound + (2 * i + 1) * (upper_bound - lower_bound) / n / 2;
395
0
    }
396
0
    av1_k_means(data, centroids, color_map, data_points, n, 1, max_itr);
397
0
    palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
398
0
                 color_cache, n_cache, do_header_rd_based_gating, best_mbmi,
399
0
                 best_palette_color_map, best_rd, rate, rate_tokenonly,
400
0
                 distortion, skippable, beat_best_rd, ctx, best_blk_skip,
401
0
                 tx_type_map, &beat_best_palette_rd,
402
0
                 &do_header_rd_based_breakout);
403
0
    *last_n_searched = n;
404
0
    if (do_header_rd_based_breakout) {
405
      // Terminate palette_size search by setting last_n_searched to end_n.
406
0
      *last_n_searched = end_n;
407
0
      break;
408
0
    }
409
0
    if (beat_best_palette_rd) {
410
0
      top_color_winner = n;
411
0
    } else if (cpi->sf.intra_sf.prune_palette_search_level == 2) {
412
      // At search level 2, we return immediately if we don't see an improvement
413
0
      return top_color_winner;
414
0
    }
415
0
    n += step_size;
416
0
  }
417
0
  return top_color_winner;
418
0
}
419
420
// Sets the parameters to search the current number of colors +- 1
421
static AOM_INLINE void set_stage2_params(int *min_n, int *max_n, int *step_size,
422
0
                                         int winner, int end_n) {
423
  // Set min to winner - 1 unless we are already at the border, then we set it
424
  // to winner + 1
425
0
  *min_n = (winner == PALETTE_MIN_SIZE) ? (PALETTE_MIN_SIZE + 1)
426
0
                                        : AOMMAX(winner - 1, PALETTE_MIN_SIZE);
427
  // Set max to winner + 1 unless we are already at the border, then we set it
428
  // to winner - 1
429
0
  *max_n =
430
0
      (winner == end_n) ? (winner - 1) : AOMMIN(winner + 1, PALETTE_MAX_SIZE);
431
432
  // Set the step size to max_n - min_n so we only search those two values.
433
  // If max_n == min_n, then set step_size to 1 to avoid infinite loop later.
434
0
  *step_size = AOMMAX(1, *max_n - *min_n);
435
0
}
436
437
static AOM_INLINE void fill_data_and_get_bounds(
438
    const uint8_t *src, const int src_stride, const int rows, const int cols,
439
0
    const int is_high_bitdepth, int *data, int *lower_bound, int *upper_bound) {
440
0
  if (is_high_bitdepth) {
441
0
    const uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src);
442
0
    *lower_bound = *upper_bound = src_ptr[0];
443
0
    for (int r = 0; r < rows; ++r) {
444
0
      for (int c = 0; c < cols; ++c) {
445
0
        const int val = src_ptr[c];
446
0
        data[c] = val;
447
0
        *lower_bound = AOMMIN(*lower_bound, val);
448
0
        *upper_bound = AOMMAX(*upper_bound, val);
449
0
      }
450
0
      src_ptr += src_stride;
451
0
      data += cols;
452
0
    }
453
0
    return;
454
0
  }
455
456
  // low bit depth
457
0
  *lower_bound = *upper_bound = src[0];
458
0
  for (int r = 0; r < rows; ++r) {
459
0
    for (int c = 0; c < cols; ++c) {
460
0
      const int val = src[c];
461
0
      data[c] = val;
462
0
      *lower_bound = AOMMIN(*lower_bound, val);
463
0
      *upper_bound = AOMMAX(*upper_bound, val);
464
0
    }
465
0
    src += src_stride;
466
0
    data += cols;
467
0
  }
468
0
}
469
470
void av1_rd_pick_palette_intra_sby(
471
    const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int dc_mode_cost,
472
    MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map, int64_t *best_rd,
473
    int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable,
474
    int *beat_best_rd, PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip,
475
0
    uint8_t *tx_type_map) {
476
0
  MACROBLOCKD *const xd = &x->e_mbd;
477
0
  MB_MODE_INFO *const mbmi = xd->mi[0];
478
0
  assert(!is_inter_block(mbmi));
479
0
  assert(av1_allow_palette(cpi->common.features.allow_screen_content_tools,
480
0
                           bsize));
481
0
  assert(PALETTE_MAX_SIZE == 8);
482
0
  assert(PALETTE_MIN_SIZE == 2);
483
484
0
  const int src_stride = x->plane[0].src.stride;
485
0
  const uint8_t *const src = x->plane[0].src.buf;
486
0
  int block_width, block_height, rows, cols;
487
0
  av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
488
0
                           &cols);
489
0
  const SequenceHeader *const seq_params = cpi->common.seq_params;
490
0
  const int is_hbd = seq_params->use_highbitdepth;
491
0
  const int bit_depth = seq_params->bit_depth;
492
0
  int unused;
493
494
0
  int count_buf[1 << 12];      // Maximum (1 << 12) color levels.
495
0
  int count_buf_8bit[1 << 8];  // Maximum (1 << 8) bins for hbd path.
496
0
  int colors, colors_threshold = 0;
497
0
  if (is_hbd) {
498
0
    av1_count_colors_highbd(src, src_stride, rows, cols, bit_depth, count_buf,
499
0
                            count_buf_8bit, &colors_threshold, &colors);
500
0
  } else {
501
0
    av1_count_colors(src, src_stride, rows, cols, count_buf, &colors);
502
0
    colors_threshold = colors;
503
0
  }
504
505
0
  uint8_t *const color_map = xd->plane[0].color_index_map;
506
0
  if (colors_threshold > 1 && colors_threshold <= 64) {
507
0
    int *const data = x->palette_buffer->kmeans_data_buf;
508
0
    int centroids[PALETTE_MAX_SIZE];
509
0
    int lower_bound, upper_bound;
510
0
    fill_data_and_get_bounds(src, src_stride, rows, cols, is_hbd, data,
511
0
                             &lower_bound, &upper_bound);
512
513
0
    mbmi->mode = DC_PRED;
514
0
    mbmi->filter_intra_mode_info.use_filter_intra = 0;
515
516
0
    uint16_t color_cache[2 * PALETTE_MAX_SIZE];
517
0
    const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
518
519
    // Find the dominant colors, stored in top_colors[].
520
0
    int top_colors[PALETTE_MAX_SIZE] = { 0 };
521
0
    for (int i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) {
522
0
      int max_count = 0;
523
0
      for (int j = 0; j < (1 << bit_depth); ++j) {
524
0
        if (count_buf[j] > max_count) {
525
0
          max_count = count_buf[j];
526
0
          top_colors[i] = j;
527
0
        }
528
0
      }
529
0
      assert(max_count > 0);
530
0
      count_buf[top_colors[i]] = 0;
531
0
    }
532
533
    // The following are the approaches used for header rdcost based gating
534
    // for early termination for different values of prune_palette_search_level.
535
    // 0: Pruning based on header rdcost for ascending order palette_size
536
    // search.
537
    // 1: When colors > PALETTE_MIN_SIZE, enabled only for coarse palette_size
538
    // search and for finer search do_header_rd_based_gating parameter is
539
    // explicitly passed as 'false'.
540
    // 2: Enabled only for ascending order palette_size search and for
541
    // descending order search do_header_rd_based_gating parameter is explicitly
542
    // passed as 'false'.
543
0
    const bool do_header_rd_based_gating =
544
0
        cpi->sf.intra_sf.prune_luma_palette_size_search_level != 0;
545
546
    // TODO(huisu@google.com): Try to avoid duplicate computation in cases
547
    // where the dominant colors and the k-means results are similar.
548
0
    if ((cpi->sf.intra_sf.prune_palette_search_level == 1) &&
549
0
        (colors > PALETTE_MIN_SIZE)) {
550
      // Start index and step size below are chosen to evaluate unique
551
      // candidates in neighbor search, in case a winner candidate is found in
552
      // coarse search. Example,
553
      // 1) 8 colors (end_n = 8): 2,3,4,5,6,7,8. start_n is chosen as 2 and step
554
      // size is chosen as 3. Therefore, coarse search will evaluate 2, 5 and 8.
555
      // If winner is found at 5, then 4 and 6 are evaluated. Similarly, for 2
556
      // (3) and 8 (7).
557
      // 2) 7 colors (end_n = 7): 2,3,4,5,6,7. If start_n is chosen as 2 (same
558
      // as for 8 colors) then step size should also be 2, to cover all
559
      // candidates. Coarse search will evaluate 2, 4 and 6. If winner is either
560
      // 2 or 4, 3 will be evaluated. Instead, if start_n=3 and step_size=3,
561
      // coarse search will evaluate 3 and 6. For the winner, unique neighbors
562
      // (3: 2,4 or 6: 5,7) would be evaluated.
563
564
      // Start index for coarse palette search for dominant colors and k-means
565
0
      const uint8_t start_n_lookup_table[PALETTE_MAX_SIZE + 1] = { 0, 0, 0,
566
0
                                                                   3, 3, 2,
567
0
                                                                   3, 3, 2 };
568
      // Step size for coarse palette search for dominant colors and k-means
569
0
      const uint8_t step_size_lookup_table[PALETTE_MAX_SIZE + 1] = { 0, 0, 0,
570
0
                                                                     3, 3, 3,
571
0
                                                                     3, 3, 3 };
572
573
      // Choose the start index and step size for coarse search based on number
574
      // of colors
575
0
      const int max_n = AOMMIN(colors, PALETTE_MAX_SIZE);
576
0
      const int min_n = start_n_lookup_table[max_n];
577
0
      const int step_size = step_size_lookup_table[max_n];
578
0
      assert(min_n >= PALETTE_MIN_SIZE);
579
      // Perform top color coarse palette search to find the winner candidate
580
0
      const int top_color_winner = perform_top_color_palette_search(
581
0
          cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, min_n, max_n + 1,
582
0
          step_size, do_header_rd_based_gating, &unused, color_cache, n_cache,
583
0
          best_mbmi, best_palette_color_map, best_rd, rate, rate_tokenonly,
584
0
          distortion, skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map);
585
      // Evaluate neighbors for the winner color (if winner is found) in the
586
      // above coarse search for dominant colors
587
0
      if (top_color_winner <= max_n) {
588
0
        int stage2_min_n, stage2_max_n, stage2_step_size;
589
0
        set_stage2_params(&stage2_min_n, &stage2_max_n, &stage2_step_size,
590
0
                          top_color_winner, max_n);
591
        // perform finer search for the winner candidate
592
0
        perform_top_color_palette_search(
593
0
            cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, stage2_min_n,
594
0
            stage2_max_n + 1, stage2_step_size,
595
            /*do_header_rd_based_gating=*/false, &unused, color_cache, n_cache,
596
0
            best_mbmi, best_palette_color_map, best_rd, rate, rate_tokenonly,
597
0
            distortion, skippable, beat_best_rd, ctx, best_blk_skip,
598
0
            tx_type_map);
599
0
      }
600
      // K-means clustering.
601
      // Perform k-means coarse palette search to find the winner candidate
602
0
      const int k_means_winner = perform_k_means_palette_search(
603
0
          cpi, x, mbmi, bsize, dc_mode_cost, data, lower_bound, upper_bound,
604
0
          min_n, max_n + 1, step_size, do_header_rd_based_gating, &unused,
605
0
          color_cache, n_cache, best_mbmi, best_palette_color_map, best_rd,
606
0
          rate, rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
607
0
          best_blk_skip, tx_type_map, color_map, rows * cols);
608
      // Evaluate neighbors for the winner color (if winner is found) in the
609
      // above coarse search for k-means
610
0
      if (k_means_winner <= max_n) {
611
0
        int start_n_stage2, end_n_stage2, step_size_stage2;
612
0
        set_stage2_params(&start_n_stage2, &end_n_stage2, &step_size_stage2,
613
0
                          k_means_winner, max_n);
614
        // perform finer search for the winner candidate
615
0
        perform_k_means_palette_search(
616
0
            cpi, x, mbmi, bsize, dc_mode_cost, data, lower_bound, upper_bound,
617
0
            start_n_stage2, end_n_stage2 + 1, step_size_stage2,
618
            /*do_header_rd_based_gating=*/false, &unused, color_cache, n_cache,
619
0
            best_mbmi, best_palette_color_map, best_rd, rate, rate_tokenonly,
620
0
            distortion, skippable, beat_best_rd, ctx, best_blk_skip,
621
0
            tx_type_map, color_map, rows * cols);
622
0
      }
623
0
    } else {
624
0
      const int max_n = AOMMIN(colors, PALETTE_MAX_SIZE),
625
0
                min_n = PALETTE_MIN_SIZE;
626
      // Perform top color palette search in ascending order
627
0
      int last_n_searched = min_n;
628
0
      perform_top_color_palette_search(
629
0
          cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, min_n, max_n + 1,
630
0
          1, do_header_rd_based_gating, &last_n_searched, color_cache, n_cache,
631
0
          best_mbmi, best_palette_color_map, best_rd, rate, rate_tokenonly,
632
0
          distortion, skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map);
633
0
      if (last_n_searched < max_n) {
634
        // Search in descending order until we get to the previous best
635
0
        perform_top_color_palette_search(
636
0
            cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, max_n,
637
0
            last_n_searched, -1, /*do_header_rd_based_gating=*/false, &unused,
638
0
            color_cache, n_cache, best_mbmi, best_palette_color_map, best_rd,
639
0
            rate, rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
640
0
            best_blk_skip, tx_type_map);
641
0
      }
642
      // K-means clustering.
643
0
      if (colors == PALETTE_MIN_SIZE) {
644
        // Special case: These colors automatically become the centroids.
645
0
        assert(colors == 2);
646
0
        centroids[0] = lower_bound;
647
0
        centroids[1] = upper_bound;
648
0
        palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, colors,
649
0
                     color_cache, n_cache, /*do_header_rd_based_gating=*/false,
650
0
                     best_mbmi, best_palette_color_map, best_rd, rate,
651
0
                     rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
652
0
                     best_blk_skip, tx_type_map, NULL, NULL);
653
0
      } else {
654
        // Perform k-means palette search in ascending order
655
0
        last_n_searched = min_n;
656
0
        perform_k_means_palette_search(
657
0
            cpi, x, mbmi, bsize, dc_mode_cost, data, lower_bound, upper_bound,
658
0
            min_n, max_n + 1, 1, do_header_rd_based_gating, &last_n_searched,
659
0
            color_cache, n_cache, best_mbmi, best_palette_color_map, best_rd,
660
0
            rate, rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
661
0
            best_blk_skip, tx_type_map, color_map, rows * cols);
662
0
        if (last_n_searched < max_n) {
663
          // Search in descending order until we get to the previous best
664
0
          perform_k_means_palette_search(
665
0
              cpi, x, mbmi, bsize, dc_mode_cost, data, lower_bound, upper_bound,
666
0
              max_n, last_n_searched, -1, /*do_header_rd_based_gating=*/false,
667
0
              &unused, color_cache, n_cache, best_mbmi, best_palette_color_map,
668
0
              best_rd, rate, rate_tokenonly, distortion, skippable,
669
0
              beat_best_rd, ctx, best_blk_skip, tx_type_map, color_map,
670
0
              rows * cols);
671
0
        }
672
0
      }
673
0
    }
674
0
  }
675
676
0
  if (best_mbmi->palette_mode_info.palette_size[0] > 0) {
677
0
    memcpy(color_map, best_palette_color_map,
678
0
           block_width * block_height * sizeof(best_palette_color_map[0]));
679
0
  }
680
0
  *mbmi = *best_mbmi;
681
0
}
682
683
void av1_rd_pick_palette_intra_sbuv(const AV1_COMP *cpi, MACROBLOCK *x,
684
                                    int dc_mode_cost,
685
                                    uint8_t *best_palette_color_map,
686
                                    MB_MODE_INFO *const best_mbmi,
687
                                    int64_t *best_rd, int *rate,
688
                                    int *rate_tokenonly, int64_t *distortion,
689
0
                                    int *skippable) {
690
0
  MACROBLOCKD *const xd = &x->e_mbd;
691
0
  MB_MODE_INFO *const mbmi = xd->mi[0];
692
0
  assert(!is_inter_block(mbmi));
693
0
  assert(av1_allow_palette(cpi->common.features.allow_screen_content_tools,
694
0
                           mbmi->bsize));
695
0
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
696
0
  const BLOCK_SIZE bsize = mbmi->bsize;
697
0
  const SequenceHeader *const seq_params = cpi->common.seq_params;
698
0
  int this_rate;
699
0
  int64_t this_rd;
700
0
  int colors_u, colors_v;
701
0
  int colors_threshold_u = 0, colors_threshold_v = 0, colors_threshold = 0;
702
0
  const int src_stride = x->plane[1].src.stride;
703
0
  const uint8_t *const src_u = x->plane[1].src.buf;
704
0
  const uint8_t *const src_v = x->plane[2].src.buf;
705
0
  uint8_t *const color_map = xd->plane[1].color_index_map;
706
0
  RD_STATS tokenonly_rd_stats;
707
0
  int plane_block_width, plane_block_height, rows, cols;
708
0
  av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
709
0
                           &plane_block_height, &rows, &cols);
710
711
0
  mbmi->uv_mode = UV_DC_PRED;
712
0
  int count_buf[1 << 12];      // Maximum (1 << 12) color levels.
713
0
  int count_buf_8bit[1 << 8];  // Maximum (1 << 8) bins for hbd path.
714
0
  if (seq_params->use_highbitdepth) {
715
0
    av1_count_colors_highbd(src_u, src_stride, rows, cols,
716
0
                            seq_params->bit_depth, count_buf, count_buf_8bit,
717
0
                            &colors_threshold_u, &colors_u);
718
0
    av1_count_colors_highbd(src_v, src_stride, rows, cols,
719
0
                            seq_params->bit_depth, count_buf, count_buf_8bit,
720
0
                            &colors_threshold_v, &colors_v);
721
0
  } else {
722
0
    av1_count_colors(src_u, src_stride, rows, cols, count_buf, &colors_u);
723
0
    av1_count_colors(src_v, src_stride, rows, cols, count_buf, &colors_v);
724
0
    colors_threshold_u = colors_u;
725
0
    colors_threshold_v = colors_v;
726
0
  }
727
728
0
  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
729
0
  const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
730
731
0
  colors_threshold = colors_threshold_u > colors_threshold_v
732
0
                         ? colors_threshold_u
733
0
                         : colors_threshold_v;
734
0
  if (colors_threshold > 1 && colors_threshold <= 64) {
735
0
    int r, c, n, i, j;
736
0
    const int max_itr = 50;
737
0
    int lb_u, ub_u, val_u;
738
0
    int lb_v, ub_v, val_v;
739
0
    int *const data = x->palette_buffer->kmeans_data_buf;
740
0
    int centroids[2 * PALETTE_MAX_SIZE];
741
742
0
    uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u);
743
0
    uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v);
744
0
    if (seq_params->use_highbitdepth) {
745
0
      lb_u = src_u16[0];
746
0
      ub_u = src_u16[0];
747
0
      lb_v = src_v16[0];
748
0
      ub_v = src_v16[0];
749
0
    } else {
750
0
      lb_u = src_u[0];
751
0
      ub_u = src_u[0];
752
0
      lb_v = src_v[0];
753
0
      ub_v = src_v[0];
754
0
    }
755
756
0
    for (r = 0; r < rows; ++r) {
757
0
      for (c = 0; c < cols; ++c) {
758
0
        if (seq_params->use_highbitdepth) {
759
0
          val_u = src_u16[r * src_stride + c];
760
0
          val_v = src_v16[r * src_stride + c];
761
0
          data[(r * cols + c) * 2] = val_u;
762
0
          data[(r * cols + c) * 2 + 1] = val_v;
763
0
        } else {
764
0
          val_u = src_u[r * src_stride + c];
765
0
          val_v = src_v[r * src_stride + c];
766
0
          data[(r * cols + c) * 2] = val_u;
767
0
          data[(r * cols + c) * 2 + 1] = val_v;
768
0
        }
769
0
        if (val_u < lb_u)
770
0
          lb_u = val_u;
771
0
        else if (val_u > ub_u)
772
0
          ub_u = val_u;
773
0
        if (val_v < lb_v)
774
0
          lb_v = val_v;
775
0
        else if (val_v > ub_v)
776
0
          ub_v = val_v;
777
0
      }
778
0
    }
779
780
0
    const int colors = colors_u > colors_v ? colors_u : colors_v;
781
0
    const int max_colors =
782
0
        colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors;
783
0
    for (n = PALETTE_MIN_SIZE; n <= max_colors; ++n) {
784
0
      for (i = 0; i < n; ++i) {
785
0
        centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2;
786
0
        centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2;
787
0
      }
788
0
      av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr);
789
0
      optimize_palette_colors(color_cache, n_cache, n, 2, centroids,
790
0
                              cpi->common.seq_params->bit_depth);
791
      // Sort the U channel colors in ascending order.
792
0
      for (i = 0; i < 2 * (n - 1); i += 2) {
793
0
        int min_idx = i;
794
0
        int min_val = centroids[i];
795
0
        for (j = i + 2; j < 2 * n; j += 2)
796
0
          if (centroids[j] < min_val) min_val = centroids[j], min_idx = j;
797
0
        if (min_idx != i) {
798
0
          int temp_u = centroids[i], temp_v = centroids[i + 1];
799
0
          centroids[i] = centroids[min_idx];
800
0
          centroids[i + 1] = centroids[min_idx + 1];
801
0
          centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v;
802
0
        }
803
0
      }
804
0
      av1_calc_indices(data, centroids, color_map, rows * cols, n, 2);
805
0
      extend_palette_color_map(color_map, cols, rows, plane_block_width,
806
0
                               plane_block_height);
807
0
      pmi->palette_size[1] = n;
808
0
      for (i = 1; i < 3; ++i) {
809
0
        for (j = 0; j < n; ++j) {
810
0
          if (seq_params->use_highbitdepth)
811
0
            pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd(
812
0
                (int)centroids[j * 2 + i - 1], seq_params->bit_depth);
813
0
          else
814
0
            pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
815
0
                clip_pixel((int)centroids[j * 2 + i - 1]);
816
0
        }
817
0
      }
818
819
0
      if (cpi->sf.intra_sf.early_term_chroma_palette_size_search) {
820
0
        const int palette_mode_rate =
821
0
            intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost);
822
0
        const int64_t header_rd = RDCOST(x->rdmult, palette_mode_rate, 0);
823
        // Terminate further palette_size search, if header cost corresponding
824
        // to lower palette_size is more than the best_rd.
825
0
        if (header_rd >= *best_rd) break;
826
0
        av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
827
0
        if (tokenonly_rd_stats.rate == INT_MAX) continue;
828
0
        this_rate = tokenonly_rd_stats.rate + palette_mode_rate;
829
0
      } else {
830
0
        av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
831
0
        if (tokenonly_rd_stats.rate == INT_MAX) continue;
832
0
        this_rate = tokenonly_rd_stats.rate +
833
0
                    intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost);
834
0
      }
835
836
0
      this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
837
0
      if (this_rd < *best_rd) {
838
0
        *best_rd = this_rd;
839
0
        *best_mbmi = *mbmi;
840
0
        memcpy(best_palette_color_map, color_map,
841
0
               plane_block_width * plane_block_height *
842
0
                   sizeof(best_palette_color_map[0]));
843
0
        *rate = this_rate;
844
0
        *distortion = tokenonly_rd_stats.dist;
845
0
        *rate_tokenonly = tokenonly_rd_stats.rate;
846
0
        *skippable = tokenonly_rd_stats.skip_txfm;
847
0
      }
848
0
    }
849
0
  }
850
0
  if (best_mbmi->palette_mode_info.palette_size[1] > 0) {
851
0
    memcpy(color_map, best_palette_color_map,
852
0
           plane_block_width * plane_block_height *
853
0
               sizeof(best_palette_color_map[0]));
854
0
  }
855
0
}
856
857
0
void av1_restore_uv_color_map(const AV1_COMP *cpi, MACROBLOCK *x) {
858
0
  MACROBLOCKD *const xd = &x->e_mbd;
859
0
  MB_MODE_INFO *const mbmi = xd->mi[0];
860
0
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
861
0
  const BLOCK_SIZE bsize = mbmi->bsize;
862
0
  int src_stride = x->plane[1].src.stride;
863
0
  const uint8_t *const src_u = x->plane[1].src.buf;
864
0
  const uint8_t *const src_v = x->plane[2].src.buf;
865
0
  int *const data = x->palette_buffer->kmeans_data_buf;
866
0
  int centroids[2 * PALETTE_MAX_SIZE];
867
0
  uint8_t *const color_map = xd->plane[1].color_index_map;
868
0
  int r, c;
869
0
  const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u);
870
0
  const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v);
871
0
  int plane_block_width, plane_block_height, rows, cols;
872
0
  av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
873
0
                           &plane_block_height, &rows, &cols);
874
875
0
  for (r = 0; r < rows; ++r) {
876
0
    for (c = 0; c < cols; ++c) {
877
0
      if (cpi->common.seq_params->use_highbitdepth) {
878
0
        data[(r * cols + c) * 2] = src_u16[r * src_stride + c];
879
0
        data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c];
880
0
      } else {
881
0
        data[(r * cols + c) * 2] = src_u[r * src_stride + c];
882
0
        data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c];
883
0
      }
884
0
    }
885
0
  }
886
887
0
  for (r = 1; r < 3; ++r) {
888
0
    for (c = 0; c < pmi->palette_size[1]; ++c) {
889
0
      centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c];
890
0
    }
891
0
  }
892
893
0
  av1_calc_indices(data, centroids, color_map, rows * cols,
894
0
                   pmi->palette_size[1], 2);
895
0
  extend_palette_color_map(color_map, cols, rows, plane_block_width,
896
0
                           plane_block_height);
897
0
}