Coverage Report

Created: 2023-09-25 07:43

/src/libhevc/encoder/ihevce_cabac.c
Line
Count
Source (jump to first uncovered line)
1
/******************************************************************************
2
 *
3
 * Copyright (C) 2018 The Android Open Source Project
4
 *
5
 * Licensed under the Apache License, Version 2.0 (the "License");
6
 * you may not use this file except in compliance with the License.
7
 * You may obtain a copy of the License at:
8
 *
9
 * http://www.apache.org/licenses/LICENSE-2.0
10
 *
11
 * Unless required by applicable law or agreed to in writing, software
12
 * distributed under the License is distributed on an "AS IS" BASIS,
13
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
 * See the License for the specific language governing permissions and
15
 * limitations under the License.
16
 *
17
 *****************************************************************************
18
 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19
*/
20
/**
21
******************************************************************************
22
* @file ihevce_cabac.c
23
*
24
* @brief
25
*  This file contains function definitions related to bitstream generation
26
*
27
* @author
28
*  ittiam
29
*
30
* @List of Functions
31
*  ihevce_cabac_reset()
32
*  ihevce_cabac_init()
33
*  ihevce_cabac_put_byte()
34
*  ihevce_cabac_encode_bin()
35
*  ihevce_cabac_encode_bypass_bin()
36
*  ihevce_cabac_encode_terminate()
37
*  ihevce_cabac_encode_tunary()
38
*  ihevce_cabac_encode_tunary_bypass()
39
*  ihevce_cabac_encode_bypass_bins()
40
*  ihevce_cabac_encode_egk()
41
*  ihevce_cabac_encode_trunc_rice()
42
*  ihevce_cabac_encode_trunc_rice_ctxt()
43
*  ihevce_cabac_flush()
44
*  ihevce_cabac_ctxt_backup()
45
*  ihevce_cabac_ctxt_row_init()
46
*
47
*******************************************************************************
48
*/
49
50
/*****************************************************************************/
51
/* File Includes                                                             */
52
/*****************************************************************************/
53
/* System include files */
54
#include <stdio.h>
55
#include <string.h>
56
#include <stdlib.h>
57
#include <assert.h>
58
#include <stdarg.h>
59
#include <math.h>
60
61
/* User include files */
62
#include "ihevc_typedefs.h"
63
#include "ihevc_debug.h"
64
#include "ihevc_macros.h"
65
#include "ihevc_platform_macros.h"
66
#include "ihevc_cabac_tables.h"
67
68
#include "ihevce_defs.h"
69
#include "ihevce_error_codes.h"
70
#include "ihevce_bitstream.h"
71
#include "ihevce_cabac.h"
72
73
#define TEST_CABAC_BITESTIMATE 0
74
75
/*****************************************************************************/
76
/* Function Definitions                                                      */
77
/*****************************************************************************/
78
79
/**
80
******************************************************************************
81
*
82
*  @brief Resets the encoder cabac engine
83
*
84
*  @par   Description
85
*  This routine needs to be called at start of dependent slice encode
86
*
87
*  @param[inout]   ps_cabac_ctxt
88
*  pointer to cabac context (handle)
89
*
90
*  @param[in]   ps_bitstrm
91
*  pointer to bitstream context (handle)
92
*
93
*  @param[in]   e_cabac_op_mode
94
*  opertaing mode of cabac; put bits / compute bits mode @sa CABAC_OP_MODE
95
*
96
*  @return      success or failure error code
97
*
98
******************************************************************************
99
*/
100
WORD32
101
    ihevce_cabac_reset(cab_ctxt_t *ps_cabac, bitstrm_t *ps_bitstrm, CABAC_OP_MODE e_cabac_op_mode)
102
0
{
103
    /* Sanity checks */
104
0
    ASSERT(ps_cabac != NULL);
105
0
    ASSERT(
106
0
        (e_cabac_op_mode == CABAC_MODE_ENCODE_BITS) ||
107
0
        (e_cabac_op_mode == CABAC_MODE_COMPUTE_BITS));
108
109
0
    ps_cabac->e_cabac_op_mode = e_cabac_op_mode;
110
111
0
    if(CABAC_MODE_ENCODE_BITS == e_cabac_op_mode)
112
0
    {
113
0
        ASSERT(ps_bitstrm != NULL);
114
115
        /* Bitstream context initialization */
116
0
        ps_cabac->pu1_strm_buffer = ps_bitstrm->pu1_strm_buffer;
117
0
        ps_cabac->u4_max_strm_size = ps_bitstrm->u4_max_strm_size;
118
        /* When entropy sync is enabled start form fixed offset from point
119
         * where slice header extension has ended to handle emulation prevention
120
         *  bytes during insertion of slice offset at end of frame */
121
0
        if(1 == ps_cabac->i1_entropy_coding_sync_enabled_flag)
122
0
        {
123
0
            ps_cabac->u4_strm_buf_offset = ps_cabac->u4_first_slice_start_offset;
124
0
        }
125
0
        else
126
0
        {
127
0
            ps_cabac->u4_strm_buf_offset = ps_bitstrm->u4_strm_buf_offset;
128
0
        }
129
0
        ps_cabac->i4_zero_bytes_run = ps_bitstrm->i4_zero_bytes_run;
130
131
        /* cabac engine initialization */
132
0
        ps_cabac->u4_low = 0;
133
0
        ps_cabac->u4_range = 510;
134
0
        ps_cabac->u4_bits_gen = 0;
135
0
        ps_cabac->u4_out_standing_bytes = 0;
136
0
    }
137
0
    else /* (CABAC_MODE_COMPUTE_BITS == e_cabac_op_mode) */
138
0
    {
139
        /* reset the bits estimated */
140
0
        ps_cabac->u4_bits_estimated_q12 = 0;
141
142
        /* reset the texture bits estimated */
143
0
        ps_cabac->u4_texture_bits_estimated_q12 = 0;
144
145
        /* Setting range to 0 switches off AEV_TRACE in compute bits mode */
146
0
        ps_cabac->u4_range = 0;
147
0
    }
148
149
0
    return (IHEVCE_SUCCESS);
150
0
}
151
152
/**
153
******************************************************************************
154
*
155
*  @brief Initializes the encoder cabac engine
156
*
157
*  @par   Description
158
*  This routine needs to be called at start of slice/frame encode
159
*
160
*  @param[inout]   ps_cabac_ctxt
161
*  pointer to cabac context (handle)
162
*
163
*  @param[in]   ps_bitstrm
164
*  pointer to bitstream context (handle)
165
*
166
*  @param[in]   qp
167
*  current slice qp
168
*
169
*  @param[in]   cabac_init_idc
170
*  current slice init idc (range - [0- 2])*
171
*
172
*  @param[in]   e_cabac_op_mode
173
*  opertaing mode of cabac; put bits / compute bits mode @sa CABAC_OP_MODE
174
*
175
*  @return      success or failure error code
176
*
177
******************************************************************************
178
*/
179
WORD32 ihevce_cabac_init(
180
    cab_ctxt_t *ps_cabac,
181
    bitstrm_t *ps_bitstrm,
182
    WORD32 slice_qp,
183
    WORD32 cabac_init_idc,
184
    CABAC_OP_MODE e_cabac_op_mode)
185
0
{
186
    /* Sanity checks */
187
0
    ASSERT(ps_cabac != NULL);
188
0
    ASSERT((slice_qp >= 0) && (slice_qp < IHEVC_MAX_QP));
189
0
    ASSERT((cabac_init_idc >= 0) && (cabac_init_idc < 3));
190
0
    ASSERT(
191
0
        (e_cabac_op_mode == CABAC_MODE_ENCODE_BITS) ||
192
0
        (e_cabac_op_mode == CABAC_MODE_COMPUTE_BITS));
193
194
0
    ps_cabac->e_cabac_op_mode = e_cabac_op_mode;
195
196
0
    if(CABAC_MODE_ENCODE_BITS == e_cabac_op_mode)
197
0
    {
198
0
        ASSERT(ps_bitstrm != NULL);
199
200
        /* Bitstream context initialization */
201
0
        ps_cabac->pu1_strm_buffer = ps_bitstrm->pu1_strm_buffer;
202
0
        ps_cabac->u4_max_strm_size = ps_bitstrm->u4_max_strm_size;
203
        /* When entropy sync is enabled start form fixed offset from point
204
         * where slice header extension has ended to handle emulation prevention
205
         *  bytes during insertion of slice offset at end of frame */
206
0
        if(1 == ps_cabac->i1_entropy_coding_sync_enabled_flag)
207
0
        {
208
0
            ps_cabac->u4_strm_buf_offset = ps_cabac->u4_first_slice_start_offset;
209
0
        }
210
0
        else
211
0
        {
212
0
            ps_cabac->u4_strm_buf_offset = ps_bitstrm->u4_strm_buf_offset;
213
0
        }
214
0
        ps_cabac->i4_zero_bytes_run = ps_bitstrm->i4_zero_bytes_run;
215
216
        /* cabac engine initialization */
217
0
        ps_cabac->u4_low = 0;
218
0
        ps_cabac->u4_range = 510;
219
0
        ps_cabac->u4_bits_gen = 0;
220
0
        ps_cabac->u4_out_standing_bytes = 0;
221
222
        /* reset the bits estimated */
223
0
        ps_cabac->u4_bits_estimated_q12 = 0;
224
225
        /* reset the texture bits estimated */
226
0
        ps_cabac->u4_texture_bits_estimated_q12 = 0;
227
0
    }
228
0
    else /* (CABAC_MODE_COMPUTE_BITS == e_cabac_op_mode) */
229
0
    {
230
        /* reset the bits estimated */
231
0
        ps_cabac->u4_bits_estimated_q12 = 0;
232
233
        /* reset the texture bits estimated */
234
0
        ps_cabac->u4_texture_bits_estimated_q12 = 0;
235
236
        /* Setting range to 0 switches off AEV_TRACE in compute bits mode */
237
0
        ps_cabac->u4_range = 0;
238
0
    }
239
240
    /* cabac context initialization based on init idc and slice qp */
241
0
    COPY_CABAC_STATES(
242
0
        ps_cabac->au1_ctxt_models,
243
0
        &gau1_ihevc_cab_ctxts[cabac_init_idc][slice_qp][0],
244
0
        IHEVC_CAB_CTXT_END);
245
246
0
    return (IHEVCE_SUCCESS);
247
0
}
248
249
/**
250
******************************************************************************
251
*
252
*  @brief Puts new byte (and outstanding bytes) into bitstream after cabac
253
*         renormalization
254
*
255
*  @par   Description
256
*  1. Extract the leading byte of low(L)
257
*  2. If leading byte=0xff increment outstanding bytes and return
258
*     (as the actual bits depend on carry propogation later)
259
*  3. If leading byte is not 0xff check for any carry propogation
260
*  4. Insert the carry (propogated in previous byte) along with outstanding
261
*     bytes (if any) and leading byte
262
*
263
*
264
*  @param[inout]   ps_cabac
265
*  pointer to cabac context (handle)
266
*
267
*  @return      success or failure error code
268
*
269
******************************************************************************
270
*/
271
WORD32 ihevce_cabac_put_byte(cab_ctxt_t *ps_cabac)
272
0
{
273
0
    UWORD32 u4_low = ps_cabac->u4_low;
274
0
    UWORD32 u4_bits_gen = ps_cabac->u4_bits_gen;
275
0
    WORD32 lead_byte = u4_low >> (u4_bits_gen + CABAC_BITS - 8);
276
277
    /* Sanity checks */
278
0
    ASSERT((ps_cabac->u4_range >= 256) && (ps_cabac->u4_range < 512));
279
0
    ASSERT((u4_bits_gen >= 8));
280
281
    /* update bits generated and low after extracting leading byte */
282
0
    u4_bits_gen -= 8;
283
0
    ps_cabac->u4_low &= ((1 << (CABAC_BITS + u4_bits_gen)) - 1);
284
0
    ps_cabac->u4_bits_gen = u4_bits_gen;
285
286
    /************************************************************************/
287
    /* 1. Extract the leading byte of low(L)                                */
288
    /* 2. If leading byte=0xff increment outstanding bytes and return       */
289
    /*      (as the actual bits depend on carry propogation later)          */
290
    /* 3. If leading byte is not 0xff check for any carry propogation       */
291
    /* 4. Insert the carry (propogated in previous byte) along with         */
292
    /*    outstanding bytes (if any) and leading byte                       */
293
    /************************************************************************/
294
0
    if(lead_byte == 0xff)
295
0
    {
296
        /* actual bits depend on carry propogration     */
297
0
        ps_cabac->u4_out_standing_bytes++;
298
0
        return (IHEVCE_SUCCESS);
299
0
    }
300
0
    else
301
0
    {
302
        /* carry = 1 => putbit(1); carry propogated due to L renorm */
303
0
        WORD32 carry = (lead_byte >> 8) & 0x1;
304
0
        UWORD8 *pu1_strm_buf = ps_cabac->pu1_strm_buffer;
305
0
        UWORD32 u4_strm_buf_offset = ps_cabac->u4_strm_buf_offset;
306
0
        WORD32 zero_run = ps_cabac->i4_zero_bytes_run;
307
0
        UWORD32 u4_out_standing_bytes = ps_cabac->u4_out_standing_bytes;
308
309
        /*********************************************************************/
310
        /* Bitstream overflow check                                          */
311
        /* NOTE: corner case of epb bytes (max 2 for 32bit word) not handled */
312
        /*********************************************************************/
313
0
        if((u4_strm_buf_offset + u4_out_standing_bytes + 1) >= ps_cabac->u4_max_strm_size)
314
0
        {
315
            /* return without corrupting the buffer beyond its size */
316
0
            return (IHEVCE_BITSTREAM_BUFFER_OVERFLOW);
317
0
        }
318
319
        /*********************************************************************/
320
        /*        Insert the carry propogated in previous byte               */
321
        /*                                                                   */
322
        /* Note : Do not worry about corruption into slice header align byte */
323
        /*        This is because the first bin cannot result in overflow    */
324
        /*********************************************************************/
325
0
        if(carry)
326
0
        {
327
            /* CORNER CASE: if the previous data is 0x000003, then EPB will be inserted
328
            and the data will become 0x00000303 and if the carry is present, it will
329
            be added with the last byte and it will become 0x00000304 which is not correct
330
            as per standard*/
331
            /* so check for previous four bytes and if it is equal to 0x00000303
332
            then subtract u4_strm_buf_offset by 1 */
333
0
            if(pu1_strm_buf[u4_strm_buf_offset - 1] == 0x03 &&
334
0
               pu1_strm_buf[u4_strm_buf_offset - 2] == 0x03 &&
335
0
               pu1_strm_buf[u4_strm_buf_offset - 3] == 0x00 &&
336
0
               pu1_strm_buf[u4_strm_buf_offset - 4] == 0x00)
337
0
            {
338
0
                u4_strm_buf_offset -= 1;
339
0
            }
340
            /* previous byte carry add will not result in overflow to        */
341
            /* u4_strm_buf_offset - 2 as we track 0xff as outstanding bytes  */
342
0
            pu1_strm_buf[u4_strm_buf_offset - 1] += carry;
343
0
            zero_run = 0;
344
0
        }
345
346
        /*        Insert outstanding bytes (if any)         */
347
0
        while(u4_out_standing_bytes)
348
0
        {
349
0
            UWORD8 u1_0_or_ff = carry ? 0 : 0xFF;
350
351
0
            PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, u1_0_or_ff, zero_run);
352
353
0
            u4_out_standing_bytes--;
354
0
        }
355
0
        ps_cabac->u4_out_standing_bytes = 0;
356
357
        /*        Insert the leading byte                   */
358
0
        lead_byte &= 0xFF;
359
0
        PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, lead_byte, zero_run);
360
361
        /* update the state variables and return success */
362
0
        ps_cabac->u4_strm_buf_offset = u4_strm_buf_offset;
363
0
        ps_cabac->i4_zero_bytes_run = zero_run;
364
0
        return (IHEVCE_SUCCESS);
365
0
    }
366
0
}
367
368
/**
369
******************************************************************************
370
*
371
*  @brief Codes a bypass bin (equi probable 0 / 1)
372
*
373
*  @par   Description
374
*  After encoding bypass bin, bits gen incremented by 1 and bitstream generated
375
*
376
*  @param[inout]  ps_cabac : pointer to cabac context (handle)
377
*
378
*  @param[in]   bin :  bypass bin(0/1) to be encoded
379
*
380
*  @return      success or failure error code
381
*
382
******************************************************************************
383
*/
384
WORD32 ihevce_cabac_encode_bypass_bin(cab_ctxt_t *ps_cabac, WORD32 bin)
385
0
{
386
0
    UWORD32 u4_range = ps_cabac->u4_range;
387
0
    UWORD32 u4_low = ps_cabac->u4_low;
388
389
0
    if(CABAC_MODE_ENCODE_BITS == ps_cabac->e_cabac_op_mode)
390
0
    {
391
        /* Sanity checks */
392
0
        ASSERT((u4_range >= 256) && (u4_range < 512));
393
0
        ASSERT((bin == 0) || (bin == 1));
394
395
        /*Compute bit always to populate the trace*/
396
        /* increment bits generated by 1 */
397
0
        ps_cabac->u4_bits_estimated_q12 += (1 << CABAC_FRAC_BITS_Q);
398
399
0
        u4_low <<= 1;
400
        /* add range if bin is 1 */
401
0
        if(bin)
402
0
        {
403
0
            u4_low += u4_range;
404
0
        }
405
406
        /* 1 bit to be inserted in the bitstream */
407
0
        ps_cabac->u4_bits_gen++;
408
0
        ps_cabac->u4_low = u4_low;
409
410
        /* generate stream when a byte is ready */
411
0
        if(ps_cabac->u4_bits_gen > CABAC_BITS)
412
0
        {
413
0
            return (ihevce_cabac_put_byte(ps_cabac));
414
0
        }
415
0
    }
416
0
    else /* (CABAC_MODE_COMPUTE_BITS == e_cabac_op_mode) */
417
0
    {
418
        /* increment bits generated by 1 */
419
0
        ps_cabac->u4_bits_estimated_q12 += (1 << CABAC_FRAC_BITS_Q);
420
0
    }
421
422
0
    return (IHEVCE_SUCCESS);
423
0
}
424
425
/**
426
******************************************************************************
427
*
428
*  @brief Codes a terminate bin (1:terminate 0:do not terminate)
429
*
430
*  @par   Description
431
*  After encoding bypass bin, bits gen incremented by 1 and bitstream generated
432
*
433
*  @param[inout]  ps_cabac : pointer to cabac context (handle)
434
*
435
*  @param[in]   term_bin : (1:terminate 0:do not terminate)
436
*
437
*  @return      success or failure error code
438
*
439
******************************************************************************
440
*/
441
WORD32
442
    ihevce_cabac_encode_terminate(cab_ctxt_t *ps_cabac, WORD32 term_bin, WORD32 i4_end_of_sub_strm)
443
0
{
444
0
    UWORD32 u4_range = ps_cabac->u4_range;
445
0
    UWORD32 u4_low = ps_cabac->u4_low;
446
0
    UWORD32 u4_rlps;
447
0
    WORD32 shift;
448
0
    WORD32 error = IHEVCE_SUCCESS;
449
450
    /* Sanity checks */
451
0
    ASSERT((u4_range >= 256) && (u4_range < 512));
452
0
    ASSERT((term_bin == 0) || (term_bin == 1));
453
454
    /*  term_bin = 1 has lps range = 2 */
455
0
    u4_rlps = 2;
456
0
    u4_range -= u4_rlps;
457
458
    /* if terminate L is incremented by curR and R=2 */
459
0
    if(term_bin)
460
0
    {
461
        /* lps path;  L= L + R; R = RLPS */
462
0
        u4_low += u4_range;
463
0
        u4_range = u4_rlps;
464
0
    }
465
466
    /*****************************************************************/
467
    /* Renormalization; calculate bits generated based on range(R)   */
468
    /* Note : 6 <= R < 512; R is 2 only for terminating encode       */
469
    /*****************************************************************/
470
0
    GETRANGE(shift, u4_range);
471
0
    shift = 9 - shift;
472
0
    u4_low <<= shift;
473
0
    u4_range <<= shift;
474
475
    /* bits to be inserted in the bitstream */
476
0
    ps_cabac->u4_bits_gen += shift;
477
0
    ps_cabac->u4_range = u4_range;
478
0
    ps_cabac->u4_low = u4_low;
479
480
    /* generate stream when a byte is ready */
481
0
    if(ps_cabac->u4_bits_gen > CABAC_BITS)
482
0
    {
483
0
        error = ihevce_cabac_put_byte(ps_cabac);
484
0
    }
485
486
0
    if(term_bin)
487
0
    {
488
0
        ihevce_cabac_flush(ps_cabac, i4_end_of_sub_strm);
489
0
    }
490
491
    /*Compute bit always to populate the trace*/
492
0
    ps_cabac->u4_bits_estimated_q12 += gau2_ihevce_cabac_bin_to_bits[(62 << 1) | term_bin];
493
494
0
    return (error);
495
0
}
496
497
/**
498
******************************************************************************
499
*
500
*  @brief Encodes a truncated unary symbol associated with context model(s)
501
*
502
*  @par   Description
503
*  Does binarization of tunary symbol as per sec 9.3.2.2 and does the cabac
504
*  encoding of each bin. This is used for computing symbols like qp_delta,
505
*  last_sig_coeff_prefix_x, last_sig_coeff_prefix_y.
506
*
507
*  The context models associated with each bin is computed as :
508
*   current bin context = "base context idx" + (bin_idx >> shift)
509
*  where
510
*   1. "base context idx" is the base index for the syntax element
511
*   2. "bin_idx" is the current bin index of the unary code
512
*   3. "shift" is the shift factor associated with this syntax element
513
*
514
*  @param[inout]ps_cabac
515
*   pointer to cabac context (handle)
516
*
517
*  @param[in]   sym
518
*   syntax element to be coded as truncated unary bins
519
*
520
*  @param[in]   c_max
521
*   maximum value of sym (required for tunary binarization)
522
*
523
*  @param[in]   ctxt_index
524
*   base context model index for this syntax element
525
*
526
*  @param[in]   ctxt_shift
527
*   shift factor for context increments associated with this syntax element
528
*
529
*  @param[in]   ctxt_inc_max
530
*   max value of context increment beyond which all bins will use same ctxt
531
*
532
*  @return      success or failure error code
533
*
534
******************************************************************************
535
*/
536
WORD32 ihevce_cabac_encode_tunary(
537
    cab_ctxt_t *ps_cabac,
538
    WORD32 sym,
539
    WORD32 c_max,
540
    WORD32 ctxt_index,
541
    WORD32 ctxt_shift,
542
    WORD32 ctxt_inc_max)
543
0
{
544
0
    WORD32 bin_ctxt, i;
545
0
    WORD32 error = IHEVCE_SUCCESS;
546
547
    /* Sanity checks */
548
0
    ASSERT(c_max > 0);
549
0
    ASSERT((sym <= c_max) && (sym >= 0));
550
0
    ASSERT((ctxt_index >= 0) && (ctxt_index < IHEVC_CAB_CTXT_END));
551
0
    ASSERT((ctxt_index + (c_max >> ctxt_shift)) < IHEVC_CAB_CTXT_END);
552
553
    /* Special case of sym= 0 */
554
0
    if(0 == sym)
555
0
    {
556
0
        return (ihevce_cabac_encode_bin(ps_cabac, 0, ctxt_index));
557
0
    }
558
559
    /* write '1' bins  */
560
0
    for(i = 0; i < sym; i++)
561
0
    {
562
        /* TODO: encode bin to be inlined later */
563
0
        bin_ctxt = ctxt_index + MIN((i >> ctxt_shift), ctxt_inc_max);
564
0
        error |= ihevce_cabac_encode_bin(ps_cabac, 1, bin_ctxt);
565
0
    }
566
567
    /* write terminating 0 bin */
568
0
    if(sym < c_max)
569
0
    {
570
        /* TODO: encode bin to be inlined later */
571
0
        bin_ctxt = ctxt_index + MIN((i >> ctxt_shift), ctxt_inc_max);
572
0
        error |= ihevce_cabac_encode_bin(ps_cabac, 0, bin_ctxt);
573
0
    }
574
575
0
    return (error);
576
0
}
577
578
/**
579
******************************************************************************
580
*
581
*  @brief Encodes a syntax element as truncated unary bypass bins
582
*
583
*  @par   Description
584
*  Does binarization of tunary symbol as per sec 9.3.2.2 and does the cabac
585
*  encoding of each bin. This is used for computing symbols like merge_idx,
586
*  mpm_idx etc
587
*
588
*  @param[inout]ps_cabac
589
*   pointer to cabac context (handle)
590
*
591
*  @param[in]   sym
592
*   syntax element to be coded as truncated unary bins
593
*
594
*  @param[in]   c_max
595
*   maximum value of sym (required for tunary binarization)
596
*
597
*  @return      success or failure error code
598
*
599
******************************************************************************
600
*/
601
WORD32 ihevce_cabac_encode_tunary_bypass(cab_ctxt_t *ps_cabac, WORD32 sym, WORD32 c_max)
602
0
{
603
0
    WORD32 error = IHEVCE_SUCCESS;
604
0
    WORD32 length;
605
0
    WORD32 u4_bins;
606
607
    /* Sanity checks */
608
0
    ASSERT(c_max > 0);
609
0
    ASSERT((sym <= c_max) && (sym >= 0));
610
611
0
    if(sym < c_max)
612
0
    {
613
        /* unary code with (sym) '1's and terminating '0' bin */
614
0
        length = (sym + 1);
615
0
        u4_bins = (1 << length) - 2;
616
0
    }
617
0
    else
618
0
    {
619
        /* tunary code with (sym) '1's */
620
0
        length = sym;
621
0
        u4_bins = (1 << length) - 1;
622
0
    }
623
624
    /* Encode the tunary binarized code as bypass bins */
625
0
    error = ihevce_cabac_encode_bypass_bins(ps_cabac, u4_bins, length);
626
627
0
    return (error);
628
0
}
629
630
/**
631
******************************************************************************
632
*
633
*  @brief Encodes a syntax element as kth order Exp-Golomb code (EGK)
634
*
635
*  @par   Description
636
*  Does binarization of symbol as per sec 9.3.2.4  kth order Exp-Golomb(EGk)
637
*  process and encodes the resulting bypass bins
638
*
639
*  @param[inout]ps_cabac
640
*   pointer to cabac context (handle)
641
*
642
*  @param[in]   u4_sym
643
*   syntax element to be coded as EGK
644
*
645
*  @param[in]   k
646
*   order of EGk
647
*
648
*  @return      success or failure error code
649
*
650
******************************************************************************
651
*/
652
WORD32 ihevce_cabac_encode_egk(cab_ctxt_t *ps_cabac, UWORD32 u4_sym, WORD32 k)
653
0
{
654
0
    WORD32 num_bins, unary_length;
655
0
    UWORD32 u4_sym_shiftk_plus1, u4_egk, u4_unary_bins;
656
657
0
    WORD32 error = IHEVCE_SUCCESS;
658
659
    /* Sanity checks */
660
0
    ASSERT((k >= 0));
661
    /* ASSERT(u4_sym >= (UWORD32)(1 << k)); */
662
663
    /************************************************************************/
664
    /* shift symbol by k bits to find unary code prefix (111110)            */
665
    /* Use GETRANGE to elminate the while loop in sec 9.3.2.4 of HEVC spec  */
666
    /************************************************************************/
667
0
    u4_sym_shiftk_plus1 = (u4_sym >> k) + 1;
668
    /* GETRANGE(unary_length, (u4_sym_shiftk_plus1 + 1)); */
669
0
    GETRANGE(unary_length, u4_sym_shiftk_plus1);
670
671
    /* unary code with (unary_length-1) '1's and terminating '0' bin */
672
0
    u4_unary_bins = (1 << unary_length) - 2;
673
674
    /* insert the symbol prefix of (unary lenght - 1)  bins */
675
0
    u4_egk = (u4_unary_bins << (unary_length - 1)) |
676
0
             (u4_sym_shiftk_plus1 & ((1 << (unary_length - 1)) - 1));
677
678
    /* insert last k bits of symbol in the end */
679
0
    u4_egk = (u4_egk << k) | (u4_sym & ((1 << k) - 1));
680
681
    /* length of the code = 2 *(unary_length - 1) + 1 + k */
682
0
    num_bins = (2 * unary_length) - 1 + k;
683
684
    /* Encode the egk binarized code as bypass bins */
685
0
    error = ihevce_cabac_encode_bypass_bins(ps_cabac, u4_egk, num_bins);
686
687
0
    return (error);
688
0
}
689
690
/**
691
******************************************************************************
692
*
693
*  @brief Encodes a syntax element as truncated rice code (TR)
694
*
695
*  @par   Description
696
*  Does binarization of symbol as per sec 9.3.2.3 Truncated Rice(TR)
697
*  binarization process and encodes the resulting bypass bins
698
*  This function ise used for coeff_abs_level_remaining coding when
699
*  level is less than c_rice_max
700
*
701
*  @param[inout]ps_cabac
702
*   pointer to cabac context (handle)
703
*
704
*  @param[in]   u4_sym
705
*   syntax element to be coded as truncated rice code
706
*
707
*  @param[in]   c_rice_param
708
*    shift factor for truncated unary prefix coding of (u4_sym >> c_rice_param)
709
*
710
*  @param[in]   c_rice_max
711
*    max symbol val below which a suffix is coded as (u4_sym%(1<<c_rice_param))
712
*    This is currently (4 << c_rice_param) for coeff_abs_level_remaining
713
*
714
*  @return      success or failure error code
715
*
716
******************************************************************************
717
*/
718
WORD32 ihevce_cabac_encode_trunc_rice(
719
    cab_ctxt_t *ps_cabac, UWORD32 u4_sym, WORD32 c_rice_param, WORD32 c_rice_max)
720
0
{
721
0
    WORD32 num_bins, unary_length, u4_unary_bins;
722
0
    UWORD32 u4_tr;
723
724
0
    WORD32 error = IHEVCE_SUCCESS;
725
726
0
    (void)c_rice_max;
727
    /* Sanity checks */
728
0
    ASSERT((c_rice_param >= 0));
729
0
    ASSERT((UWORD32)c_rice_max > u4_sym);
730
731
    /************************************************************************/
732
    /* shift symbol by c_rice_param bits to find unary code prefix (111.10) */
733
    /************************************************************************/
734
0
    unary_length = (u4_sym >> c_rice_param) + 1;
735
736
    /* unary code with (unary_length-1) '1's and terminating '0' bin */
737
0
    u4_unary_bins = (1 << unary_length) - 2;
738
739
    /* insert last c_rice_param bits of symbol in the end */
740
0
    u4_tr = (u4_unary_bins << c_rice_param) | (u4_sym & ((1 << c_rice_param) - 1));
741
742
    /* length of the code */
743
0
    num_bins = unary_length + c_rice_param;
744
745
    /* Encode the tr binarized code as bypass bins */
746
0
    error = ihevce_cabac_encode_bypass_bins(ps_cabac, u4_tr, num_bins);
747
748
0
    return (error);
749
0
}
750
751
/**
752
******************************************************************************
753
*
754
*  @brief Flushes the cabac encoder engine as per section 9.3.4 figure 9-12
755
*
756
*  @par   Description
757
*
758
*
759
*  @param[inout]   ps_cabac
760
*  pointer to cabac context (handle)
761
*
762
*  @return      success or failure error code
763
*
764
******************************************************************************
765
*/
766
WORD32 ihevce_cabac_flush(cab_ctxt_t *ps_cabac, WORD32 i4_end_of_sub_strm)
767
0
{
768
0
    UWORD32 u4_low = ps_cabac->u4_low;
769
0
    UWORD32 u4_bits_gen = ps_cabac->u4_bits_gen;
770
771
0
    UWORD8 *pu1_strm_buf = ps_cabac->pu1_strm_buffer;
772
0
    UWORD32 u4_strm_buf_offset = ps_cabac->u4_strm_buf_offset;
773
0
    WORD32 zero_run = ps_cabac->i4_zero_bytes_run;
774
0
    UWORD32 u4_out_standing_bytes = ps_cabac->u4_out_standing_bytes;
775
776
0
    (void)i4_end_of_sub_strm;
777
    /************************************************************************/
778
    /* Insert the carry (propogated in previous byte) along with            */
779
    /* outstanding bytes (if any) and flush remaining bits                  */
780
    /************************************************************************/
781
782
    //TODO: Review this function
783
0
    {
784
        /* carry = 1 => putbit(1); carry propogated due to L renorm */
785
0
        WORD32 carry = (u4_low >> (u4_bits_gen + CABAC_BITS)) & 0x1;
786
0
        WORD32 last_byte;
787
0
        WORD32 bits_left;
788
0
        WORD32 rem_bits;
789
790
        /*********************************************************************/
791
        /* Bitstream overflow check                                          */
792
        /* NOTE: corner case of epb bytes (max 2 for 32bit word) not handled */
793
        /*********************************************************************/
794
0
        if((u4_strm_buf_offset + u4_out_standing_bytes + 1) >= ps_cabac->u4_max_strm_size)
795
0
        {
796
            /* return without corrupting the buffer beyond its size */
797
0
            return (IHEVCE_BITSTREAM_BUFFER_OVERFLOW);
798
0
        }
799
800
0
        if(carry)
801
0
        {
802
            /* CORNER CASE: if the previous data is 0x000003, then EPB will be inserted
803
            and the data will become 0x00000303 and if the carry is present, it will
804
            be added with the last byte and it will become 0x00000304 which is not correct
805
            as per standard*/
806
            /* so check for previous four bytes and if it is equal to 0x00000303
807
            then subtract u4_strm_buf_offset by 1 */
808
0
            if(pu1_strm_buf[u4_strm_buf_offset - 1] == 0x03 &&
809
0
               pu1_strm_buf[u4_strm_buf_offset - 2] == 0x03 &&
810
0
               pu1_strm_buf[u4_strm_buf_offset - 3] == 0x00 &&
811
0
               pu1_strm_buf[u4_strm_buf_offset - 4] == 0x00)
812
0
            {
813
0
                u4_strm_buf_offset -= 1;
814
0
            }
815
            /* previous byte carry add will not result in overflow to        */
816
            /* u4_strm_buf_offset - 2 as we track 0xff as outstanding bytes  */
817
0
            pu1_strm_buf[u4_strm_buf_offset - 1] += carry;
818
0
            zero_run = 0;
819
0
        }
820
821
        /*        Insert outstanding bytes (if any)         */
822
0
        while(u4_out_standing_bytes)
823
0
        {
824
0
            UWORD8 u1_0_or_ff = carry ? 0 : 0xFF;
825
826
0
            PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, u1_0_or_ff, zero_run);
827
828
0
            u4_out_standing_bytes--;
829
0
        }
830
831
        /*  clear the carry in low */
832
0
        u4_low &= ((1 << (u4_bits_gen + CABAC_BITS)) - 1);
833
834
        /* extract the remaining bits;                                   */
835
        /* includes additional msb bit of low as per Figure 9-12      */
836
0
        bits_left = u4_bits_gen + 1;
837
0
        rem_bits = (u4_low >> (u4_bits_gen + CABAC_BITS - bits_left));
838
839
0
        if(bits_left >= 8)
840
0
        {
841
0
            last_byte = (rem_bits >> (bits_left - 8)) & 0xFF;
842
0
            PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, last_byte, zero_run);
843
0
            bits_left -= 8;
844
0
        }
845
846
        /* insert last byte along with rbsp stop bit(1) and 0's in the end */
847
0
        last_byte = (rem_bits << (8 - bits_left)) | (1 << (7 - bits_left));
848
0
        last_byte &= 0xFF;
849
0
        PUTBYTE_EPB(pu1_strm_buf, u4_strm_buf_offset, last_byte, zero_run);
850
851
        /* update the state variables and return success */
852
0
        ps_cabac->u4_strm_buf_offset = u4_strm_buf_offset;
853
0
        ps_cabac->i4_zero_bytes_run = 0;
854
0
        return (IHEVCE_SUCCESS);
855
0
    }
856
0
}
857
858
/**
859
******************************************************************************
860
*
861
*  @brief API to backup cabac ctxt at end of 2nd CTB row which is used to init
862
*   context at start of every row
863
*
864
*  @par   Description
865
*         API to backup cabac ctxt at end of 2nd CTB row which is used to init
866
*         context at start of every row
867
*
868
*  @param[inout]   ps_cabac
869
*  pointer to cabac context (handle)
870
*
871
*  @return      success or failure error code
872
*
873
******************************************************************************
874
*/
875
WORD32 ihevce_cabac_ctxt_backup(cab_ctxt_t *ps_cabac)
876
0
{
877
0
    memcpy(
878
0
        ps_cabac->au1_ctxt_models_top_right,
879
0
        ps_cabac->au1_ctxt_models,
880
0
        sizeof(ps_cabac->au1_ctxt_models));
881
0
    return (IHEVCE_SUCCESS);
882
0
}
883
884
/**
885
******************************************************************************
886
*
887
*  @brief Init cabac ctxt at every row start
888
*
889
*  @par   Description
890
*         API to init cabac ctxt at start of every row when entropy sync is
891
*         enabled
892
*
893
*  @param[inout]   ps_cabac
894
*  pointer to cabac context (handle)
895
*
896
*  @return      success or failure error code
897
*
898
******************************************************************************
899
*/
900
WORD32 ihevce_cabac_ctxt_row_init(cab_ctxt_t *ps_cabac)
901
0
{
902
    /* cabac engine initialization */
903
0
    ps_cabac->u4_low = 0;
904
0
    ps_cabac->u4_range = 510;
905
0
    ps_cabac->u4_bits_gen = 0;
906
0
    ps_cabac->u4_out_standing_bytes = 0;
907
0
    ps_cabac->i4_zero_bytes_run = 0;
908
909
    /*copy top right context as init context when starting to encode a row*/
910
0
    COPY_CABAC_STATES(
911
0
        ps_cabac->au1_ctxt_models, ps_cabac->au1_ctxt_models_top_right, IHEVC_CAB_CTXT_END);
912
913
0
    return (IHEVCE_SUCCESS);
914
0
}