/src/libjpeg-turbo.2.0.x/jcarith.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * jcarith.c | 
| 3 |  |  * | 
| 4 |  |  * This file was part of the Independent JPEG Group's software: | 
| 5 |  |  * Developed 1997-2009 by Guido Vollbeding. | 
| 6 |  |  * libjpeg-turbo Modifications: | 
| 7 |  |  * Copyright (C) 2015, 2018, 2021, D. R. Commander. | 
| 8 |  |  * For conditions of distribution and use, see the accompanying README.ijg | 
| 9 |  |  * file. | 
| 10 |  |  * | 
| 11 |  |  * This file contains portable arithmetic entropy encoding routines for JPEG | 
| 12 |  |  * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1). | 
| 13 |  |  * | 
| 14 |  |  * Both sequential and progressive modes are supported in this single module. | 
| 15 |  |  * | 
| 16 |  |  * Suspension is not currently supported in this module. | 
| 17 |  |  * | 
| 18 |  |  * NOTE: All referenced figures are from | 
| 19 |  |  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. | 
| 20 |  |  */ | 
| 21 |  |  | 
| 22 |  | #define JPEG_INTERNALS | 
| 23 |  | #include "jinclude.h" | 
| 24 |  | #include "jpeglib.h" | 
| 25 |  |  | 
| 26 |  |  | 
| 27 |  | /* Expanded entropy encoder object for arithmetic encoding. */ | 
| 28 |  |  | 
| 29 |  | typedef struct { | 
| 30 |  |   struct jpeg_entropy_encoder pub; /* public fields */ | 
| 31 |  |  | 
| 32 |  |   JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */ | 
| 33 |  |   JLONG a;               /* A register, normalized size of coding interval */ | 
| 34 |  |   JLONG sc;        /* counter for stacked 0xFF values which might overflow */ | 
| 35 |  |   JLONG zc;          /* counter for pending 0x00 output values which might * | 
| 36 |  |                           * be discarded at the end ("Pacman" termination) */ | 
| 37 |  |   int ct;  /* bit shift counter, determines when next byte will be written */ | 
| 38 |  |   int buffer;                /* buffer for most recent output byte != 0xFF */ | 
| 39 |  |  | 
| 40 |  |   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 
| 41 |  |   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | 
| 42 |  |  | 
| 43 |  |   unsigned int restarts_to_go;  /* MCUs left in this restart interval */ | 
| 44 |  |   int next_restart_num;         /* next restart number to write (0-7) */ | 
| 45 |  |  | 
| 46 |  |   /* Pointers to statistics areas (these workspaces have image lifespan) */ | 
| 47 |  |   unsigned char *dc_stats[NUM_ARITH_TBLS]; | 
| 48 |  |   unsigned char *ac_stats[NUM_ARITH_TBLS]; | 
| 49 |  |  | 
| 50 |  |   /* Statistics bin for coding with fixed probability 0.5 */ | 
| 51 |  |   unsigned char fixed_bin[4]; | 
| 52 |  | } arith_entropy_encoder; | 
| 53 |  |  | 
| 54 |  | typedef arith_entropy_encoder *arith_entropy_ptr; | 
| 55 |  |  | 
| 56 |  | /* The following two definitions specify the allocation chunk size | 
| 57 |  |  * for the statistics area. | 
| 58 |  |  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | 
| 59 |  |  * 49 statistics bins for DC, and 245 statistics bins for AC coding. | 
| 60 |  |  * | 
| 61 |  |  * We use a compact representation with 1 byte per statistics bin, | 
| 62 |  |  * thus the numbers directly represent byte sizes. | 
| 63 |  |  * This 1 byte per statistics bin contains the meaning of the MPS | 
| 64 |  |  * (more probable symbol) in the highest bit (mask 0x80), and the | 
| 65 |  |  * index into the probability estimation state machine table | 
| 66 |  |  * in the lower bits (mask 0x7F). | 
| 67 |  |  */ | 
| 68 |  |  | 
| 69 | 2.08k | #define DC_STAT_BINS  64 | 
| 70 | 2.08k | #define AC_STAT_BINS  256 | 
| 71 |  |  | 
| 72 |  | /* NOTE: Uncomment the following #define if you want to use the | 
| 73 |  |  * given formula for calculating the AC conditioning parameter Kx | 
| 74 |  |  * for spectral selection progressive coding in section G.1.3.2 | 
| 75 |  |  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). | 
| 76 |  |  * Although the spec and P&M authors claim that this "has proven | 
| 77 |  |  * to give good results for 8 bit precision samples", I'm not | 
| 78 |  |  * convinced yet that this is really beneficial. | 
| 79 |  |  * Early tests gave only very marginal compression enhancements | 
| 80 |  |  * (a few - around 5 or so - bytes even for very large files), | 
| 81 |  |  * which would turn out rather negative if we'd suppress the | 
| 82 |  |  * DAC (Define Arithmetic Conditioning) marker segments for | 
| 83 |  |  * the default parameters in the future. | 
| 84 |  |  * Note that currently the marker writing module emits 12-byte | 
| 85 |  |  * DAC segments for a full-component scan in a color image. | 
| 86 |  |  * This is not worth worrying about IMHO. However, since the | 
| 87 |  |  * spec defines the default values to be used if the tables | 
| 88 |  |  * are omitted (unlike Huffman tables, which are required | 
| 89 |  |  * anyway), one might optimize this behaviour in the future, | 
| 90 |  |  * and then it would be disadvantageous to use custom tables if | 
| 91 |  |  * they don't provide sufficient gain to exceed the DAC size. | 
| 92 |  |  * | 
| 93 |  |  * On the other hand, I'd consider it as a reasonable result | 
| 94 |  |  * that the conditioning has no significant influence on the | 
| 95 |  |  * compression performance. This means that the basic | 
| 96 |  |  * statistical model is already rather stable. | 
| 97 |  |  * | 
| 98 |  |  * Thus, at the moment, we use the default conditioning values | 
| 99 |  |  * anyway, and do not use the custom formula. | 
| 100 |  |  * | 
| 101 |  | #define CALCULATE_SPECTRAL_CONDITIONING | 
| 102 |  |  */ | 
| 103 |  |  | 
| 104 |  | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG. | 
| 105 |  |  * We assume that int right shift is unsigned if JLONG right shift is, | 
| 106 |  |  * which should be safe. | 
| 107 |  |  */ | 
| 108 |  |  | 
| 109 |  | #ifdef RIGHT_SHIFT_IS_UNSIGNED | 
| 110 |  | #define ISHIFT_TEMPS    int ishift_temp; | 
| 111 |  | #define IRIGHT_SHIFT(x, shft) \ | 
| 112 |  |   ((ishift_temp = (x)) < 0 ? \ | 
| 113 |  |    (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \ | 
| 114 |  |    (ishift_temp >> (shft))) | 
| 115 |  | #else | 
| 116 |  | #define ISHIFT_TEMPS | 
| 117 | 0 | #define IRIGHT_SHIFT(x, shft)   ((x) >> (shft)) | 
| 118 |  | #endif | 
| 119 |  |  | 
| 120 |  |  | 
| 121 |  | LOCAL(void) | 
| 122 |  | emit_byte(int val, j_compress_ptr cinfo) | 
| 123 |  | /* Write next output byte; we do not support suspension in this module. */ | 
| 124 | 58.4M | { | 
| 125 | 58.4M |   struct jpeg_destination_mgr *dest = cinfo->dest; | 
| 126 |  |  | 
| 127 | 58.4M |   *dest->next_output_byte++ = (JOCTET)val; | 
| 128 | 58.4M |   if (--dest->free_in_buffer == 0) | 
| 129 | 1.87k |     if (!(*dest->empty_output_buffer) (cinfo)) | 
| 130 | 0 |       ERREXIT(cinfo, JERR_CANT_SUSPEND); | 
| 131 | 58.4M | } | 
| 132 |  |  | 
| 133 |  |  | 
| 134 |  | /* | 
| 135 |  |  * Finish up at the end of an arithmetic-compressed scan. | 
| 136 |  |  */ | 
| 137 |  |  | 
| 138 |  | METHODDEF(void) | 
| 139 |  | finish_pass(j_compress_ptr cinfo) | 
| 140 | 1.31k | { | 
| 141 | 1.31k |   arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy; | 
| 142 | 1.31k |   JLONG temp; | 
| 143 |  |  | 
| 144 |  |   /* Section D.1.8: Termination of encoding */ | 
| 145 |  |  | 
| 146 |  |   /* Find the e->c in the coding interval with the largest | 
| 147 |  |    * number of trailing zero bits */ | 
| 148 | 1.31k |   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c) | 
| 149 | 330 |     e->c = temp + 0x8000L; | 
| 150 | 980 |   else | 
| 151 | 980 |     e->c = temp; | 
| 152 |  |   /* Send remaining bytes to output */ | 
| 153 | 1.31k |   e->c <<= e->ct; | 
| 154 | 1.31k |   if (e->c & 0xF8000000UL) { | 
| 155 |  |     /* One final overflow has to be handled */ | 
| 156 | 164 |     if (e->buffer >= 0) { | 
| 157 | 164 |       if (e->zc) | 
| 158 | 64 |         do emit_byte(0x00, cinfo); | 
| 159 | 64 |         while (--e->zc); | 
| 160 | 164 |       emit_byte(e->buffer + 1, cinfo); | 
| 161 | 164 |       if (e->buffer + 1 == 0xFF) | 
| 162 | 31 |         emit_byte(0x00, cinfo); | 
| 163 | 164 |     } | 
| 164 | 164 |     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ | 
| 165 | 164 |     e->sc = 0; | 
| 166 | 1.14k |   } else { | 
| 167 | 1.14k |     if (e->buffer == 0) | 
| 168 | 80 |       ++e->zc; | 
| 169 | 1.06k |     else if (e->buffer >= 0) { | 
| 170 | 1.06k |       if (e->zc) | 
| 171 | 68 |         do emit_byte(0x00, cinfo); | 
| 172 | 68 |         while (--e->zc); | 
| 173 | 1.06k |       emit_byte(e->buffer, cinfo); | 
| 174 | 1.06k |     } | 
| 175 | 1.14k |     if (e->sc) { | 
| 176 | 89 |       if (e->zc) | 
| 177 | 51 |         do emit_byte(0x00, cinfo); | 
| 178 | 51 |         while (--e->zc); | 
| 179 | 151 |       do { | 
| 180 | 151 |         emit_byte(0xFF, cinfo); | 
| 181 | 151 |         emit_byte(0x00, cinfo); | 
| 182 | 151 |       } while (--e->sc); | 
| 183 | 89 |     } | 
| 184 | 1.14k |   } | 
| 185 |  |   /* Output final bytes only if they are not 0x00 */ | 
| 186 | 1.31k |   if (e->c & 0x7FFF800L) { | 
| 187 | 1.20k |     if (e->zc)  /* output final pending zero bytes */ | 
| 188 | 75 |       do emit_byte(0x00, cinfo); | 
| 189 | 75 |       while (--e->zc); | 
| 190 | 1.20k |     emit_byte((e->c >> 19) & 0xFF, cinfo); | 
| 191 | 1.20k |     if (((e->c >> 19) & 0xFF) == 0xFF) | 
| 192 | 28 |       emit_byte(0x00, cinfo); | 
| 193 | 1.20k |     if (e->c & 0x7F800L) { | 
| 194 | 270 |       emit_byte((e->c >> 11) & 0xFF, cinfo); | 
| 195 | 270 |       if (((e->c >> 11) & 0xFF) == 0xFF) | 
| 196 | 0 |         emit_byte(0x00, cinfo); | 
| 197 | 270 |     } | 
| 198 | 1.20k |   } | 
| 199 | 1.31k | } | 
| 200 |  |  | 
| 201 |  |  | 
| 202 |  | /* | 
| 203 |  |  * The core arithmetic encoding routine (common in JPEG and JBIG). | 
| 204 |  |  * This needs to go as fast as possible. | 
| 205 |  |  * Machine-dependent optimization facilities | 
| 206 |  |  * are not utilized in this portable implementation. | 
| 207 |  |  * However, this code should be fairly efficient and | 
| 208 |  |  * may be a good base for further optimizations anyway. | 
| 209 |  |  * | 
| 210 |  |  * Parameter 'val' to be encoded may be 0 or 1 (binary decision). | 
| 211 |  |  * | 
| 212 |  |  * Note: I've added full "Pacman" termination support to the | 
| 213 |  |  * byte output routines, which is equivalent to the optional | 
| 214 |  |  * Discard_final_zeros procedure (Figure D.15) in the spec. | 
| 215 |  |  * Thus, we always produce the shortest possible output | 
| 216 |  |  * stream compliant to the spec (no trailing zero bytes, | 
| 217 |  |  * except for FF stuffing). | 
| 218 |  |  * | 
| 219 |  |  * I've also introduced a new scheme for accessing | 
| 220 |  |  * the probability estimation state machine table, | 
| 221 |  |  * derived from Markus Kuhn's JBIG implementation. | 
| 222 |  |  */ | 
| 223 |  |  | 
| 224 |  | LOCAL(void) | 
| 225 |  | arith_encode(j_compress_ptr cinfo, unsigned char *st, int val) | 
| 226 | 638M | { | 
| 227 | 638M |   register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy; | 
| 228 | 638M |   register unsigned char nl, nm; | 
| 229 | 638M |   register JLONG qe, temp; | 
| 230 | 638M |   register int sv; | 
| 231 |  |  | 
| 232 |  |   /* Fetch values from our compact representation of Table D.2: | 
| 233 |  |    * Qe values and probability estimation state machine | 
| 234 |  |    */ | 
| 235 | 638M |   sv = *st; | 
| 236 | 638M |   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */ | 
| 237 | 638M |   nl = qe & 0xFF;  qe >>= 8;    /* Next_Index_LPS + Switch_MPS */ | 
| 238 | 638M |   nm = qe & 0xFF;  qe >>= 8;    /* Next_Index_MPS */ | 
| 239 |  |  | 
| 240 |  |   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ | 
| 241 | 638M |   e->a -= qe; | 
| 242 | 638M |   if (val != (sv >> 7)) { | 
| 243 |  |     /* Encode the less probable symbol */ | 
| 244 | 178M |     if (e->a >= qe) { | 
| 245 |  |       /* If the interval size (qe) for the less probable symbol (LPS) | 
| 246 |  |        * is larger than the interval size for the MPS, then exchange | 
| 247 |  |        * the two symbols for coding efficiency, otherwise code the LPS | 
| 248 |  |        * as usual: */ | 
| 249 | 131M |       e->c += e->a; | 
| 250 | 131M |       e->a = qe; | 
| 251 | 131M |     } | 
| 252 | 178M |     *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */ | 
| 253 | 460M |   } else { | 
| 254 |  |     /* Encode the more probable symbol */ | 
| 255 | 460M |     if (e->a >= 0x8000L) | 
| 256 | 282M |       return;  /* A >= 0x8000 -> ready, no renormalization required */ | 
| 257 | 177M |     if (e->a < qe) { | 
| 258 |  |       /* If the interval size (qe) for the less probable symbol (LPS) | 
| 259 |  |        * is larger than the interval size for the MPS, then exchange | 
| 260 |  |        * the two symbols for coding efficiency: */ | 
| 261 | 52.1M |       e->c += e->a; | 
| 262 | 52.1M |       e->a = qe; | 
| 263 | 52.1M |     } | 
| 264 | 177M |     *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */ | 
| 265 | 177M |   } | 
| 266 |  |  | 
| 267 |  |   /* Renormalization & data output per section D.1.6 */ | 
| 268 | 465M |   do { | 
| 269 | 465M |     e->a <<= 1; | 
| 270 | 465M |     e->c <<= 1; | 
| 271 | 465M |     if (--e->ct == 0) { | 
| 272 |  |       /* Another byte is ready for output */ | 
| 273 | 58.1M |       temp = e->c >> 19; | 
| 274 | 58.1M |       if (temp > 0xFF) { | 
| 275 |  |         /* Handle overflow over all stacked 0xFF bytes */ | 
| 276 | 2.44M |         if (e->buffer >= 0) { | 
| 277 | 2.44M |           if (e->zc) | 
| 278 | 10.7k |             do emit_byte(0x00, cinfo); | 
| 279 | 10.7k |             while (--e->zc); | 
| 280 | 2.44M |           emit_byte(e->buffer + 1, cinfo); | 
| 281 | 2.44M |           if (e->buffer + 1 == 0xFF) | 
| 282 | 9.79k |             emit_byte(0x00, cinfo); | 
| 283 | 2.44M |         } | 
| 284 | 2.44M |         e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */ | 
| 285 | 2.44M |         e->sc = 0; | 
| 286 |  |         /* Note: The 3 spacer bits in the C register guarantee | 
| 287 |  |          * that the new buffer byte can't be 0xFF here | 
| 288 |  |          * (see page 160 in the P&M JPEG book). */ | 
| 289 | 2.44M |         e->buffer = temp & 0xFF;  /* new output byte, might overflow later */ | 
| 290 | 55.7M |       } else if (temp == 0xFF) { | 
| 291 | 247k |         ++e->sc;  /* stack 0xFF byte (which might overflow later) */ | 
| 292 | 55.4M |       } else { | 
| 293 |  |         /* Output all stacked 0xFF bytes, they will not overflow any more */ | 
| 294 | 55.4M |         if (e->buffer == 0) | 
| 295 | 220k |           ++e->zc; | 
| 296 | 55.2M |         else if (e->buffer >= 0) { | 
| 297 | 55.2M |           if (e->zc) | 
| 298 | 219k |             do emit_byte(0x00, cinfo); | 
| 299 | 219k |             while (--e->zc); | 
| 300 | 55.2M |           emit_byte(e->buffer, cinfo); | 
| 301 | 55.2M |         } | 
| 302 | 55.4M |         if (e->sc) { | 
| 303 | 231k |           if (e->zc) | 
| 304 | 1.60k |             do emit_byte(0x00, cinfo); | 
| 305 | 1.60k |             while (--e->zc); | 
| 306 | 235k |           do { | 
| 307 | 235k |             emit_byte(0xFF, cinfo); | 
| 308 | 235k |             emit_byte(0x00, cinfo); | 
| 309 | 235k |           } while (--e->sc); | 
| 310 | 231k |         } | 
| 311 | 55.4M |         e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */ | 
| 312 | 55.4M |       } | 
| 313 | 58.1M |       e->c &= 0x7FFFFL; | 
| 314 | 58.1M |       e->ct += 8; | 
| 315 | 58.1M |     } | 
| 316 | 465M |   } while (e->a < 0x8000L); | 
| 317 | 356M | } | 
| 318 |  |  | 
| 319 |  |  | 
| 320 |  | /* | 
| 321 |  |  * Emit a restart marker & resynchronize predictions. | 
| 322 |  |  */ | 
| 323 |  |  | 
| 324 |  | LOCAL(void) | 
| 325 |  | emit_restart(j_compress_ptr cinfo, int restart_num) | 
| 326 | 0 | { | 
| 327 | 0 |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
| 328 | 0 |   int ci; | 
| 329 | 0 |   jpeg_component_info *compptr; | 
| 330 |  | 
 | 
| 331 | 0 |   finish_pass(cinfo); | 
| 332 |  | 
 | 
| 333 | 0 |   emit_byte(0xFF, cinfo); | 
| 334 | 0 |   emit_byte(JPEG_RST0 + restart_num, cinfo); | 
| 335 |  |  | 
| 336 |  |   /* Re-initialize statistics areas */ | 
| 337 | 0 |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
| 338 | 0 |     compptr = cinfo->cur_comp_info[ci]; | 
| 339 |  |     /* DC needs no table for refinement scan */ | 
| 340 | 0 |     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
| 341 | 0 |       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | 
| 342 |  |       /* Reset DC predictions to 0 */ | 
| 343 | 0 |       entropy->last_dc_val[ci] = 0; | 
| 344 | 0 |       entropy->dc_context[ci] = 0; | 
| 345 | 0 |     } | 
| 346 |  |     /* AC needs no table when not present */ | 
| 347 | 0 |     if (cinfo->progressive_mode == 0 || cinfo->Se) { | 
| 348 | 0 |       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | 
| 349 | 0 |     } | 
| 350 | 0 |   } | 
| 351 |  |  | 
| 352 |  |   /* Reset arithmetic encoding variables */ | 
| 353 | 0 |   entropy->c = 0; | 
| 354 | 0 |   entropy->a = 0x10000L; | 
| 355 | 0 |   entropy->sc = 0; | 
| 356 | 0 |   entropy->zc = 0; | 
| 357 | 0 |   entropy->ct = 11; | 
| 358 | 0 |   entropy->buffer = -1;  /* empty */ | 
| 359 | 0 | } | 
| 360 |  |  | 
| 361 |  |  | 
| 362 |  | /* | 
| 363 |  |  * MCU encoding for DC initial scan (either spectral selection, | 
| 364 |  |  * or first pass of successive approximation). | 
| 365 |  |  */ | 
| 366 |  |  | 
| 367 |  | METHODDEF(boolean) | 
| 368 |  | encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 369 | 0 | { | 
| 370 | 0 |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
| 371 | 0 |   JBLOCKROW block; | 
| 372 | 0 |   unsigned char *st; | 
| 373 | 0 |   int blkn, ci, tbl; | 
| 374 | 0 |   int v, v2, m; | 
| 375 | 0 |   ISHIFT_TEMPS | 
| 376 |  |  | 
| 377 |  |   /* Emit restart marker if needed */ | 
| 378 | 0 |   if (cinfo->restart_interval) { | 
| 379 | 0 |     if (entropy->restarts_to_go == 0) { | 
| 380 | 0 |       emit_restart(cinfo, entropy->next_restart_num); | 
| 381 | 0 |       entropy->restarts_to_go = cinfo->restart_interval; | 
| 382 | 0 |       entropy->next_restart_num++; | 
| 383 | 0 |       entropy->next_restart_num &= 7; | 
| 384 | 0 |     } | 
| 385 | 0 |     entropy->restarts_to_go--; | 
| 386 | 0 |   } | 
| 387 |  |  | 
| 388 |  |   /* Encode the MCU data blocks */ | 
| 389 | 0 |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
| 390 | 0 |     block = MCU_data[blkn]; | 
| 391 | 0 |     ci = cinfo->MCU_membership[blkn]; | 
| 392 | 0 |     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | 
| 393 |  |  | 
| 394 |  |     /* Compute the DC value after the required point transform by Al. | 
| 395 |  |      * This is simply an arithmetic right shift. | 
| 396 |  |      */ | 
| 397 | 0 |     m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al); | 
| 398 |  |  | 
| 399 |  |     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | 
| 400 |  |  | 
| 401 |  |     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | 
| 402 | 0 |     st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | 
| 403 |  |  | 
| 404 |  |     /* Figure F.4: Encode_DC_DIFF */ | 
| 405 | 0 |     if ((v = m - entropy->last_dc_val[ci]) == 0) { | 
| 406 | 0 |       arith_encode(cinfo, st, 0); | 
| 407 | 0 |       entropy->dc_context[ci] = 0;      /* zero diff category */ | 
| 408 | 0 |     } else { | 
| 409 | 0 |       entropy->last_dc_val[ci] = m; | 
| 410 | 0 |       arith_encode(cinfo, st, 1); | 
| 411 |  |       /* Figure F.6: Encoding nonzero value v */ | 
| 412 |  |       /* Figure F.7: Encoding the sign of v */ | 
| 413 | 0 |       if (v > 0) { | 
| 414 | 0 |         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ | 
| 415 | 0 |         st += 2;                        /* Table F.4: SP = S0 + 2 */ | 
| 416 | 0 |         entropy->dc_context[ci] = 4;    /* small positive diff category */ | 
| 417 | 0 |       } else { | 
| 418 | 0 |         v = -v; | 
| 419 | 0 |         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ | 
| 420 | 0 |         st += 3;                        /* Table F.4: SN = S0 + 3 */ | 
| 421 | 0 |         entropy->dc_context[ci] = 8;    /* small negative diff category */ | 
| 422 | 0 |       } | 
| 423 |  |       /* Figure F.8: Encoding the magnitude category of v */ | 
| 424 | 0 |       m = 0; | 
| 425 | 0 |       if (v -= 1) { | 
| 426 | 0 |         arith_encode(cinfo, st, 1); | 
| 427 | 0 |         m = 1; | 
| 428 | 0 |         v2 = v; | 
| 429 | 0 |         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | 
| 430 | 0 |         while (v2 >>= 1) { | 
| 431 | 0 |           arith_encode(cinfo, st, 1); | 
| 432 | 0 |           m <<= 1; | 
| 433 | 0 |           st += 1; | 
| 434 | 0 |         } | 
| 435 | 0 |       } | 
| 436 | 0 |       arith_encode(cinfo, st, 0); | 
| 437 |  |       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | 
| 438 | 0 |       if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) | 
| 439 | 0 |         entropy->dc_context[ci] = 0;    /* zero diff category */ | 
| 440 | 0 |       else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) | 
| 441 | 0 |         entropy->dc_context[ci] += 8;   /* large diff category */ | 
| 442 |  |       /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
| 443 | 0 |       st += 14; | 
| 444 | 0 |       while (m >>= 1) | 
| 445 | 0 |         arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
| 446 | 0 |     } | 
| 447 | 0 |   } | 
| 448 |  | 
 | 
| 449 | 0 |   return TRUE; | 
| 450 | 0 | } | 
| 451 |  |  | 
| 452 |  |  | 
| 453 |  | /* | 
| 454 |  |  * MCU encoding for AC initial scan (either spectral selection, | 
| 455 |  |  * or first pass of successive approximation). | 
| 456 |  |  */ | 
| 457 |  |  | 
| 458 |  | METHODDEF(boolean) | 
| 459 |  | encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 460 | 0 | { | 
| 461 | 0 |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
| 462 | 0 |   JBLOCKROW block; | 
| 463 | 0 |   unsigned char *st; | 
| 464 | 0 |   int tbl, k, ke; | 
| 465 | 0 |   int v, v2, m; | 
| 466 |  |  | 
| 467 |  |   /* Emit restart marker if needed */ | 
| 468 | 0 |   if (cinfo->restart_interval) { | 
| 469 | 0 |     if (entropy->restarts_to_go == 0) { | 
| 470 | 0 |       emit_restart(cinfo, entropy->next_restart_num); | 
| 471 | 0 |       entropy->restarts_to_go = cinfo->restart_interval; | 
| 472 | 0 |       entropy->next_restart_num++; | 
| 473 | 0 |       entropy->next_restart_num &= 7; | 
| 474 | 0 |     } | 
| 475 | 0 |     entropy->restarts_to_go--; | 
| 476 | 0 |   } | 
| 477 |  |  | 
| 478 |  |   /* Encode the MCU data block */ | 
| 479 | 0 |   block = MCU_data[0]; | 
| 480 | 0 |   tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | 
| 481 |  |  | 
| 482 |  |   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | 
| 483 |  |  | 
| 484 |  |   /* Establish EOB (end-of-block) index */ | 
| 485 | 0 |   for (ke = cinfo->Se; ke > 0; ke--) | 
| 486 |  |     /* We must apply the point transform by Al.  For AC coefficients this | 
| 487 |  |      * is an integer division with rounding towards 0.  To do this portably | 
| 488 |  |      * in C, we shift after obtaining the absolute value. | 
| 489 |  |      */ | 
| 490 | 0 |     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { | 
| 491 | 0 |       if (v >>= cinfo->Al) break; | 
| 492 | 0 |     } else { | 
| 493 | 0 |       v = -v; | 
| 494 | 0 |       if (v >>= cinfo->Al) break; | 
| 495 | 0 |     } | 
| 496 |  |  | 
| 497 |  |   /* Figure F.5: Encode_AC_Coefficients */ | 
| 498 | 0 |   for (k = cinfo->Ss; k <= ke; k++) { | 
| 499 | 0 |     st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
| 500 | 0 |     arith_encode(cinfo, st, 0);         /* EOB decision */ | 
| 501 | 0 |     for (;;) { | 
| 502 | 0 |       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { | 
| 503 | 0 |         if (v >>= cinfo->Al) { | 
| 504 | 0 |           arith_encode(cinfo, st + 1, 1); | 
| 505 | 0 |           arith_encode(cinfo, entropy->fixed_bin, 0); | 
| 506 | 0 |           break; | 
| 507 | 0 |         } | 
| 508 | 0 |       } else { | 
| 509 | 0 |         v = -v; | 
| 510 | 0 |         if (v >>= cinfo->Al) { | 
| 511 | 0 |           arith_encode(cinfo, st + 1, 1); | 
| 512 | 0 |           arith_encode(cinfo, entropy->fixed_bin, 1); | 
| 513 | 0 |           break; | 
| 514 | 0 |         } | 
| 515 | 0 |       } | 
| 516 | 0 |       arith_encode(cinfo, st + 1, 0);  st += 3;  k++; | 
| 517 | 0 |     } | 
| 518 | 0 |     st += 2; | 
| 519 |  |     /* Figure F.8: Encoding the magnitude category of v */ | 
| 520 | 0 |     m = 0; | 
| 521 | 0 |     if (v -= 1) { | 
| 522 | 0 |       arith_encode(cinfo, st, 1); | 
| 523 | 0 |       m = 1; | 
| 524 | 0 |       v2 = v; | 
| 525 | 0 |       if (v2 >>= 1) { | 
| 526 | 0 |         arith_encode(cinfo, st, 1); | 
| 527 | 0 |         m <<= 1; | 
| 528 | 0 |         st = entropy->ac_stats[tbl] + | 
| 529 | 0 |              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | 
| 530 | 0 |         while (v2 >>= 1) { | 
| 531 | 0 |           arith_encode(cinfo, st, 1); | 
| 532 | 0 |           m <<= 1; | 
| 533 | 0 |           st += 1; | 
| 534 | 0 |         } | 
| 535 | 0 |       } | 
| 536 | 0 |     } | 
| 537 | 0 |     arith_encode(cinfo, st, 0); | 
| 538 |  |     /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
| 539 | 0 |     st += 14; | 
| 540 | 0 |     while (m >>= 1) | 
| 541 | 0 |       arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
| 542 | 0 |   } | 
| 543 |  |   /* Encode EOB decision only if k <= cinfo->Se */ | 
| 544 | 0 |   if (k <= cinfo->Se) { | 
| 545 | 0 |     st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
| 546 | 0 |     arith_encode(cinfo, st, 1); | 
| 547 | 0 |   } | 
| 548 |  | 
 | 
| 549 | 0 |   return TRUE; | 
| 550 | 0 | } | 
| 551 |  |  | 
| 552 |  |  | 
| 553 |  | /* | 
| 554 |  |  * MCU encoding for DC successive approximation refinement scan. | 
| 555 |  |  */ | 
| 556 |  |  | 
| 557 |  | METHODDEF(boolean) | 
| 558 |  | encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 559 | 0 | { | 
| 560 | 0 |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
| 561 | 0 |   unsigned char *st; | 
| 562 | 0 |   int Al, blkn; | 
| 563 |  |  | 
| 564 |  |   /* Emit restart marker if needed */ | 
| 565 | 0 |   if (cinfo->restart_interval) { | 
| 566 | 0 |     if (entropy->restarts_to_go == 0) { | 
| 567 | 0 |       emit_restart(cinfo, entropy->next_restart_num); | 
| 568 | 0 |       entropy->restarts_to_go = cinfo->restart_interval; | 
| 569 | 0 |       entropy->next_restart_num++; | 
| 570 | 0 |       entropy->next_restart_num &= 7; | 
| 571 | 0 |     } | 
| 572 | 0 |     entropy->restarts_to_go--; | 
| 573 | 0 |   } | 
| 574 |  | 
 | 
| 575 | 0 |   st = entropy->fixed_bin;      /* use fixed probability estimation */ | 
| 576 | 0 |   Al = cinfo->Al; | 
| 577 |  |  | 
| 578 |  |   /* Encode the MCU data blocks */ | 
| 579 | 0 |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
| 580 |  |     /* We simply emit the Al'th bit of the DC coefficient value. */ | 
| 581 | 0 |     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); | 
| 582 | 0 |   } | 
| 583 |  | 
 | 
| 584 | 0 |   return TRUE; | 
| 585 | 0 | } | 
| 586 |  |  | 
| 587 |  |  | 
| 588 |  | /* | 
| 589 |  |  * MCU encoding for AC successive approximation refinement scan. | 
| 590 |  |  */ | 
| 591 |  |  | 
| 592 |  | METHODDEF(boolean) | 
| 593 |  | encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 594 | 0 | { | 
| 595 | 0 |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
| 596 | 0 |   JBLOCKROW block; | 
| 597 | 0 |   unsigned char *st; | 
| 598 | 0 |   int tbl, k, ke, kex; | 
| 599 | 0 |   int v; | 
| 600 |  |  | 
| 601 |  |   /* Emit restart marker if needed */ | 
| 602 | 0 |   if (cinfo->restart_interval) { | 
| 603 | 0 |     if (entropy->restarts_to_go == 0) { | 
| 604 | 0 |       emit_restart(cinfo, entropy->next_restart_num); | 
| 605 | 0 |       entropy->restarts_to_go = cinfo->restart_interval; | 
| 606 | 0 |       entropy->next_restart_num++; | 
| 607 | 0 |       entropy->next_restart_num &= 7; | 
| 608 | 0 |     } | 
| 609 | 0 |     entropy->restarts_to_go--; | 
| 610 | 0 |   } | 
| 611 |  |  | 
| 612 |  |   /* Encode the MCU data block */ | 
| 613 | 0 |   block = MCU_data[0]; | 
| 614 | 0 |   tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | 
| 615 |  |  | 
| 616 |  |   /* Section G.1.3.3: Encoding of AC coefficients */ | 
| 617 |  |  | 
| 618 |  |   /* Establish EOB (end-of-block) index */ | 
| 619 | 0 |   for (ke = cinfo->Se; ke > 0; ke--) | 
| 620 |  |     /* We must apply the point transform by Al.  For AC coefficients this | 
| 621 |  |      * is an integer division with rounding towards 0.  To do this portably | 
| 622 |  |      * in C, we shift after obtaining the absolute value. | 
| 623 |  |      */ | 
| 624 | 0 |     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { | 
| 625 | 0 |       if (v >>= cinfo->Al) break; | 
| 626 | 0 |     } else { | 
| 627 | 0 |       v = -v; | 
| 628 | 0 |       if (v >>= cinfo->Al) break; | 
| 629 | 0 |     } | 
| 630 |  |  | 
| 631 |  |   /* Establish EOBx (previous stage end-of-block) index */ | 
| 632 | 0 |   for (kex = ke; kex > 0; kex--) | 
| 633 | 0 |     if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { | 
| 634 | 0 |       if (v >>= cinfo->Ah) break; | 
| 635 | 0 |     } else { | 
| 636 | 0 |       v = -v; | 
| 637 | 0 |       if (v >>= cinfo->Ah) break; | 
| 638 | 0 |     } | 
| 639 |  |  | 
| 640 |  |   /* Figure G.10: Encode_AC_Coefficients_SA */ | 
| 641 | 0 |   for (k = cinfo->Ss; k <= ke; k++) { | 
| 642 | 0 |     st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
| 643 | 0 |     if (k > kex) | 
| 644 | 0 |       arith_encode(cinfo, st, 0);       /* EOB decision */ | 
| 645 | 0 |     for (;;) { | 
| 646 | 0 |       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { | 
| 647 | 0 |         if (v >>= cinfo->Al) { | 
| 648 | 0 |           if (v >> 1)                   /* previously nonzero coef */ | 
| 649 | 0 |             arith_encode(cinfo, st + 2, (v & 1)); | 
| 650 | 0 |           else {                        /* newly nonzero coef */ | 
| 651 | 0 |             arith_encode(cinfo, st + 1, 1); | 
| 652 | 0 |             arith_encode(cinfo, entropy->fixed_bin, 0); | 
| 653 | 0 |           } | 
| 654 | 0 |           break; | 
| 655 | 0 |         } | 
| 656 | 0 |       } else { | 
| 657 | 0 |         v = -v; | 
| 658 | 0 |         if (v >>= cinfo->Al) { | 
| 659 | 0 |           if (v >> 1)                   /* previously nonzero coef */ | 
| 660 | 0 |             arith_encode(cinfo, st + 2, (v & 1)); | 
| 661 | 0 |           else {                        /* newly nonzero coef */ | 
| 662 | 0 |             arith_encode(cinfo, st + 1, 1); | 
| 663 | 0 |             arith_encode(cinfo, entropy->fixed_bin, 1); | 
| 664 | 0 |           } | 
| 665 | 0 |           break; | 
| 666 | 0 |         } | 
| 667 | 0 |       } | 
| 668 | 0 |       arith_encode(cinfo, st + 1, 0);  st += 3;  k++; | 
| 669 | 0 |     } | 
| 670 | 0 |   } | 
| 671 |  |   /* Encode EOB decision only if k <= cinfo->Se */ | 
| 672 | 0 |   if (k <= cinfo->Se) { | 
| 673 | 0 |     st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
| 674 | 0 |     arith_encode(cinfo, st, 1); | 
| 675 | 0 |   } | 
| 676 |  | 
 | 
| 677 | 0 |   return TRUE; | 
| 678 | 0 | } | 
| 679 |  |  | 
| 680 |  |  | 
| 681 |  | /* | 
| 682 |  |  * Encode and output one MCU's worth of arithmetic-compressed coefficients. | 
| 683 |  |  */ | 
| 684 |  |  | 
| 685 |  | METHODDEF(boolean) | 
| 686 |  | encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 687 | 816k | { | 
| 688 | 816k |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
| 689 | 816k |   jpeg_component_info *compptr; | 
| 690 | 816k |   JBLOCKROW block; | 
| 691 | 816k |   unsigned char *st; | 
| 692 | 816k |   int blkn, ci, tbl, k, ke; | 
| 693 | 816k |   int v, v2, m; | 
| 694 |  |  | 
| 695 |  |   /* Emit restart marker if needed */ | 
| 696 | 816k |   if (cinfo->restart_interval) { | 
| 697 | 0 |     if (entropy->restarts_to_go == 0) { | 
| 698 | 0 |       emit_restart(cinfo, entropy->next_restart_num); | 
| 699 | 0 |       entropy->restarts_to_go = cinfo->restart_interval; | 
| 700 | 0 |       entropy->next_restart_num++; | 
| 701 | 0 |       entropy->next_restart_num &= 7; | 
| 702 | 0 |     } | 
| 703 | 0 |     entropy->restarts_to_go--; | 
| 704 | 0 |   } | 
| 705 |  |  | 
| 706 |  |   /* Encode the MCU data blocks */ | 
| 707 | 5.71M |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
| 708 | 4.89M |     block = MCU_data[blkn]; | 
| 709 | 4.89M |     ci = cinfo->MCU_membership[blkn]; | 
| 710 | 4.89M |     compptr = cinfo->cur_comp_info[ci]; | 
| 711 |  |  | 
| 712 |  |     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | 
| 713 |  |  | 
| 714 | 4.89M |     tbl = compptr->dc_tbl_no; | 
| 715 |  |  | 
| 716 |  |     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | 
| 717 | 4.89M |     st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | 
| 718 |  |  | 
| 719 |  |     /* Figure F.4: Encode_DC_DIFF */ | 
| 720 | 4.89M |     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { | 
| 721 | 2.38M |       arith_encode(cinfo, st, 0); | 
| 722 | 2.38M |       entropy->dc_context[ci] = 0;      /* zero diff category */ | 
| 723 | 2.51M |     } else { | 
| 724 | 2.51M |       entropy->last_dc_val[ci] = (*block)[0]; | 
| 725 | 2.51M |       arith_encode(cinfo, st, 1); | 
| 726 |  |       /* Figure F.6: Encoding nonzero value v */ | 
| 727 |  |       /* Figure F.7: Encoding the sign of v */ | 
| 728 | 2.51M |       if (v > 0) { | 
| 729 | 1.22M |         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ | 
| 730 | 1.22M |         st += 2;                        /* Table F.4: SP = S0 + 2 */ | 
| 731 | 1.22M |         entropy->dc_context[ci] = 4;    /* small positive diff category */ | 
| 732 | 1.28M |       } else { | 
| 733 | 1.28M |         v = -v; | 
| 734 | 1.28M |         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ | 
| 735 | 1.28M |         st += 3;                        /* Table F.4: SN = S0 + 3 */ | 
| 736 | 1.28M |         entropy->dc_context[ci] = 8;    /* small negative diff category */ | 
| 737 | 1.28M |       } | 
| 738 |  |       /* Figure F.8: Encoding the magnitude category of v */ | 
| 739 | 2.51M |       m = 0; | 
| 740 | 2.51M |       if (v -= 1) { | 
| 741 | 2.41M |         arith_encode(cinfo, st, 1); | 
| 742 | 2.41M |         m = 1; | 
| 743 | 2.41M |         v2 = v; | 
| 744 | 2.41M |         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | 
| 745 | 13.7M |         while (v2 >>= 1) { | 
| 746 | 11.3M |           arith_encode(cinfo, st, 1); | 
| 747 | 11.3M |           m <<= 1; | 
| 748 | 11.3M |           st += 1; | 
| 749 | 11.3M |         } | 
| 750 | 2.41M |       } | 
| 751 | 2.51M |       arith_encode(cinfo, st, 0); | 
| 752 |  |       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | 
| 753 | 2.51M |       if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) | 
| 754 | 0 |         entropy->dc_context[ci] = 0;    /* zero diff category */ | 
| 755 | 2.51M |       else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) | 
| 756 | 2.33M |         entropy->dc_context[ci] += 8;   /* large diff category */ | 
| 757 |  |       /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
| 758 | 2.51M |       st += 14; | 
| 759 | 13.8M |       while (m >>= 1) | 
| 760 | 11.3M |         arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
| 761 | 2.51M |     } | 
| 762 |  |  | 
| 763 |  |     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | 
| 764 |  |  | 
| 765 | 4.89M |     tbl = compptr->ac_tbl_no; | 
| 766 |  |  | 
| 767 |  |     /* Establish EOB (end-of-block) index */ | 
| 768 | 181M |     for (ke = DCTSIZE2 - 1; ke > 0; ke--) | 
| 769 | 180M |       if ((*block)[jpeg_natural_order[ke]]) break; | 
| 770 |  |  | 
| 771 |  |     /* Figure F.5: Encode_AC_Coefficients */ | 
| 772 | 70.7M |     for (k = 1; k <= ke; k++) { | 
| 773 | 65.8M |       st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
| 774 | 65.8M |       arith_encode(cinfo, st, 0);       /* EOB decision */ | 
| 775 | 131M |       while ((v = (*block)[jpeg_natural_order[k]]) == 0) { | 
| 776 | 65.9M |         arith_encode(cinfo, st + 1, 0);  st += 3;  k++; | 
| 777 | 65.9M |       } | 
| 778 | 65.8M |       arith_encode(cinfo, st + 1, 1); | 
| 779 |  |       /* Figure F.6: Encoding nonzero value v */ | 
| 780 |  |       /* Figure F.7: Encoding the sign of v */ | 
| 781 | 65.8M |       if (v > 0) { | 
| 782 | 32.6M |         arith_encode(cinfo, entropy->fixed_bin, 0); | 
| 783 | 33.2M |       } else { | 
| 784 | 33.2M |         v = -v; | 
| 785 | 33.2M |         arith_encode(cinfo, entropy->fixed_bin, 1); | 
| 786 | 33.2M |       } | 
| 787 | 65.8M |       st += 2; | 
| 788 |  |       /* Figure F.8: Encoding the magnitude category of v */ | 
| 789 | 65.8M |       m = 0; | 
| 790 | 65.8M |       if (v -= 1) { | 
| 791 | 44.1M |         arith_encode(cinfo, st, 1); | 
| 792 | 44.1M |         m = 1; | 
| 793 | 44.1M |         v2 = v; | 
| 794 | 44.1M |         if (v2 >>= 1) { | 
| 795 | 35.8M |           arith_encode(cinfo, st, 1); | 
| 796 | 35.8M |           m <<= 1; | 
| 797 | 35.8M |           st = entropy->ac_stats[tbl] + | 
| 798 | 35.8M |                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | 
| 799 | 112M |           while (v2 >>= 1) { | 
| 800 | 77.1M |             arith_encode(cinfo, st, 1); | 
| 801 | 77.1M |             m <<= 1; | 
| 802 | 77.1M |             st += 1; | 
| 803 | 77.1M |           } | 
| 804 | 35.8M |         } | 
| 805 | 44.1M |       } | 
| 806 | 65.8M |       arith_encode(cinfo, st, 0); | 
| 807 |  |       /* Figure F.9: Encoding the magnitude bit pattern of v */ | 
| 808 | 65.8M |       st += 14; | 
| 809 | 178M |       while (m >>= 1) | 
| 810 | 112M |         arith_encode(cinfo, st, (m & v) ? 1 : 0); | 
| 811 | 65.8M |     } | 
| 812 |  |     /* Encode EOB decision only if k <= DCTSIZE2 - 1 */ | 
| 813 | 4.89M |     if (k <= DCTSIZE2 - 1) { | 
| 814 | 4.61M |       st = entropy->ac_stats[tbl] + 3 * (k - 1); | 
| 815 | 4.61M |       arith_encode(cinfo, st, 1); | 
| 816 | 4.61M |     } | 
| 817 | 4.89M |   } | 
| 818 |  |  | 
| 819 | 816k |   return TRUE; | 
| 820 | 816k | } | 
| 821 |  |  | 
| 822 |  |  | 
| 823 |  | /* | 
| 824 |  |  * Initialize for an arithmetic-compressed scan. | 
| 825 |  |  */ | 
| 826 |  |  | 
| 827 |  | METHODDEF(void) | 
| 828 |  | start_pass(j_compress_ptr cinfo, boolean gather_statistics) | 
| 829 | 2.08k | { | 
| 830 | 2.08k |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; | 
| 831 | 2.08k |   int ci, tbl; | 
| 832 | 2.08k |   jpeg_component_info *compptr; | 
| 833 |  |  | 
| 834 | 2.08k |   if (gather_statistics) | 
| 835 |  |     /* Make sure to avoid that in the master control logic! | 
| 836 |  |      * We are fully adaptive here and need no extra | 
| 837 |  |      * statistics gathering pass! | 
| 838 |  |      */ | 
| 839 | 0 |     ERREXIT(cinfo, JERR_NOTIMPL); | 
| 840 |  |  | 
| 841 |  |   /* We assume jcmaster.c already validated the progressive scan parameters. */ | 
| 842 |  |  | 
| 843 |  |   /* Select execution routines */ | 
| 844 | 2.08k |   if (cinfo->progressive_mode) { | 
| 845 | 0 |     if (cinfo->Ah == 0) { | 
| 846 | 0 |       if (cinfo->Ss == 0) | 
| 847 | 0 |         entropy->pub.encode_mcu = encode_mcu_DC_first; | 
| 848 | 0 |       else | 
| 849 | 0 |         entropy->pub.encode_mcu = encode_mcu_AC_first; | 
| 850 | 0 |     } else { | 
| 851 | 0 |       if (cinfo->Ss == 0) | 
| 852 | 0 |         entropy->pub.encode_mcu = encode_mcu_DC_refine; | 
| 853 | 0 |       else | 
| 854 | 0 |         entropy->pub.encode_mcu = encode_mcu_AC_refine; | 
| 855 | 0 |     } | 
| 856 | 0 |   } else | 
| 857 | 2.08k |     entropy->pub.encode_mcu = encode_mcu; | 
| 858 |  |  | 
| 859 |  |   /* Allocate & initialize requested statistics areas */ | 
| 860 | 8.34k |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
| 861 | 6.25k |     compptr = cinfo->cur_comp_info[ci]; | 
| 862 |  |     /* DC needs no table for refinement scan */ | 
| 863 | 6.25k |     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
| 864 | 6.25k |       tbl = compptr->dc_tbl_no; | 
| 865 | 6.25k |       if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | 
| 866 | 0 |         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | 
| 867 | 6.25k |       if (entropy->dc_stats[tbl] == NULL) | 
| 868 | 2.08k |         entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) | 
| 869 | 2.08k |           ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS); | 
| 870 | 6.25k |       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | 
| 871 |  |       /* Initialize DC predictions to 0 */ | 
| 872 | 6.25k |       entropy->last_dc_val[ci] = 0; | 
| 873 | 6.25k |       entropy->dc_context[ci] = 0; | 
| 874 | 6.25k |     } | 
| 875 |  |     /* AC needs no table when not present */ | 
| 876 | 6.25k |     if (cinfo->progressive_mode == 0 || cinfo->Se) { | 
| 877 | 6.25k |       tbl = compptr->ac_tbl_no; | 
| 878 | 6.25k |       if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | 
| 879 | 0 |         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | 
| 880 | 6.25k |       if (entropy->ac_stats[tbl] == NULL) | 
| 881 | 2.08k |         entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) | 
| 882 | 2.08k |           ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS); | 
| 883 | 6.25k |       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | 
| 884 |  | #ifdef CALCULATE_SPECTRAL_CONDITIONING | 
| 885 |  |       if (cinfo->progressive_mode) | 
| 886 |  |         /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ | 
| 887 |  |         cinfo->arith_ac_K[tbl] = cinfo->Ss + | 
| 888 |  |                                  ((8 + cinfo->Se - cinfo->Ss) >> 4); | 
| 889 |  | #endif | 
| 890 | 6.25k |     } | 
| 891 | 6.25k |   } | 
| 892 |  |  | 
| 893 |  |   /* Initialize arithmetic encoding variables */ | 
| 894 | 2.08k |   entropy->c = 0; | 
| 895 | 2.08k |   entropy->a = 0x10000L; | 
| 896 | 2.08k |   entropy->sc = 0; | 
| 897 | 2.08k |   entropy->zc = 0; | 
| 898 | 2.08k |   entropy->ct = 11; | 
| 899 | 2.08k |   entropy->buffer = -1;  /* empty */ | 
| 900 |  |  | 
| 901 |  |   /* Initialize restart stuff */ | 
| 902 | 2.08k |   entropy->restarts_to_go = cinfo->restart_interval; | 
| 903 | 2.08k |   entropy->next_restart_num = 0; | 
| 904 | 2.08k | } | 
| 905 |  |  | 
| 906 |  |  | 
| 907 |  | /* | 
| 908 |  |  * Module initialization routine for arithmetic entropy encoding. | 
| 909 |  |  */ | 
| 910 |  |  | 
| 911 |  | GLOBAL(void) | 
| 912 |  | jinit_arith_encoder(j_compress_ptr cinfo) | 
| 913 | 2.08k | { | 
| 914 | 2.08k |   arith_entropy_ptr entropy; | 
| 915 | 2.08k |   int i; | 
| 916 |  |  | 
| 917 | 2.08k |   entropy = (arith_entropy_ptr) | 
| 918 | 2.08k |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 919 | 2.08k |                                 sizeof(arith_entropy_encoder)); | 
| 920 | 2.08k |   cinfo->entropy = (struct jpeg_entropy_encoder *)entropy; | 
| 921 | 2.08k |   entropy->pub.start_pass = start_pass; | 
| 922 | 2.08k |   entropy->pub.finish_pass = finish_pass; | 
| 923 |  |  | 
| 924 |  |   /* Mark tables unallocated */ | 
| 925 | 35.4k |   for (i = 0; i < NUM_ARITH_TBLS; i++) { | 
| 926 | 33.3k |     entropy->dc_stats[i] = NULL; | 
| 927 | 33.3k |     entropy->ac_stats[i] = NULL; | 
| 928 | 33.3k |   } | 
| 929 |  |  | 
| 930 |  |   /* Initialize index for fixed probability estimation */ | 
| 931 | 2.08k |   entropy->fixed_bin[0] = 113; | 
| 932 | 2.08k | } |