/src/libjpeg-turbo.main/jfdctflt.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jfdctflt.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1994-1996, Thomas G. Lane.  | 
5  |  |  * This file is part of the Independent JPEG Group's software.  | 
6  |  |  * For conditions of distribution and use, see the accompanying README.ijg  | 
7  |  |  * file.  | 
8  |  |  *  | 
9  |  |  * This file contains a floating-point implementation of the  | 
10  |  |  * forward DCT (Discrete Cosine Transform).  | 
11  |  |  *  | 
12  |  |  * This implementation should be more accurate than either of the integer  | 
13  |  |  * DCT implementations.  However, it may not give the same results on all  | 
14  |  |  * machines because of differences in roundoff behavior.  Speed will depend  | 
15  |  |  * on the hardware's floating point capacity.  | 
16  |  |  *  | 
17  |  |  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT  | 
18  |  |  * on each column.  Direct algorithms are also available, but they are  | 
19  |  |  * much more complex and seem not to be any faster when reduced to code.  | 
20  |  |  *  | 
21  |  |  * This implementation is based on Arai, Agui, and Nakajima's algorithm for  | 
22  |  |  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in  | 
23  |  |  * Japanese, but the algorithm is described in the Pennebaker & Mitchell  | 
24  |  |  * JPEG textbook (see REFERENCES section in file README.ijg).  The following  | 
25  |  |  * code is based directly on figure 4-8 in P&M.  | 
26  |  |  * While an 8-point DCT cannot be done in less than 11 multiplies, it is  | 
27  |  |  * possible to arrange the computation so that many of the multiplies are  | 
28  |  |  * simple scalings of the final outputs.  These multiplies can then be  | 
29  |  |  * folded into the multiplications or divisions by the JPEG quantization  | 
30  |  |  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds  | 
31  |  |  * to be done in the DCT itself.  | 
32  |  |  * The primary disadvantage of this method is that with a fixed-point  | 
33  |  |  * implementation, accuracy is lost due to imprecise representation of the  | 
34  |  |  * scaled quantization values.  However, that problem does not arise if  | 
35  |  |  * we use floating point arithmetic.  | 
36  |  |  */  | 
37  |  |  | 
38  |  | #define JPEG_INTERNALS  | 
39  |  | #include "jinclude.h"  | 
40  |  | #include "jpeglib.h"  | 
41  |  | #include "jdct.h"               /* Private declarations for DCT subsystem */  | 
42  |  |  | 
43  |  | #ifdef DCT_FLOAT_SUPPORTED  | 
44  |  |  | 
45  |  |  | 
46  |  | /*  | 
47  |  |  * This module is specialized to the case DCTSIZE = 8.  | 
48  |  |  */  | 
49  |  |  | 
50  |  | #if DCTSIZE != 8  | 
51  |  |   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */  | 
52  |  | #endif  | 
53  |  |  | 
54  |  |  | 
55  |  | /*  | 
56  |  |  * Perform the forward DCT on one block of samples.  | 
57  |  |  */  | 
58  |  |  | 
59  |  | GLOBAL(void)  | 
60  |  | jpeg_fdct_float(FAST_FLOAT *data)  | 
61  | 0  | { | 
62  | 0  |   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  | 
63  | 0  |   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;  | 
64  | 0  |   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;  | 
65  | 0  |   FAST_FLOAT *dataptr;  | 
66  | 0  |   int ctr;  | 
67  |  |  | 
68  |  |   /* Pass 1: process rows. */  | 
69  |  | 
  | 
70  | 0  |   dataptr = data;  | 
71  | 0  |   for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { | 
72  | 0  |     tmp0 = dataptr[0] + dataptr[7];  | 
73  | 0  |     tmp7 = dataptr[0] - dataptr[7];  | 
74  | 0  |     tmp1 = dataptr[1] + dataptr[6];  | 
75  | 0  |     tmp6 = dataptr[1] - dataptr[6];  | 
76  | 0  |     tmp2 = dataptr[2] + dataptr[5];  | 
77  | 0  |     tmp5 = dataptr[2] - dataptr[5];  | 
78  | 0  |     tmp3 = dataptr[3] + dataptr[4];  | 
79  | 0  |     tmp4 = dataptr[3] - dataptr[4];  | 
80  |  |  | 
81  |  |     /* Even part */  | 
82  |  | 
  | 
83  | 0  |     tmp10 = tmp0 + tmp3;        /* phase 2 */  | 
84  | 0  |     tmp13 = tmp0 - tmp3;  | 
85  | 0  |     tmp11 = tmp1 + tmp2;  | 
86  | 0  |     tmp12 = tmp1 - tmp2;  | 
87  |  | 
  | 
88  | 0  |     dataptr[0] = tmp10 + tmp11; /* phase 3 */  | 
89  | 0  |     dataptr[4] = tmp10 - tmp11;  | 
90  |  | 
  | 
91  | 0  |     z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */  | 
92  | 0  |     dataptr[2] = tmp13 + z1;    /* phase 5 */  | 
93  | 0  |     dataptr[6] = tmp13 - z1;  | 
94  |  |  | 
95  |  |     /* Odd part */  | 
96  |  | 
  | 
97  | 0  |     tmp10 = tmp4 + tmp5;        /* phase 2 */  | 
98  | 0  |     tmp11 = tmp5 + tmp6;  | 
99  | 0  |     tmp12 = tmp6 + tmp7;  | 
100  |  |  | 
101  |  |     /* The rotator is modified from fig 4-8 to avoid extra negations. */  | 
102  | 0  |     z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */  | 
103  | 0  |     z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */  | 
104  | 0  |     z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */  | 
105  | 0  |     z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */  | 
106  |  | 
  | 
107  | 0  |     z11 = tmp7 + z3;            /* phase 5 */  | 
108  | 0  |     z13 = tmp7 - z3;  | 
109  |  | 
  | 
110  | 0  |     dataptr[5] = z13 + z2;      /* phase 6 */  | 
111  | 0  |     dataptr[3] = z13 - z2;  | 
112  | 0  |     dataptr[1] = z11 + z4;  | 
113  | 0  |     dataptr[7] = z11 - z4;  | 
114  |  | 
  | 
115  | 0  |     dataptr += DCTSIZE;         /* advance pointer to next row */  | 
116  | 0  |   }  | 
117  |  |  | 
118  |  |   /* Pass 2: process columns. */  | 
119  |  | 
  | 
120  | 0  |   dataptr = data;  | 
121  | 0  |   for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { | 
122  | 0  |     tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];  | 
123  | 0  |     tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];  | 
124  | 0  |     tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];  | 
125  | 0  |     tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];  | 
126  | 0  |     tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];  | 
127  | 0  |     tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];  | 
128  | 0  |     tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];  | 
129  | 0  |     tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];  | 
130  |  |  | 
131  |  |     /* Even part */  | 
132  |  | 
  | 
133  | 0  |     tmp10 = tmp0 + tmp3;        /* phase 2 */  | 
134  | 0  |     tmp13 = tmp0 - tmp3;  | 
135  | 0  |     tmp11 = tmp1 + tmp2;  | 
136  | 0  |     tmp12 = tmp1 - tmp2;  | 
137  |  | 
  | 
138  | 0  |     dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */  | 
139  | 0  |     dataptr[DCTSIZE * 4] = tmp10 - tmp11;  | 
140  |  | 
  | 
141  | 0  |     z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */  | 
142  | 0  |     dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */  | 
143  | 0  |     dataptr[DCTSIZE * 6] = tmp13 - z1;  | 
144  |  |  | 
145  |  |     /* Odd part */  | 
146  |  | 
  | 
147  | 0  |     tmp10 = tmp4 + tmp5;        /* phase 2 */  | 
148  | 0  |     tmp11 = tmp5 + tmp6;  | 
149  | 0  |     tmp12 = tmp6 + tmp7;  | 
150  |  |  | 
151  |  |     /* The rotator is modified from fig 4-8 to avoid extra negations. */  | 
152  | 0  |     z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */  | 
153  | 0  |     z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */  | 
154  | 0  |     z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */  | 
155  | 0  |     z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */  | 
156  |  | 
  | 
157  | 0  |     z11 = tmp7 + z3;            /* phase 5 */  | 
158  | 0  |     z13 = tmp7 - z3;  | 
159  |  | 
  | 
160  | 0  |     dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */  | 
161  | 0  |     dataptr[DCTSIZE * 3] = z13 - z2;  | 
162  | 0  |     dataptr[DCTSIZE * 1] = z11 + z4;  | 
163  | 0  |     dataptr[DCTSIZE * 7] = z11 - z4;  | 
164  |  | 
  | 
165  | 0  |     dataptr++;                  /* advance pointer to next column */  | 
166  | 0  |   }  | 
167  | 0  | }  | 
168  |  |  | 
169  |  | #endif /* DCT_FLOAT_SUPPORTED */  |