Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.2.0.x/jcdctmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcdctmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 1999-2006, MIYASAKA Masaru.
8
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
9
 * Copyright (C) 2011, 2014-2015, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains the forward-DCT management logic.
14
 * This code selects a particular DCT implementation to be used,
15
 * and it performs related housekeeping chores including coefficient
16
 * quantization.
17
 */
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jdct.h"               /* Private declarations for DCT subsystem */
23
#include "jsimddct.h"
24
25
26
/* Private subobject for this module */
27
28
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
29
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
30
31
typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
32
                                     JDIMENSION start_col,
33
                                     DCTELEM *workspace);
34
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
35
                                           JDIMENSION start_col,
36
                                           FAST_FLOAT *workspace);
37
38
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
39
                                     DCTELEM *workspace);
40
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
41
                                           FAST_FLOAT *divisors,
42
                                           FAST_FLOAT *workspace);
43
44
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
45
46
typedef struct {
47
  struct jpeg_forward_dct pub;  /* public fields */
48
49
  /* Pointer to the DCT routine actually in use */
50
  forward_DCT_method_ptr dct;
51
  convsamp_method_ptr convsamp;
52
  quantize_method_ptr quantize;
53
54
  /* The actual post-DCT divisors --- not identical to the quant table
55
   * entries, because of scaling (especially for an unnormalized DCT).
56
   * Each table is given in normal array order.
57
   */
58
  DCTELEM *divisors[NUM_QUANT_TBLS];
59
60
  /* work area for FDCT subroutine */
61
  DCTELEM *workspace;
62
63
#ifdef DCT_FLOAT_SUPPORTED
64
  /* Same as above for the floating-point case. */
65
  float_DCT_method_ptr float_dct;
66
  float_convsamp_method_ptr float_convsamp;
67
  float_quantize_method_ptr float_quantize;
68
  FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
69
  FAST_FLOAT *float_workspace;
70
#endif
71
} my_fdct_controller;
72
73
typedef my_fdct_controller *my_fdct_ptr;
74
75
76
#if BITS_IN_JSAMPLE == 8
77
78
/*
79
 * Find the highest bit in an integer through binary search.
80
 */
81
82
LOCAL(int)
83
flss(UINT16 val)
84
1.17M
{
85
1.17M
  int bit;
86
87
1.17M
  bit = 16;
88
89
1.17M
  if (!val)
90
0
    return 0;
91
92
1.17M
  if (!(val & 0xff00)) {
93
794k
    bit -= 8;
94
794k
    val <<= 8;
95
794k
  }
96
1.17M
  if (!(val & 0xf000)) {
97
580k
    bit -= 4;
98
580k
    val <<= 4;
99
580k
  }
100
1.17M
  if (!(val & 0xc000)) {
101
464k
    bit -= 2;
102
464k
    val <<= 2;
103
464k
  }
104
1.17M
  if (!(val & 0x8000)) {
105
473k
    bit -= 1;
106
473k
    val <<= 1;
107
473k
  }
108
109
1.17M
  return bit;
110
1.17M
}
111
112
113
/*
114
 * Compute values to do a division using reciprocal.
115
 *
116
 * This implementation is based on an algorithm described in
117
 *   "How to optimize for the Pentium family of microprocessors"
118
 *   (http://www.agner.org/assem/).
119
 * More information about the basic algorithm can be found in
120
 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
121
 *
122
 * The basic idea is to replace x/d by x * d^-1. In order to store
123
 * d^-1 with enough precision we shift it left a few places. It turns
124
 * out that this algoright gives just enough precision, and also fits
125
 * into DCTELEM:
126
 *
127
 *   b = (the number of significant bits in divisor) - 1
128
 *   r = (word size) + b
129
 *   f = 2^r / divisor
130
 *
131
 * f will not be an integer for most cases, so we need to compensate
132
 * for the rounding error introduced:
133
 *
134
 *   no fractional part:
135
 *
136
 *       result = input >> r
137
 *
138
 *   fractional part of f < 0.5:
139
 *
140
 *       round f down to nearest integer
141
 *       result = ((input + 1) * f) >> r
142
 *
143
 *   fractional part of f > 0.5:
144
 *
145
 *       round f up to nearest integer
146
 *       result = (input * f) >> r
147
 *
148
 * This is the original algorithm that gives truncated results. But we
149
 * want properly rounded results, so we replace "input" with
150
 * "input + divisor/2".
151
 *
152
 * In order to allow SIMD implementations we also tweak the values to
153
 * allow the same calculation to be made at all times:
154
 *
155
 *   dctbl[0] = f rounded to nearest integer
156
 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
157
 *   dctbl[2] = 1 << ((word size) * 2 - r)
158
 *   dctbl[3] = r - (word size)
159
 *
160
 * dctbl[2] is for stupid instruction sets where the shift operation
161
 * isn't member wise (e.g. MMX).
162
 *
163
 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
164
 * is that most SIMD implementations have a "multiply and store top
165
 * half" operation.
166
 *
167
 * Lastly, we store each of the values in their own table instead
168
 * of in a consecutive manner, yet again in order to allow SIMD
169
 * routines.
170
 */
171
172
LOCAL(int)
173
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
174
1.17M
{
175
1.17M
  UDCTELEM2 fq, fr;
176
1.17M
  UDCTELEM c;
177
1.17M
  int b, r;
178
179
1.17M
  if (divisor == 1) {
180
    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
181
     * values will cause the C quantization algorithm to act like the
182
     * identity function.  Since only the C quantization algorithm is used in
183
     * these cases, the scale value is irrelevant.
184
     */
185
0
    dtbl[DCTSIZE2 * 0] = (DCTELEM)1;                        /* reciprocal */
186
0
    dtbl[DCTSIZE2 * 1] = (DCTELEM)0;                        /* correction */
187
0
    dtbl[DCTSIZE2 * 2] = (DCTELEM)1;                        /* scale */
188
0
    dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8);   /* shift */
189
0
    return 0;
190
0
  }
191
192
1.17M
  b = flss(divisor) - 1;
193
1.17M
  r  = sizeof(DCTELEM) * 8 + b;
194
195
1.17M
  fq = ((UDCTELEM2)1 << r) / divisor;
196
1.17M
  fr = ((UDCTELEM2)1 << r) % divisor;
197
198
1.17M
  c = divisor / 2;                      /* for rounding */
199
200
1.17M
  if (fr == 0) {                        /* divisor is power of two */
201
    /* fq will be one bit too large to fit in DCTELEM, so adjust */
202
205k
    fq >>= 1;
203
205k
    r--;
204
968k
  } else if (fr <= (divisor / 2U)) {    /* fractional part is < 0.5 */
205
403k
    c++;
206
565k
  } else {                              /* fractional part is > 0.5 */
207
565k
    fq++;
208
565k
  }
209
210
1.17M
  dtbl[DCTSIZE2 * 0] = (DCTELEM)fq;     /* reciprocal */
211
1.17M
  dtbl[DCTSIZE2 * 1] = (DCTELEM)c;      /* correction + roundfactor */
212
1.17M
#ifdef WITH_SIMD
213
1.17M
  dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
214
#else
215
  dtbl[DCTSIZE2 * 2] = 1;
216
#endif
217
1.17M
  dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
218
219
1.17M
  if (r <= 16) return 0;
220
1.17M
  else return 1;
221
1.17M
}
222
223
#endif
224
225
226
/*
227
 * Initialize for a processing pass.
228
 * Verify that all referenced Q-tables are present, and set up
229
 * the divisor table for each one.
230
 * In the current implementation, DCT of all components is done during
231
 * the first pass, even if only some components will be output in the
232
 * first scan.  Hence all components should be examined here.
233
 */
234
235
METHODDEF(void)
236
start_pass_fdctmgr(j_compress_ptr cinfo)
237
7.00k
{
238
7.00k
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
239
7.00k
  int ci, qtblno, i;
240
7.00k
  jpeg_component_info *compptr;
241
7.00k
  JQUANT_TBL *qtbl;
242
7.00k
  DCTELEM *dtbl;
243
244
25.3k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245
18.3k
       ci++, compptr++) {
246
18.3k
    qtblno = compptr->quant_tbl_no;
247
    /* Make sure specified quantization table is present */
248
18.3k
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249
18.3k
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
250
0
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251
18.3k
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
252
    /* Compute divisors for this quant table */
253
    /* We may do this more than once for same table, but it's not a big deal */
254
18.3k
    switch (cinfo->dct_method) {
255
0
#ifdef DCT_ISLOW_SUPPORTED
256
3.09k
    case JDCT_ISLOW:
257
      /* For LL&M IDCT method, divisors are equal to raw quantization
258
       * coefficients multiplied by 8 (to counteract scaling).
259
       */
260
3.09k
      if (fdct->divisors[qtblno] == NULL) {
261
2.06k
        fdct->divisors[qtblno] = (DCTELEM *)
262
2.06k
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
263
2.06k
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
264
2.06k
      }
265
3.09k
      dtbl = fdct->divisors[qtblno];
266
201k
      for (i = 0; i < DCTSIZE2; i++) {
267
198k
#if BITS_IN_JSAMPLE == 8
268
198k
        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
269
198k
            fdct->quantize == jsimd_quantize)
270
0
          fdct->quantize = quantize;
271
#else
272
        dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
273
#endif
274
198k
      }
275
3.09k
      break;
276
0
#endif
277
0
#ifdef DCT_IFAST_SUPPORTED
278
15.2k
    case JDCT_IFAST:
279
15.2k
      {
280
        /* For AA&N IDCT method, divisors are equal to quantization
281
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
282
         *   scalefactor[0] = 1
283
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
284
         * We apply a further scale factor of 8.
285
         */
286
15.2k
#define CONST_BITS  14
287
15.2k
        static const INT16 aanscales[DCTSIZE2] = {
288
          /* precomputed values scaled up by 14 bits */
289
15.2k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
290
15.2k
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
291
15.2k
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
292
15.2k
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
293
15.2k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
294
15.2k
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
295
15.2k
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
296
15.2k
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
297
15.2k
        };
298
15.2k
        SHIFT_TEMPS
299
300
15.2k
        if (fdct->divisors[qtblno] == NULL) {
301
10.0k
          fdct->divisors[qtblno] = (DCTELEM *)
302
10.0k
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
303
10.0k
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
304
10.0k
        }
305
15.2k
        dtbl = fdct->divisors[qtblno];
306
990k
        for (i = 0; i < DCTSIZE2; i++) {
307
975k
#if BITS_IN_JSAMPLE == 8
308
975k
          if (!compute_reciprocal(
309
975k
                DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
310
975k
                                      (JLONG)aanscales[i]),
311
975k
                        CONST_BITS - 3), &dtbl[i]) &&
312
975k
              fdct->quantize == jsimd_quantize)
313
0
            fdct->quantize = quantize;
314
#else
315
          dtbl[i] = (DCTELEM)
316
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
317
                                  (JLONG)aanscales[i]),
318
                    CONST_BITS - 3);
319
#endif
320
975k
        }
321
15.2k
      }
322
15.2k
      break;
323
0
#endif
324
0
#ifdef DCT_FLOAT_SUPPORTED
325
0
    case JDCT_FLOAT:
326
0
      {
327
        /* For float AA&N IDCT method, divisors are equal to quantization
328
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
329
         *   scalefactor[0] = 1
330
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
331
         * We apply a further scale factor of 8.
332
         * What's actually stored is 1/divisor so that the inner loop can
333
         * use a multiplication rather than a division.
334
         */
335
0
        FAST_FLOAT *fdtbl;
336
0
        int row, col;
337
0
        static const double aanscalefactor[DCTSIZE] = {
338
0
          1.0, 1.387039845, 1.306562965, 1.175875602,
339
0
          1.0, 0.785694958, 0.541196100, 0.275899379
340
0
        };
341
342
0
        if (fdct->float_divisors[qtblno] == NULL) {
343
0
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
344
0
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
345
0
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
346
0
        }
347
0
        fdtbl = fdct->float_divisors[qtblno];
348
0
        i = 0;
349
0
        for (row = 0; row < DCTSIZE; row++) {
350
0
          for (col = 0; col < DCTSIZE; col++) {
351
0
            fdtbl[i] = (FAST_FLOAT)
352
0
              (1.0 / (((double)qtbl->quantval[i] *
353
0
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
354
0
            i++;
355
0
          }
356
0
        }
357
0
      }
358
0
      break;
359
0
#endif
360
0
    default:
361
0
      ERREXIT(cinfo, JERR_NOT_COMPILED);
362
0
      break;
363
18.3k
    }
364
18.3k
  }
365
7.00k
}
366
367
368
/*
369
 * Load data into workspace, applying unsigned->signed conversion.
370
 */
371
372
METHODDEF(void)
373
convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
374
0
{
375
0
  register DCTELEM *workspaceptr;
376
0
  register JSAMPROW elemptr;
377
0
  register int elemr;
378
379
0
  workspaceptr = workspace;
380
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
381
0
    elemptr = sample_data[elemr] + start_col;
382
383
0
#if DCTSIZE == 8                /* unroll the inner loop */
384
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
385
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
386
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
387
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
388
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
389
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
390
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
391
0
    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
392
#else
393
    {
394
      register int elemc;
395
      for (elemc = DCTSIZE; elemc > 0; elemc--)
396
        *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
397
    }
398
#endif
399
0
  }
400
0
}
401
402
403
/*
404
 * Quantize/descale the coefficients, and store into coef_blocks[].
405
 */
406
407
METHODDEF(void)
408
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
409
0
{
410
0
  int i;
411
0
  DCTELEM temp;
412
0
  JCOEFPTR output_ptr = coef_block;
413
414
0
#if BITS_IN_JSAMPLE == 8
415
416
0
  UDCTELEM recip, corr;
417
0
  int shift;
418
0
  UDCTELEM2 product;
419
420
0
  for (i = 0; i < DCTSIZE2; i++) {
421
0
    temp = workspace[i];
422
0
    recip = divisors[i + DCTSIZE2 * 0];
423
0
    corr =  divisors[i + DCTSIZE2 * 1];
424
0
    shift = divisors[i + DCTSIZE2 * 3];
425
426
0
    if (temp < 0) {
427
0
      temp = -temp;
428
0
      product = (UDCTELEM2)(temp + corr) * recip;
429
0
      product >>= shift + sizeof(DCTELEM) * 8;
430
0
      temp = (DCTELEM)product;
431
0
      temp = -temp;
432
0
    } else {
433
0
      product = (UDCTELEM2)(temp + corr) * recip;
434
0
      product >>= shift + sizeof(DCTELEM) * 8;
435
0
      temp = (DCTELEM)product;
436
0
    }
437
0
    output_ptr[i] = (JCOEF)temp;
438
0
  }
439
440
#else
441
442
  register DCTELEM qval;
443
444
  for (i = 0; i < DCTSIZE2; i++) {
445
    qval = divisors[i];
446
    temp = workspace[i];
447
    /* Divide the coefficient value by qval, ensuring proper rounding.
448
     * Since C does not specify the direction of rounding for negative
449
     * quotients, we have to force the dividend positive for portability.
450
     *
451
     * In most files, at least half of the output values will be zero
452
     * (at default quantization settings, more like three-quarters...)
453
     * so we should ensure that this case is fast.  On many machines,
454
     * a comparison is enough cheaper than a divide to make a special test
455
     * a win.  Since both inputs will be nonnegative, we need only test
456
     * for a < b to discover whether a/b is 0.
457
     * If your machine's division is fast enough, define FAST_DIVIDE.
458
     */
459
#ifdef FAST_DIVIDE
460
#define DIVIDE_BY(a, b)  a /= b
461
#else
462
#define DIVIDE_BY(a, b)  if (a >= b) a /= b;  else a = 0
463
#endif
464
    if (temp < 0) {
465
      temp = -temp;
466
      temp += qval >> 1;        /* for rounding */
467
      DIVIDE_BY(temp, qval);
468
      temp = -temp;
469
    } else {
470
      temp += qval >> 1;        /* for rounding */
471
      DIVIDE_BY(temp, qval);
472
    }
473
    output_ptr[i] = (JCOEF)temp;
474
  }
475
476
#endif
477
478
0
}
479
480
481
/*
482
 * Perform forward DCT on one or more blocks of a component.
483
 *
484
 * The input samples are taken from the sample_data[] array starting at
485
 * position start_row/start_col, and moving to the right for any additional
486
 * blocks. The quantized coefficients are returned in coef_blocks[].
487
 */
488
489
METHODDEF(void)
490
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
491
            JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
492
            JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
493
/* This version is used for integer DCT implementations. */
494
11.3M
{
495
  /* This routine is heavily used, so it's worth coding it tightly. */
496
11.3M
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
497
11.3M
  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
498
11.3M
  DCTELEM *workspace;
499
11.3M
  JDIMENSION bi;
500
501
  /* Make sure the compiler doesn't look up these every pass */
502
11.3M
  forward_DCT_method_ptr do_dct = fdct->dct;
503
11.3M
  convsamp_method_ptr do_convsamp = fdct->convsamp;
504
11.3M
  quantize_method_ptr do_quantize = fdct->quantize;
505
11.3M
  workspace = fdct->workspace;
506
507
11.3M
  sample_data += start_row;     /* fold in the vertical offset once */
508
509
23.7M
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
510
    /* Load data into workspace, applying unsigned->signed conversion */
511
12.4M
    (*do_convsamp) (sample_data, start_col, workspace);
512
513
    /* Perform the DCT */
514
12.4M
    (*do_dct) (workspace);
515
516
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
517
12.4M
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
518
12.4M
  }
519
11.3M
}
520
521
522
#ifdef DCT_FLOAT_SUPPORTED
523
524
METHODDEF(void)
525
convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col,
526
               FAST_FLOAT *workspace)
527
0
{
528
0
  register FAST_FLOAT *workspaceptr;
529
0
  register JSAMPROW elemptr;
530
0
  register int elemr;
531
532
0
  workspaceptr = workspace;
533
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
534
0
    elemptr = sample_data[elemr] + start_col;
535
0
#if DCTSIZE == 8                /* unroll the inner loop */
536
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
537
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
538
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
539
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
540
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
541
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
542
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
543
0
    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
544
#else
545
    {
546
      register int elemc;
547
      for (elemc = DCTSIZE; elemc > 0; elemc--)
548
        *workspaceptr++ = (FAST_FLOAT)
549
                          (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
550
    }
551
#endif
552
0
  }
553
0
}
554
555
556
METHODDEF(void)
557
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
558
               FAST_FLOAT *workspace)
559
0
{
560
0
  register FAST_FLOAT temp;
561
0
  register int i;
562
0
  register JCOEFPTR output_ptr = coef_block;
563
564
0
  for (i = 0; i < DCTSIZE2; i++) {
565
    /* Apply the quantization and scaling factor */
566
0
    temp = workspace[i] * divisors[i];
567
568
    /* Round to nearest integer.
569
     * Since C does not specify the direction of rounding for negative
570
     * quotients, we have to force the dividend positive for portability.
571
     * The maximum coefficient size is +-16K (for 12-bit data), so this
572
     * code should work for either 16-bit or 32-bit ints.
573
     */
574
0
    output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
575
0
  }
576
0
}
577
578
579
METHODDEF(void)
580
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
581
                  JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
582
                  JDIMENSION start_row, JDIMENSION start_col,
583
                  JDIMENSION num_blocks)
584
/* This version is used for floating-point DCT implementations. */
585
0
{
586
  /* This routine is heavily used, so it's worth coding it tightly. */
587
0
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
588
0
  FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
589
0
  FAST_FLOAT *workspace;
590
0
  JDIMENSION bi;
591
592
593
  /* Make sure the compiler doesn't look up these every pass */
594
0
  float_DCT_method_ptr do_dct = fdct->float_dct;
595
0
  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
596
0
  float_quantize_method_ptr do_quantize = fdct->float_quantize;
597
0
  workspace = fdct->float_workspace;
598
599
0
  sample_data += start_row;     /* fold in the vertical offset once */
600
601
0
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
602
    /* Load data into workspace, applying unsigned->signed conversion */
603
0
    (*do_convsamp) (sample_data, start_col, workspace);
604
605
    /* Perform the DCT */
606
0
    (*do_dct) (workspace);
607
608
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
609
0
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
610
0
  }
611
0
}
612
613
#endif /* DCT_FLOAT_SUPPORTED */
614
615
616
/*
617
 * Initialize FDCT manager.
618
 */
619
620
GLOBAL(void)
621
jinit_forward_dct(j_compress_ptr cinfo)
622
7.00k
{
623
7.00k
  my_fdct_ptr fdct;
624
7.00k
  int i;
625
626
7.00k
  fdct = (my_fdct_ptr)
627
7.00k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
628
7.00k
                                sizeof(my_fdct_controller));
629
7.00k
  cinfo->fdct = (struct jpeg_forward_dct *)fdct;
630
7.00k
  fdct->pub.start_pass = start_pass_fdctmgr;
631
632
  /* First determine the DCT... */
633
7.00k
  switch (cinfo->dct_method) {
634
0
#ifdef DCT_ISLOW_SUPPORTED
635
1.03k
  case JDCT_ISLOW:
636
1.03k
    fdct->pub.forward_DCT = forward_DCT;
637
1.03k
    if (jsimd_can_fdct_islow())
638
1.03k
      fdct->dct = jsimd_fdct_islow;
639
0
    else
640
0
      fdct->dct = jpeg_fdct_islow;
641
1.03k
    break;
642
0
#endif
643
0
#ifdef DCT_IFAST_SUPPORTED
644
5.97k
  case JDCT_IFAST:
645
5.97k
    fdct->pub.forward_DCT = forward_DCT;
646
5.97k
    if (jsimd_can_fdct_ifast())
647
5.97k
      fdct->dct = jsimd_fdct_ifast;
648
0
    else
649
0
      fdct->dct = jpeg_fdct_ifast;
650
5.97k
    break;
651
0
#endif
652
0
#ifdef DCT_FLOAT_SUPPORTED
653
0
  case JDCT_FLOAT:
654
0
    fdct->pub.forward_DCT = forward_DCT_float;
655
0
    if (jsimd_can_fdct_float())
656
0
      fdct->float_dct = jsimd_fdct_float;
657
0
    else
658
0
      fdct->float_dct = jpeg_fdct_float;
659
0
    break;
660
0
#endif
661
0
  default:
662
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
663
0
    break;
664
7.00k
  }
665
666
  /* ...then the supporting stages. */
667
7.00k
  switch (cinfo->dct_method) {
668
0
#ifdef DCT_ISLOW_SUPPORTED
669
1.03k
  case JDCT_ISLOW:
670
1.03k
#endif
671
1.03k
#ifdef DCT_IFAST_SUPPORTED
672
7.00k
  case JDCT_IFAST:
673
7.00k
#endif
674
7.00k
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
675
7.00k
    if (jsimd_can_convsamp())
676
7.00k
      fdct->convsamp = jsimd_convsamp;
677
0
    else
678
0
      fdct->convsamp = convsamp;
679
7.00k
    if (jsimd_can_quantize())
680
7.00k
      fdct->quantize = jsimd_quantize;
681
0
    else
682
0
      fdct->quantize = quantize;
683
7.00k
    break;
684
0
#endif
685
0
#ifdef DCT_FLOAT_SUPPORTED
686
0
  case JDCT_FLOAT:
687
0
    if (jsimd_can_convsamp_float())
688
0
      fdct->float_convsamp = jsimd_convsamp_float;
689
0
    else
690
0
      fdct->float_convsamp = convsamp_float;
691
0
    if (jsimd_can_quantize_float())
692
0
      fdct->float_quantize = jsimd_quantize_float;
693
0
    else
694
0
      fdct->float_quantize = quantize_float;
695
0
    break;
696
0
#endif
697
0
  default:
698
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
699
0
    break;
700
7.00k
  }
701
702
  /* Allocate workspace memory */
703
7.00k
#ifdef DCT_FLOAT_SUPPORTED
704
7.00k
  if (cinfo->dct_method == JDCT_FLOAT)
705
0
    fdct->float_workspace = (FAST_FLOAT *)
706
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
707
0
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
708
7.00k
  else
709
7.00k
#endif
710
7.00k
    fdct->workspace = (DCTELEM *)
711
7.00k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
712
7.00k
                                  sizeof(DCTELEM) * DCTSIZE2);
713
714
  /* Mark divisor tables unallocated */
715
35.0k
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
716
28.0k
    fdct->divisors[i] = NULL;
717
28.0k
#ifdef DCT_FLOAT_SUPPORTED
718
28.0k
    fdct->float_divisors[i] = NULL;
719
28.0k
#endif
720
28.0k
  }
721
7.00k
}