Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.2.0.x/jdcoefct.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdcoefct.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
8
 * Copyright (C) 2010, 2015-2016, D. R. Commander.
9
 * Copyright (C) 2015, 2020, Google, Inc.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains the coefficient buffer controller for decompression.
14
 * This controller is the top level of the JPEG decompressor proper.
15
 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
16
 *
17
 * In buffered-image mode, this controller is the interface between
18
 * input-oriented processing and output-oriented processing.
19
 * Also, the input side (only) is used when reading a file for transcoding.
20
 */
21
22
#include "jinclude.h"
23
#include "jdcoefct.h"
24
#include "jpegcomp.h"
25
26
27
/* Forward declarations */
28
METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
29
                                  JSAMPIMAGE output_buf);
30
#ifdef D_MULTISCAN_FILES_SUPPORTED
31
METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
32
#endif
33
#ifdef BLOCK_SMOOTHING_SUPPORTED
34
LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
35
METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
36
                                      JSAMPIMAGE output_buf);
37
#endif
38
39
40
/*
41
 * Initialize for an input processing pass.
42
 */
43
44
METHODDEF(void)
45
start_input_pass(j_decompress_ptr cinfo)
46
0
{
47
0
  cinfo->input_iMCU_row = 0;
48
0
  start_iMCU_row(cinfo);
49
0
}
50
51
52
/*
53
 * Initialize for an output processing pass.
54
 */
55
56
METHODDEF(void)
57
start_output_pass(j_decompress_ptr cinfo)
58
0
{
59
0
#ifdef BLOCK_SMOOTHING_SUPPORTED
60
0
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
61
62
  /* If multipass, check to see whether to use block smoothing on this pass */
63
0
  if (coef->pub.coef_arrays != NULL) {
64
0
    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
65
0
      coef->pub.decompress_data = decompress_smooth_data;
66
0
    else
67
0
      coef->pub.decompress_data = decompress_data;
68
0
  }
69
0
#endif
70
0
  cinfo->output_iMCU_row = 0;
71
0
}
72
73
74
/*
75
 * Decompress and return some data in the single-pass case.
76
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
77
 * Input and output must run in lockstep since we have only a one-MCU buffer.
78
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
79
 *
80
 * NB: output_buf contains a plane for each component in image,
81
 * which we index according to the component's SOF position.
82
 */
83
84
METHODDEF(int)
85
decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
86
0
{
87
0
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
88
0
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
89
0
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
90
0
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
91
0
  int blkn, ci, xindex, yindex, yoffset, useful_width;
92
0
  JSAMPARRAY output_ptr;
93
0
  JDIMENSION start_col, output_col;
94
0
  jpeg_component_info *compptr;
95
0
  inverse_DCT_method_ptr inverse_DCT;
96
97
  /* Loop to process as much as one whole iMCU row */
98
0
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
99
0
       yoffset++) {
100
0
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
101
0
         MCU_col_num++) {
102
      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
103
0
      jzero_far((void *)coef->MCU_buffer[0],
104
0
                (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
105
0
      if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
106
        /* Suspension forced; update state counters and exit */
107
0
        coef->MCU_vert_offset = yoffset;
108
0
        coef->MCU_ctr = MCU_col_num;
109
0
        return JPEG_SUSPENDED;
110
0
      }
111
112
      /* Only perform the IDCT on blocks that are contained within the desired
113
       * cropping region.
114
       */
115
0
      if (MCU_col_num >= cinfo->master->first_iMCU_col &&
116
0
          MCU_col_num <= cinfo->master->last_iMCU_col) {
117
        /* Determine where data should go in output_buf and do the IDCT thing.
118
         * We skip dummy blocks at the right and bottom edges (but blkn gets
119
         * incremented past them!).  Note the inner loop relies on having
120
         * allocated the MCU_buffer[] blocks sequentially.
121
         */
122
0
        blkn = 0;               /* index of current DCT block within MCU */
123
0
        for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
124
0
          compptr = cinfo->cur_comp_info[ci];
125
          /* Don't bother to IDCT an uninteresting component. */
126
0
          if (!compptr->component_needed) {
127
0
            blkn += compptr->MCU_blocks;
128
0
            continue;
129
0
          }
130
0
          inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
131
0
          useful_width = (MCU_col_num < last_MCU_col) ?
132
0
                         compptr->MCU_width : compptr->last_col_width;
133
0
          output_ptr = output_buf[compptr->component_index] +
134
0
                       yoffset * compptr->_DCT_scaled_size;
135
0
          start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
136
0
                      compptr->MCU_sample_width;
137
0
          for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
138
0
            if (cinfo->input_iMCU_row < last_iMCU_row ||
139
0
                yoffset + yindex < compptr->last_row_height) {
140
0
              output_col = start_col;
141
0
              for (xindex = 0; xindex < useful_width; xindex++) {
142
0
                (*inverse_DCT) (cinfo, compptr,
143
0
                                (JCOEFPTR)coef->MCU_buffer[blkn + xindex],
144
0
                                output_ptr, output_col);
145
0
                output_col += compptr->_DCT_scaled_size;
146
0
              }
147
0
            }
148
0
            blkn += compptr->MCU_width;
149
0
            output_ptr += compptr->_DCT_scaled_size;
150
0
          }
151
0
        }
152
0
      }
153
0
    }
154
    /* Completed an MCU row, but perhaps not an iMCU row */
155
0
    coef->MCU_ctr = 0;
156
0
  }
157
  /* Completed the iMCU row, advance counters for next one */
158
0
  cinfo->output_iMCU_row++;
159
0
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
160
0
    start_iMCU_row(cinfo);
161
0
    return JPEG_ROW_COMPLETED;
162
0
  }
163
  /* Completed the scan */
164
0
  (*cinfo->inputctl->finish_input_pass) (cinfo);
165
0
  return JPEG_SCAN_COMPLETED;
166
0
}
167
168
169
/*
170
 * Dummy consume-input routine for single-pass operation.
171
 */
172
173
METHODDEF(int)
174
dummy_consume_data(j_decompress_ptr cinfo)
175
0
{
176
0
  return JPEG_SUSPENDED;        /* Always indicate nothing was done */
177
0
}
178
179
180
#ifdef D_MULTISCAN_FILES_SUPPORTED
181
182
/*
183
 * Consume input data and store it in the full-image coefficient buffer.
184
 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
185
 * ie, v_samp_factor block rows for each component in the scan.
186
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
187
 */
188
189
METHODDEF(int)
190
consume_data(j_decompress_ptr cinfo)
191
0
{
192
0
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
193
0
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
194
0
  int blkn, ci, xindex, yindex, yoffset;
195
0
  JDIMENSION start_col;
196
0
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
197
0
  JBLOCKROW buffer_ptr;
198
0
  jpeg_component_info *compptr;
199
200
  /* Align the virtual buffers for the components used in this scan. */
201
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202
0
    compptr = cinfo->cur_comp_info[ci];
203
0
    buffer[ci] = (*cinfo->mem->access_virt_barray)
204
0
      ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
205
0
       cinfo->input_iMCU_row * compptr->v_samp_factor,
206
0
       (JDIMENSION)compptr->v_samp_factor, TRUE);
207
    /* Note: entropy decoder expects buffer to be zeroed,
208
     * but this is handled automatically by the memory manager
209
     * because we requested a pre-zeroed array.
210
     */
211
0
  }
212
213
  /* Loop to process one whole iMCU row */
214
0
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
215
0
       yoffset++) {
216
0
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
217
0
         MCU_col_num++) {
218
      /* Construct list of pointers to DCT blocks belonging to this MCU */
219
0
      blkn = 0;                 /* index of current DCT block within MCU */
220
0
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
221
0
        compptr = cinfo->cur_comp_info[ci];
222
0
        start_col = MCU_col_num * compptr->MCU_width;
223
0
        for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
224
0
          buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
225
0
          for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
226
0
            coef->MCU_buffer[blkn++] = buffer_ptr++;
227
0
          }
228
0
        }
229
0
      }
230
      /* Try to fetch the MCU. */
231
0
      if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
232
        /* Suspension forced; update state counters and exit */
233
0
        coef->MCU_vert_offset = yoffset;
234
0
        coef->MCU_ctr = MCU_col_num;
235
0
        return JPEG_SUSPENDED;
236
0
      }
237
0
    }
238
    /* Completed an MCU row, but perhaps not an iMCU row */
239
0
    coef->MCU_ctr = 0;
240
0
  }
241
  /* Completed the iMCU row, advance counters for next one */
242
0
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
243
0
    start_iMCU_row(cinfo);
244
0
    return JPEG_ROW_COMPLETED;
245
0
  }
246
  /* Completed the scan */
247
0
  (*cinfo->inputctl->finish_input_pass) (cinfo);
248
0
  return JPEG_SCAN_COMPLETED;
249
0
}
250
251
252
/*
253
 * Decompress and return some data in the multi-pass case.
254
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
255
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
256
 *
257
 * NB: output_buf contains a plane for each component in image.
258
 */
259
260
METHODDEF(int)
261
decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
262
0
{
263
0
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
264
0
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
265
0
  JDIMENSION block_num;
266
0
  int ci, block_row, block_rows;
267
0
  JBLOCKARRAY buffer;
268
0
  JBLOCKROW buffer_ptr;
269
0
  JSAMPARRAY output_ptr;
270
0
  JDIMENSION output_col;
271
0
  jpeg_component_info *compptr;
272
0
  inverse_DCT_method_ptr inverse_DCT;
273
274
  /* Force some input to be done if we are getting ahead of the input. */
275
0
  while (cinfo->input_scan_number < cinfo->output_scan_number ||
276
0
         (cinfo->input_scan_number == cinfo->output_scan_number &&
277
0
          cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
278
0
    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
279
0
      return JPEG_SUSPENDED;
280
0
  }
281
282
  /* OK, output from the virtual arrays. */
283
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
284
0
       ci++, compptr++) {
285
    /* Don't bother to IDCT an uninteresting component. */
286
0
    if (!compptr->component_needed)
287
0
      continue;
288
    /* Align the virtual buffer for this component. */
289
0
    buffer = (*cinfo->mem->access_virt_barray)
290
0
      ((j_common_ptr)cinfo, coef->whole_image[ci],
291
0
       cinfo->output_iMCU_row * compptr->v_samp_factor,
292
0
       (JDIMENSION)compptr->v_samp_factor, FALSE);
293
    /* Count non-dummy DCT block rows in this iMCU row. */
294
0
    if (cinfo->output_iMCU_row < last_iMCU_row)
295
0
      block_rows = compptr->v_samp_factor;
296
0
    else {
297
      /* NB: can't use last_row_height here; it is input-side-dependent! */
298
0
      block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
299
0
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
300
0
    }
301
0
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
302
0
    output_ptr = output_buf[ci];
303
    /* Loop over all DCT blocks to be processed. */
304
0
    for (block_row = 0; block_row < block_rows; block_row++) {
305
0
      buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
306
0
      output_col = 0;
307
0
      for (block_num = cinfo->master->first_MCU_col[ci];
308
0
           block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
309
0
        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
310
0
                        output_col);
311
0
        buffer_ptr++;
312
0
        output_col += compptr->_DCT_scaled_size;
313
0
      }
314
0
      output_ptr += compptr->_DCT_scaled_size;
315
0
    }
316
0
  }
317
318
0
  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
319
0
    return JPEG_ROW_COMPLETED;
320
0
  return JPEG_SCAN_COMPLETED;
321
0
}
322
323
#endif /* D_MULTISCAN_FILES_SUPPORTED */
324
325
326
#ifdef BLOCK_SMOOTHING_SUPPORTED
327
328
/*
329
 * This code applies interblock smoothing as described by section K.8
330
 * of the JPEG standard: the first 5 AC coefficients are estimated from
331
 * the DC values of a DCT block and its 8 neighboring blocks.
332
 * We apply smoothing only for progressive JPEG decoding, and only if
333
 * the coefficients it can estimate are not yet known to full precision.
334
 */
335
336
/* Natural-order array positions of the first 5 zigzag-order coefficients */
337
0
#define Q01_POS  1
338
0
#define Q10_POS  8
339
0
#define Q20_POS  16
340
0
#define Q11_POS  9
341
0
#define Q02_POS  2
342
343
/*
344
 * Determine whether block smoothing is applicable and safe.
345
 * We also latch the current states of the coef_bits[] entries for the
346
 * AC coefficients; otherwise, if the input side of the decompressor
347
 * advances into a new scan, we might think the coefficients are known
348
 * more accurately than they really are.
349
 */
350
351
LOCAL(boolean)
352
smoothing_ok(j_decompress_ptr cinfo)
353
0
{
354
0
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
355
0
  boolean smoothing_useful = FALSE;
356
0
  int ci, coefi;
357
0
  jpeg_component_info *compptr;
358
0
  JQUANT_TBL *qtable;
359
0
  int *coef_bits;
360
0
  int *coef_bits_latch;
361
362
0
  if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
363
0
    return FALSE;
364
365
  /* Allocate latch area if not already done */
366
0
  if (coef->coef_bits_latch == NULL)
367
0
    coef->coef_bits_latch = (int *)
368
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
369
0
                                  cinfo->num_components *
370
0
                                  (SAVED_COEFS * sizeof(int)));
371
0
  coef_bits_latch = coef->coef_bits_latch;
372
373
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
374
0
       ci++, compptr++) {
375
    /* All components' quantization values must already be latched. */
376
0
    if ((qtable = compptr->quant_table) == NULL)
377
0
      return FALSE;
378
    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
379
0
    if (qtable->quantval[0] == 0 ||
380
0
        qtable->quantval[Q01_POS] == 0 ||
381
0
        qtable->quantval[Q10_POS] == 0 ||
382
0
        qtable->quantval[Q20_POS] == 0 ||
383
0
        qtable->quantval[Q11_POS] == 0 ||
384
0
        qtable->quantval[Q02_POS] == 0)
385
0
      return FALSE;
386
    /* DC values must be at least partly known for all components. */
387
0
    coef_bits = cinfo->coef_bits[ci];
388
0
    if (coef_bits[0] < 0)
389
0
      return FALSE;
390
    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
391
0
    for (coefi = 1; coefi <= 5; coefi++) {
392
0
      coef_bits_latch[coefi] = coef_bits[coefi];
393
0
      if (coef_bits[coefi] != 0)
394
0
        smoothing_useful = TRUE;
395
0
    }
396
0
    coef_bits_latch += SAVED_COEFS;
397
0
  }
398
399
0
  return smoothing_useful;
400
0
}
401
402
403
/*
404
 * Variant of decompress_data for use when doing block smoothing.
405
 */
406
407
METHODDEF(int)
408
decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
409
0
{
410
0
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
411
0
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
412
0
  JDIMENSION block_num, last_block_column;
413
0
  int ci, block_row, block_rows, access_rows;
414
0
  JBLOCKARRAY buffer;
415
0
  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
416
0
  JSAMPARRAY output_ptr;
417
0
  JDIMENSION output_col;
418
0
  jpeg_component_info *compptr;
419
0
  inverse_DCT_method_ptr inverse_DCT;
420
0
  boolean first_row, last_row;
421
0
  JCOEF *workspace;
422
0
  int *coef_bits;
423
0
  JQUANT_TBL *quanttbl;
424
0
  JLONG Q00, Q01, Q02, Q10, Q11, Q20, num;
425
0
  int DC1, DC2, DC3, DC4, DC5, DC6, DC7, DC8, DC9;
426
0
  int Al, pred;
427
428
  /* Keep a local variable to avoid looking it up more than once */
429
0
  workspace = coef->workspace;
430
431
  /* Force some input to be done if we are getting ahead of the input. */
432
0
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
433
0
         !cinfo->inputctl->eoi_reached) {
434
0
    if (cinfo->input_scan_number == cinfo->output_scan_number) {
435
      /* If input is working on current scan, we ordinarily want it to
436
       * have completed the current row.  But if input scan is DC,
437
       * we want it to keep one row ahead so that next block row's DC
438
       * values are up to date.
439
       */
440
0
      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
441
0
      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
442
0
        break;
443
0
    }
444
0
    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
445
0
      return JPEG_SUSPENDED;
446
0
  }
447
448
  /* OK, output from the virtual arrays. */
449
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
450
0
       ci++, compptr++) {
451
    /* Don't bother to IDCT an uninteresting component. */
452
0
    if (!compptr->component_needed)
453
0
      continue;
454
    /* Count non-dummy DCT block rows in this iMCU row. */
455
0
    if (cinfo->output_iMCU_row < last_iMCU_row) {
456
0
      block_rows = compptr->v_samp_factor;
457
0
      access_rows = block_rows * 2; /* this and next iMCU row */
458
0
      last_row = FALSE;
459
0
    } else {
460
      /* NB: can't use last_row_height here; it is input-side-dependent! */
461
0
      block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
462
0
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
463
0
      access_rows = block_rows; /* this iMCU row only */
464
0
      last_row = TRUE;
465
0
    }
466
    /* Align the virtual buffer for this component. */
467
0
    if (cinfo->output_iMCU_row > 0) {
468
0
      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
469
0
      buffer = (*cinfo->mem->access_virt_barray)
470
0
        ((j_common_ptr)cinfo, coef->whole_image[ci],
471
0
         (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
472
0
         (JDIMENSION)access_rows, FALSE);
473
0
      buffer += compptr->v_samp_factor; /* point to current iMCU row */
474
0
      first_row = FALSE;
475
0
    } else {
476
0
      buffer = (*cinfo->mem->access_virt_barray)
477
0
        ((j_common_ptr)cinfo, coef->whole_image[ci],
478
0
         (JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
479
0
      first_row = TRUE;
480
0
    }
481
    /* Fetch component-dependent info */
482
0
    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
483
0
    quanttbl = compptr->quant_table;
484
0
    Q00 = quanttbl->quantval[0];
485
0
    Q01 = quanttbl->quantval[Q01_POS];
486
0
    Q10 = quanttbl->quantval[Q10_POS];
487
0
    Q20 = quanttbl->quantval[Q20_POS];
488
0
    Q11 = quanttbl->quantval[Q11_POS];
489
0
    Q02 = quanttbl->quantval[Q02_POS];
490
0
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
491
0
    output_ptr = output_buf[ci];
492
    /* Loop over all DCT blocks to be processed. */
493
0
    for (block_row = 0; block_row < block_rows; block_row++) {
494
0
      buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
495
0
      if (first_row && block_row == 0)
496
0
        prev_block_row = buffer_ptr;
497
0
      else
498
0
        prev_block_row = buffer[block_row - 1] +
499
0
                         cinfo->master->first_MCU_col[ci];
500
0
      if (last_row && block_row == block_rows - 1)
501
0
        next_block_row = buffer_ptr;
502
0
      else
503
0
        next_block_row = buffer[block_row + 1] +
504
0
                         cinfo->master->first_MCU_col[ci];
505
      /* We fetch the surrounding DC values using a sliding-register approach.
506
       * Initialize all nine here so as to do the right thing on narrow pics.
507
       */
508
0
      DC1 = DC2 = DC3 = (int)prev_block_row[0][0];
509
0
      DC4 = DC5 = DC6 = (int)buffer_ptr[0][0];
510
0
      DC7 = DC8 = DC9 = (int)next_block_row[0][0];
511
0
      output_col = 0;
512
0
      last_block_column = compptr->width_in_blocks - 1;
513
0
      for (block_num = cinfo->master->first_MCU_col[ci];
514
0
           block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
515
        /* Fetch current DCT block into workspace so we can modify it. */
516
0
        jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
517
        /* Update DC values */
518
0
        if (block_num < last_block_column) {
519
0
          DC3 = (int)prev_block_row[1][0];
520
0
          DC6 = (int)buffer_ptr[1][0];
521
0
          DC9 = (int)next_block_row[1][0];
522
0
        }
523
        /* Compute coefficient estimates per K.8.
524
         * An estimate is applied only if coefficient is still zero,
525
         * and is not known to be fully accurate.
526
         */
527
        /* AC01 */
528
0
        if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
529
0
          num = 36 * Q00 * (DC4 - DC6);
530
0
          if (num >= 0) {
531
0
            pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
532
0
            if (Al > 0 && pred >= (1 << Al))
533
0
              pred = (1 << Al) - 1;
534
0
          } else {
535
0
            pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
536
0
            if (Al > 0 && pred >= (1 << Al))
537
0
              pred = (1 << Al) - 1;
538
0
            pred = -pred;
539
0
          }
540
0
          workspace[1] = (JCOEF)pred;
541
0
        }
542
        /* AC10 */
543
0
        if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
544
0
          num = 36 * Q00 * (DC2 - DC8);
545
0
          if (num >= 0) {
546
0
            pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
547
0
            if (Al > 0 && pred >= (1 << Al))
548
0
              pred = (1 << Al) - 1;
549
0
          } else {
550
0
            pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
551
0
            if (Al > 0 && pred >= (1 << Al))
552
0
              pred = (1 << Al) - 1;
553
0
            pred = -pred;
554
0
          }
555
0
          workspace[8] = (JCOEF)pred;
556
0
        }
557
        /* AC20 */
558
0
        if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
559
0
          num = 9 * Q00 * (DC2 + DC8 - 2 * DC5);
560
0
          if (num >= 0) {
561
0
            pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
562
0
            if (Al > 0 && pred >= (1 << Al))
563
0
              pred = (1 << Al) - 1;
564
0
          } else {
565
0
            pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
566
0
            if (Al > 0 && pred >= (1 << Al))
567
0
              pred = (1 << Al) - 1;
568
0
            pred = -pred;
569
0
          }
570
0
          workspace[16] = (JCOEF)pred;
571
0
        }
572
        /* AC11 */
573
0
        if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
574
0
          num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
575
0
          if (num >= 0) {
576
0
            pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
577
0
            if (Al > 0 && pred >= (1 << Al))
578
0
              pred = (1 << Al) - 1;
579
0
          } else {
580
0
            pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
581
0
            if (Al > 0 && pred >= (1 << Al))
582
0
              pred = (1 << Al) - 1;
583
0
            pred = -pred;
584
0
          }
585
0
          workspace[9] = (JCOEF)pred;
586
0
        }
587
        /* AC02 */
588
0
        if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
589
0
          num = 9 * Q00 * (DC4 + DC6 - 2 * DC5);
590
0
          if (num >= 0) {
591
0
            pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
592
0
            if (Al > 0 && pred >= (1 << Al))
593
0
              pred = (1 << Al) - 1;
594
0
          } else {
595
0
            pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
596
0
            if (Al > 0 && pred >= (1 << Al))
597
0
              pred = (1 << Al) - 1;
598
0
            pred = -pred;
599
0
          }
600
0
          workspace[2] = (JCOEF)pred;
601
0
        }
602
        /* OK, do the IDCT */
603
0
        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
604
0
                        output_col);
605
        /* Advance for next column */
606
0
        DC1 = DC2;  DC2 = DC3;
607
0
        DC4 = DC5;  DC5 = DC6;
608
0
        DC7 = DC8;  DC8 = DC9;
609
0
        buffer_ptr++, prev_block_row++, next_block_row++;
610
0
        output_col += compptr->_DCT_scaled_size;
611
0
      }
612
0
      output_ptr += compptr->_DCT_scaled_size;
613
0
    }
614
0
  }
615
616
0
  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
617
0
    return JPEG_ROW_COMPLETED;
618
0
  return JPEG_SCAN_COMPLETED;
619
0
}
620
621
#endif /* BLOCK_SMOOTHING_SUPPORTED */
622
623
624
/*
625
 * Initialize coefficient buffer controller.
626
 */
627
628
GLOBAL(void)
629
jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
630
0
{
631
0
  my_coef_ptr coef;
632
633
0
  coef = (my_coef_ptr)
634
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
635
0
                                sizeof(my_coef_controller));
636
0
  cinfo->coef = (struct jpeg_d_coef_controller *)coef;
637
0
  coef->pub.start_input_pass = start_input_pass;
638
0
  coef->pub.start_output_pass = start_output_pass;
639
0
#ifdef BLOCK_SMOOTHING_SUPPORTED
640
0
  coef->coef_bits_latch = NULL;
641
0
#endif
642
643
  /* Create the coefficient buffer. */
644
0
  if (need_full_buffer) {
645
0
#ifdef D_MULTISCAN_FILES_SUPPORTED
646
    /* Allocate a full-image virtual array for each component, */
647
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
648
    /* Note we ask for a pre-zeroed array. */
649
0
    int ci, access_rows;
650
0
    jpeg_component_info *compptr;
651
652
0
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
653
0
         ci++, compptr++) {
654
0
      access_rows = compptr->v_samp_factor;
655
0
#ifdef BLOCK_SMOOTHING_SUPPORTED
656
      /* If block smoothing could be used, need a bigger window */
657
0
      if (cinfo->progressive_mode)
658
0
        access_rows *= 3;
659
0
#endif
660
0
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
661
0
        ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
662
0
         (JDIMENSION)jround_up((long)compptr->width_in_blocks,
663
0
                               (long)compptr->h_samp_factor),
664
0
         (JDIMENSION)jround_up((long)compptr->height_in_blocks,
665
0
                               (long)compptr->v_samp_factor),
666
0
         (JDIMENSION)access_rows);
667
0
    }
668
0
    coef->pub.consume_data = consume_data;
669
0
    coef->pub.decompress_data = decompress_data;
670
0
    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
671
#else
672
    ERREXIT(cinfo, JERR_NOT_COMPILED);
673
#endif
674
0
  } else {
675
    /* We only need a single-MCU buffer. */
676
0
    JBLOCKROW buffer;
677
0
    int i;
678
679
0
    buffer = (JBLOCKROW)
680
0
      (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
681
0
                                  D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
682
0
    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
683
0
      coef->MCU_buffer[i] = buffer + i;
684
0
    }
685
0
    coef->pub.consume_data = dummy_consume_data;
686
0
    coef->pub.decompress_data = decompress_onepass;
687
0
    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
688
0
  }
689
690
  /* Allocate the workspace buffer */
691
0
  coef->workspace = (JCOEF *)
692
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
693
0
                                sizeof(JCOEF) * DCTSIZE2);
694
0
}