/src/libjpeg-turbo.2.1.x/jdcoefct.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jdcoefct.c  | 
3  |  |  *  | 
4  |  |  * This file was part of the Independent JPEG Group's software:  | 
5  |  |  * Copyright (C) 1994-1997, Thomas G. Lane.  | 
6  |  |  * libjpeg-turbo Modifications:  | 
7  |  |  * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB  | 
8  |  |  * Copyright (C) 2010, 2015-2016, 2019-2020, 2022, D. R. Commander.  | 
9  |  |  * Copyright (C) 2015, 2020, Google, Inc.  | 
10  |  |  * For conditions of distribution and use, see the accompanying README.ijg  | 
11  |  |  * file.  | 
12  |  |  *  | 
13  |  |  * This file contains the coefficient buffer controller for decompression.  | 
14  |  |  * This controller is the top level of the JPEG decompressor proper.  | 
15  |  |  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.  | 
16  |  |  *  | 
17  |  |  * In buffered-image mode, this controller is the interface between  | 
18  |  |  * input-oriented processing and output-oriented processing.  | 
19  |  |  * Also, the input side (only) is used when reading a file for transcoding.  | 
20  |  |  */  | 
21  |  |  | 
22  |  | #include "jinclude.h"  | 
23  |  | #include "jdcoefct.h"  | 
24  |  | #include "jpegcomp.h"  | 
25  |  |  | 
26  |  |  | 
27  |  | /* Forward declarations */  | 
28  |  | METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,  | 
29  |  |                                   JSAMPIMAGE output_buf);  | 
30  |  | #ifdef D_MULTISCAN_FILES_SUPPORTED  | 
31  |  | METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);  | 
32  |  | #endif  | 
33  |  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
34  |  | LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);  | 
35  |  | METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,  | 
36  |  |                                       JSAMPIMAGE output_buf);  | 
37  |  | #endif  | 
38  |  |  | 
39  |  |  | 
40  |  | /*  | 
41  |  |  * Initialize for an input processing pass.  | 
42  |  |  */  | 
43  |  |  | 
44  |  | METHODDEF(void)  | 
45  |  | start_input_pass(j_decompress_ptr cinfo)  | 
46  | 0  | { | 
47  | 0  |   cinfo->input_iMCU_row = 0;  | 
48  | 0  |   start_iMCU_row(cinfo);  | 
49  | 0  | }  | 
50  |  |  | 
51  |  |  | 
52  |  | /*  | 
53  |  |  * Initialize for an output processing pass.  | 
54  |  |  */  | 
55  |  |  | 
56  |  | METHODDEF(void)  | 
57  |  | start_output_pass(j_decompress_ptr cinfo)  | 
58  | 0  | { | 
59  | 0  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
60  | 0  |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef;  | 
61  |  |  | 
62  |  |   /* If multipass, check to see whether to use block smoothing on this pass */  | 
63  | 0  |   if (coef->pub.coef_arrays != NULL) { | 
64  | 0  |     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))  | 
65  | 0  |       coef->pub.decompress_data = decompress_smooth_data;  | 
66  | 0  |     else  | 
67  | 0  |       coef->pub.decompress_data = decompress_data;  | 
68  | 0  |   }  | 
69  | 0  | #endif  | 
70  | 0  |   cinfo->output_iMCU_row = 0;  | 
71  | 0  | }  | 
72  |  |  | 
73  |  |  | 
74  |  | /*  | 
75  |  |  * Decompress and return some data in the single-pass case.  | 
76  |  |  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | 
77  |  |  * Input and output must run in lockstep since we have only a one-MCU buffer.  | 
78  |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.  | 
79  |  |  *  | 
80  |  |  * NB: output_buf contains a plane for each component in image,  | 
81  |  |  * which we index according to the component's SOF position.  | 
82  |  |  */  | 
83  |  |  | 
84  |  | METHODDEF(int)  | 
85  |  | decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)  | 
86  | 0  | { | 
87  | 0  |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef;  | 
88  | 0  |   JDIMENSION MCU_col_num;       /* index of current MCU within row */  | 
89  | 0  |   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;  | 
90  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
91  | 0  |   int blkn, ci, xindex, yindex, yoffset, useful_width;  | 
92  | 0  |   JSAMPARRAY output_ptr;  | 
93  | 0  |   JDIMENSION start_col, output_col;  | 
94  | 0  |   jpeg_component_info *compptr;  | 
95  | 0  |   inverse_DCT_method_ptr inverse_DCT;  | 
96  |  |  | 
97  |  |   /* Loop to process as much as one whole iMCU row */  | 
98  | 0  |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;  | 
99  | 0  |        yoffset++) { | 
100  | 0  |     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;  | 
101  | 0  |          MCU_col_num++) { | 
102  |  |       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */  | 
103  | 0  |       jzero_far((void *)coef->MCU_buffer[0],  | 
104  | 0  |                 (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));  | 
105  | 0  |       if (!cinfo->entropy->insufficient_data)  | 
106  | 0  |         cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;  | 
107  | 0  |       if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | 
108  |  |         /* Suspension forced; update state counters and exit */  | 
109  | 0  |         coef->MCU_vert_offset = yoffset;  | 
110  | 0  |         coef->MCU_ctr = MCU_col_num;  | 
111  | 0  |         return JPEG_SUSPENDED;  | 
112  | 0  |       }  | 
113  |  |  | 
114  |  |       /* Only perform the IDCT on blocks that are contained within the desired  | 
115  |  |        * cropping region.  | 
116  |  |        */  | 
117  | 0  |       if (MCU_col_num >= cinfo->master->first_iMCU_col &&  | 
118  | 0  |           MCU_col_num <= cinfo->master->last_iMCU_col) { | 
119  |  |         /* Determine where data should go in output_buf and do the IDCT thing.  | 
120  |  |          * We skip dummy blocks at the right and bottom edges (but blkn gets  | 
121  |  |          * incremented past them!).  Note the inner loop relies on having  | 
122  |  |          * allocated the MCU_buffer[] blocks sequentially.  | 
123  |  |          */  | 
124  | 0  |         blkn = 0;               /* index of current DCT block within MCU */  | 
125  | 0  |         for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
126  | 0  |           compptr = cinfo->cur_comp_info[ci];  | 
127  |  |           /* Don't bother to IDCT an uninteresting component. */  | 
128  | 0  |           if (!compptr->component_needed) { | 
129  | 0  |             blkn += compptr->MCU_blocks;  | 
130  | 0  |             continue;  | 
131  | 0  |           }  | 
132  | 0  |           inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];  | 
133  | 0  |           useful_width = (MCU_col_num < last_MCU_col) ?  | 
134  | 0  |                          compptr->MCU_width : compptr->last_col_width;  | 
135  | 0  |           output_ptr = output_buf[compptr->component_index] +  | 
136  | 0  |                        yoffset * compptr->_DCT_scaled_size;  | 
137  | 0  |           start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *  | 
138  | 0  |                       compptr->MCU_sample_width;  | 
139  | 0  |           for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
140  | 0  |             if (cinfo->input_iMCU_row < last_iMCU_row ||  | 
141  | 0  |                 yoffset + yindex < compptr->last_row_height) { | 
142  | 0  |               output_col = start_col;  | 
143  | 0  |               for (xindex = 0; xindex < useful_width; xindex++) { | 
144  | 0  |                 (*inverse_DCT) (cinfo, compptr,  | 
145  | 0  |                                 (JCOEFPTR)coef->MCU_buffer[blkn + xindex],  | 
146  | 0  |                                 output_ptr, output_col);  | 
147  | 0  |                 output_col += compptr->_DCT_scaled_size;  | 
148  | 0  |               }  | 
149  | 0  |             }  | 
150  | 0  |             blkn += compptr->MCU_width;  | 
151  | 0  |             output_ptr += compptr->_DCT_scaled_size;  | 
152  | 0  |           }  | 
153  | 0  |         }  | 
154  | 0  |       }  | 
155  | 0  |     }  | 
156  |  |     /* Completed an MCU row, but perhaps not an iMCU row */  | 
157  | 0  |     coef->MCU_ctr = 0;  | 
158  | 0  |   }  | 
159  |  |   /* Completed the iMCU row, advance counters for next one */  | 
160  | 0  |   cinfo->output_iMCU_row++;  | 
161  | 0  |   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | 
162  | 0  |     start_iMCU_row(cinfo);  | 
163  | 0  |     return JPEG_ROW_COMPLETED;  | 
164  | 0  |   }  | 
165  |  |   /* Completed the scan */  | 
166  | 0  |   (*cinfo->inputctl->finish_input_pass) (cinfo);  | 
167  | 0  |   return JPEG_SCAN_COMPLETED;  | 
168  | 0  | }  | 
169  |  |  | 
170  |  |  | 
171  |  | /*  | 
172  |  |  * Dummy consume-input routine for single-pass operation.  | 
173  |  |  */  | 
174  |  |  | 
175  |  | METHODDEF(int)  | 
176  |  | dummy_consume_data(j_decompress_ptr cinfo)  | 
177  | 0  | { | 
178  | 0  |   return JPEG_SUSPENDED;        /* Always indicate nothing was done */  | 
179  | 0  | }  | 
180  |  |  | 
181  |  |  | 
182  |  | #ifdef D_MULTISCAN_FILES_SUPPORTED  | 
183  |  |  | 
184  |  | /*  | 
185  |  |  * Consume input data and store it in the full-image coefficient buffer.  | 
186  |  |  * We read as much as one fully interleaved MCU row ("iMCU" row) per call, | 
187  |  |  * ie, v_samp_factor block rows for each component in the scan.  | 
188  |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.  | 
189  |  |  */  | 
190  |  |  | 
191  |  | METHODDEF(int)  | 
192  |  | consume_data(j_decompress_ptr cinfo)  | 
193  | 0  | { | 
194  | 0  |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef;  | 
195  | 0  |   JDIMENSION MCU_col_num;       /* index of current MCU within row */  | 
196  | 0  |   int blkn, ci, xindex, yindex, yoffset;  | 
197  | 0  |   JDIMENSION start_col;  | 
198  | 0  |   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];  | 
199  | 0  |   JBLOCKROW buffer_ptr;  | 
200  | 0  |   jpeg_component_info *compptr;  | 
201  |  |  | 
202  |  |   /* Align the virtual buffers for the components used in this scan. */  | 
203  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
204  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
205  | 0  |     buffer[ci] = (*cinfo->mem->access_virt_barray)  | 
206  | 0  |       ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],  | 
207  | 0  |        cinfo->input_iMCU_row * compptr->v_samp_factor,  | 
208  | 0  |        (JDIMENSION)compptr->v_samp_factor, TRUE);  | 
209  |  |     /* Note: entropy decoder expects buffer to be zeroed,  | 
210  |  |      * but this is handled automatically by the memory manager  | 
211  |  |      * because we requested a pre-zeroed array.  | 
212  |  |      */  | 
213  | 0  |   }  | 
214  |  |  | 
215  |  |   /* Loop to process one whole iMCU row */  | 
216  | 0  |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;  | 
217  | 0  |        yoffset++) { | 
218  | 0  |     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;  | 
219  | 0  |          MCU_col_num++) { | 
220  |  |       /* Construct list of pointers to DCT blocks belonging to this MCU */  | 
221  | 0  |       blkn = 0;                 /* index of current DCT block within MCU */  | 
222  | 0  |       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
223  | 0  |         compptr = cinfo->cur_comp_info[ci];  | 
224  | 0  |         start_col = MCU_col_num * compptr->MCU_width;  | 
225  | 0  |         for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
226  | 0  |           buffer_ptr = buffer[ci][yindex + yoffset] + start_col;  | 
227  | 0  |           for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | 
228  | 0  |             coef->MCU_buffer[blkn++] = buffer_ptr++;  | 
229  | 0  |           }  | 
230  | 0  |         }  | 
231  | 0  |       }  | 
232  | 0  |       if (!cinfo->entropy->insufficient_data)  | 
233  | 0  |         cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;  | 
234  |  |       /* Try to fetch the MCU. */  | 
235  | 0  |       if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | 
236  |  |         /* Suspension forced; update state counters and exit */  | 
237  | 0  |         coef->MCU_vert_offset = yoffset;  | 
238  | 0  |         coef->MCU_ctr = MCU_col_num;  | 
239  | 0  |         return JPEG_SUSPENDED;  | 
240  | 0  |       }  | 
241  | 0  |     }  | 
242  |  |     /* Completed an MCU row, but perhaps not an iMCU row */  | 
243  | 0  |     coef->MCU_ctr = 0;  | 
244  | 0  |   }  | 
245  |  |   /* Completed the iMCU row, advance counters for next one */  | 
246  | 0  |   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | 
247  | 0  |     start_iMCU_row(cinfo);  | 
248  | 0  |     return JPEG_ROW_COMPLETED;  | 
249  | 0  |   }  | 
250  |  |   /* Completed the scan */  | 
251  | 0  |   (*cinfo->inputctl->finish_input_pass) (cinfo);  | 
252  | 0  |   return JPEG_SCAN_COMPLETED;  | 
253  | 0  | }  | 
254  |  |  | 
255  |  |  | 
256  |  | /*  | 
257  |  |  * Decompress and return some data in the multi-pass case.  | 
258  |  |  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | 
259  |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.  | 
260  |  |  *  | 
261  |  |  * NB: output_buf contains a plane for each component in image.  | 
262  |  |  */  | 
263  |  |  | 
264  |  | METHODDEF(int)  | 
265  |  | decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)  | 
266  | 0  | { | 
267  | 0  |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef;  | 
268  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
269  | 0  |   JDIMENSION block_num;  | 
270  | 0  |   int ci, block_row, block_rows;  | 
271  | 0  |   JBLOCKARRAY buffer;  | 
272  | 0  |   JBLOCKROW buffer_ptr;  | 
273  | 0  |   JSAMPARRAY output_ptr;  | 
274  | 0  |   JDIMENSION output_col;  | 
275  | 0  |   jpeg_component_info *compptr;  | 
276  | 0  |   inverse_DCT_method_ptr inverse_DCT;  | 
277  |  |  | 
278  |  |   /* Force some input to be done if we are getting ahead of the input. */  | 
279  | 0  |   while (cinfo->input_scan_number < cinfo->output_scan_number ||  | 
280  | 0  |          (cinfo->input_scan_number == cinfo->output_scan_number &&  | 
281  | 0  |           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | 
282  | 0  |     if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)  | 
283  | 0  |       return JPEG_SUSPENDED;  | 
284  | 0  |   }  | 
285  |  |  | 
286  |  |   /* OK, output from the virtual arrays. */  | 
287  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
288  | 0  |        ci++, compptr++) { | 
289  |  |     /* Don't bother to IDCT an uninteresting component. */  | 
290  | 0  |     if (!compptr->component_needed)  | 
291  | 0  |       continue;  | 
292  |  |     /* Align the virtual buffer for this component. */  | 
293  | 0  |     buffer = (*cinfo->mem->access_virt_barray)  | 
294  | 0  |       ((j_common_ptr)cinfo, coef->whole_image[ci],  | 
295  | 0  |        cinfo->output_iMCU_row * compptr->v_samp_factor,  | 
296  | 0  |        (JDIMENSION)compptr->v_samp_factor, FALSE);  | 
297  |  |     /* Count non-dummy DCT block rows in this iMCU row. */  | 
298  | 0  |     if (cinfo->output_iMCU_row < last_iMCU_row)  | 
299  | 0  |       block_rows = compptr->v_samp_factor;  | 
300  | 0  |     else { | 
301  |  |       /* NB: can't use last_row_height here; it is input-side-dependent! */  | 
302  | 0  |       block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);  | 
303  | 0  |       if (block_rows == 0) block_rows = compptr->v_samp_factor;  | 
304  | 0  |     }  | 
305  | 0  |     inverse_DCT = cinfo->idct->inverse_DCT[ci];  | 
306  | 0  |     output_ptr = output_buf[ci];  | 
307  |  |     /* Loop over all DCT blocks to be processed. */  | 
308  | 0  |     for (block_row = 0; block_row < block_rows; block_row++) { | 
309  | 0  |       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];  | 
310  | 0  |       output_col = 0;  | 
311  | 0  |       for (block_num = cinfo->master->first_MCU_col[ci];  | 
312  | 0  |            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { | 
313  | 0  |         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,  | 
314  | 0  |                         output_col);  | 
315  | 0  |         buffer_ptr++;  | 
316  | 0  |         output_col += compptr->_DCT_scaled_size;  | 
317  | 0  |       }  | 
318  | 0  |       output_ptr += compptr->_DCT_scaled_size;  | 
319  | 0  |     }  | 
320  | 0  |   }  | 
321  |  | 
  | 
322  | 0  |   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)  | 
323  | 0  |     return JPEG_ROW_COMPLETED;  | 
324  | 0  |   return JPEG_SCAN_COMPLETED;  | 
325  | 0  | }  | 
326  |  |  | 
327  |  | #endif /* D_MULTISCAN_FILES_SUPPORTED */  | 
328  |  |  | 
329  |  |  | 
330  |  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
331  |  |  | 
332  |  | /*  | 
333  |  |  * This code applies interblock smoothing; the first 9 AC coefficients are  | 
334  |  |  * estimated from the DC values of a DCT block and its 24 neighboring blocks.  | 
335  |  |  * We apply smoothing only for progressive JPEG decoding, and only if  | 
336  |  |  * the coefficients it can estimate are not yet known to full precision.  | 
337  |  |  */  | 
338  |  |  | 
339  |  | /* Natural-order array positions of the first 9 zigzag-order coefficients */  | 
340  | 0  | #define Q01_POS  1  | 
341  | 0  | #define Q10_POS  8  | 
342  | 0  | #define Q20_POS  16  | 
343  | 0  | #define Q11_POS  9  | 
344  | 0  | #define Q02_POS  2  | 
345  | 0  | #define Q03_POS  3  | 
346  | 0  | #define Q12_POS  10  | 
347  | 0  | #define Q21_POS  17  | 
348  | 0  | #define Q30_POS  24  | 
349  |  |  | 
350  |  | /*  | 
351  |  |  * Determine whether block smoothing is applicable and safe.  | 
352  |  |  * We also latch the current states of the coef_bits[] entries for the  | 
353  |  |  * AC coefficients; otherwise, if the input side of the decompressor  | 
354  |  |  * advances into a new scan, we might think the coefficients are known  | 
355  |  |  * more accurately than they really are.  | 
356  |  |  */  | 
357  |  |  | 
358  |  | LOCAL(boolean)  | 
359  |  | smoothing_ok(j_decompress_ptr cinfo)  | 
360  | 0  | { | 
361  | 0  |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef;  | 
362  | 0  |   boolean smoothing_useful = FALSE;  | 
363  | 0  |   int ci, coefi;  | 
364  | 0  |   jpeg_component_info *compptr;  | 
365  | 0  |   JQUANT_TBL *qtable;  | 
366  | 0  |   int *coef_bits, *prev_coef_bits;  | 
367  | 0  |   int *coef_bits_latch, *prev_coef_bits_latch;  | 
368  |  | 
  | 
369  | 0  |   if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)  | 
370  | 0  |     return FALSE;  | 
371  |  |  | 
372  |  |   /* Allocate latch area if not already done */  | 
373  | 0  |   if (coef->coef_bits_latch == NULL)  | 
374  | 0  |     coef->coef_bits_latch = (int *)  | 
375  | 0  |       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
376  | 0  |                                   cinfo->num_components * 2 *  | 
377  | 0  |                                   (SAVED_COEFS * sizeof(int)));  | 
378  | 0  |   coef_bits_latch = coef->coef_bits_latch;  | 
379  | 0  |   prev_coef_bits_latch =  | 
380  | 0  |     &coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS];  | 
381  |  | 
  | 
382  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
383  | 0  |        ci++, compptr++) { | 
384  |  |     /* All components' quantization values must already be latched. */  | 
385  | 0  |     if ((qtable = compptr->quant_table) == NULL)  | 
386  | 0  |       return FALSE;  | 
387  |  |     /* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */  | 
388  | 0  |     if (qtable->quantval[0] == 0 ||  | 
389  | 0  |         qtable->quantval[Q01_POS] == 0 ||  | 
390  | 0  |         qtable->quantval[Q10_POS] == 0 ||  | 
391  | 0  |         qtable->quantval[Q20_POS] == 0 ||  | 
392  | 0  |         qtable->quantval[Q11_POS] == 0 ||  | 
393  | 0  |         qtable->quantval[Q02_POS] == 0 ||  | 
394  | 0  |         qtable->quantval[Q03_POS] == 0 ||  | 
395  | 0  |         qtable->quantval[Q12_POS] == 0 ||  | 
396  | 0  |         qtable->quantval[Q21_POS] == 0 ||  | 
397  | 0  |         qtable->quantval[Q30_POS] == 0)  | 
398  | 0  |       return FALSE;  | 
399  |  |     /* DC values must be at least partly known for all components. */  | 
400  | 0  |     coef_bits = cinfo->coef_bits[ci];  | 
401  | 0  |     prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components];  | 
402  | 0  |     if (coef_bits[0] < 0)  | 
403  | 0  |       return FALSE;  | 
404  | 0  |     coef_bits_latch[0] = coef_bits[0];  | 
405  |  |     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */  | 
406  | 0  |     for (coefi = 1; coefi < SAVED_COEFS; coefi++) { | 
407  | 0  |       if (cinfo->input_scan_number > 1)  | 
408  | 0  |         prev_coef_bits_latch[coefi] = prev_coef_bits[coefi];  | 
409  | 0  |       else  | 
410  | 0  |         prev_coef_bits_latch[coefi] = -1;  | 
411  | 0  |       coef_bits_latch[coefi] = coef_bits[coefi];  | 
412  | 0  |       if (coef_bits[coefi] != 0)  | 
413  | 0  |         smoothing_useful = TRUE;  | 
414  | 0  |     }  | 
415  | 0  |     coef_bits_latch += SAVED_COEFS;  | 
416  | 0  |     prev_coef_bits_latch += SAVED_COEFS;  | 
417  | 0  |   }  | 
418  |  |  | 
419  | 0  |   return smoothing_useful;  | 
420  | 0  | }  | 
421  |  |  | 
422  |  |  | 
423  |  | /*  | 
424  |  |  * Variant of decompress_data for use when doing block smoothing.  | 
425  |  |  */  | 
426  |  |  | 
427  |  | METHODDEF(int)  | 
428  |  | decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)  | 
429  | 0  | { | 
430  | 0  |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef;  | 
431  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
432  | 0  |   JDIMENSION block_num, last_block_column;  | 
433  | 0  |   int ci, block_row, block_rows, access_rows;  | 
434  | 0  |   JBLOCKARRAY buffer;  | 
435  | 0  |   JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row;  | 
436  | 0  |   JBLOCKROW next_block_row, next_next_block_row;  | 
437  | 0  |   JSAMPARRAY output_ptr;  | 
438  | 0  |   JDIMENSION output_col;  | 
439  | 0  |   jpeg_component_info *compptr;  | 
440  | 0  |   inverse_DCT_method_ptr inverse_DCT;  | 
441  | 0  |   boolean change_dc;  | 
442  | 0  |   JCOEF *workspace;  | 
443  | 0  |   int *coef_bits;  | 
444  | 0  |   JQUANT_TBL *quanttbl;  | 
445  | 0  |   JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num;  | 
446  | 0  |   int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12,  | 
447  | 0  |       DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24,  | 
448  | 0  |       DC25;  | 
449  | 0  |   int Al, pred;  | 
450  |  |  | 
451  |  |   /* Keep a local variable to avoid looking it up more than once */  | 
452  | 0  |   workspace = coef->workspace;  | 
453  |  |  | 
454  |  |   /* Force some input to be done if we are getting ahead of the input. */  | 
455  | 0  |   while (cinfo->input_scan_number <= cinfo->output_scan_number &&  | 
456  | 0  |          !cinfo->inputctl->eoi_reached) { | 
457  | 0  |     if (cinfo->input_scan_number == cinfo->output_scan_number) { | 
458  |  |       /* If input is working on current scan, we ordinarily want it to  | 
459  |  |        * have completed the current row.  But if input scan is DC,  | 
460  |  |        * we want it to keep two rows ahead so that next two block rows' DC  | 
461  |  |        * values are up to date.  | 
462  |  |        */  | 
463  | 0  |       JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0;  | 
464  | 0  |       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)  | 
465  | 0  |         break;  | 
466  | 0  |     }  | 
467  | 0  |     if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)  | 
468  | 0  |       return JPEG_SUSPENDED;  | 
469  | 0  |   }  | 
470  |  |  | 
471  |  |   /* OK, output from the virtual arrays. */  | 
472  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
473  | 0  |        ci++, compptr++) { | 
474  |  |     /* Don't bother to IDCT an uninteresting component. */  | 
475  | 0  |     if (!compptr->component_needed)  | 
476  | 0  |       continue;  | 
477  |  |     /* Count non-dummy DCT block rows in this iMCU row. */  | 
478  | 0  |     if (cinfo->output_iMCU_row + 1 < last_iMCU_row) { | 
479  | 0  |       block_rows = compptr->v_samp_factor;  | 
480  | 0  |       access_rows = block_rows * 3; /* this and next two iMCU rows */  | 
481  | 0  |     } else if (cinfo->output_iMCU_row < last_iMCU_row) { | 
482  | 0  |       block_rows = compptr->v_samp_factor;  | 
483  | 0  |       access_rows = block_rows * 2; /* this and next iMCU row */  | 
484  | 0  |     } else { | 
485  |  |       /* NB: can't use last_row_height here; it is input-side-dependent! */  | 
486  | 0  |       block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);  | 
487  | 0  |       if (block_rows == 0) block_rows = compptr->v_samp_factor;  | 
488  | 0  |       access_rows = block_rows; /* this iMCU row only */  | 
489  | 0  |     }  | 
490  |  |     /* Align the virtual buffer for this component. */  | 
491  | 0  |     if (cinfo->output_iMCU_row > 1) { | 
492  | 0  |       access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */  | 
493  | 0  |       buffer = (*cinfo->mem->access_virt_barray)  | 
494  | 0  |         ((j_common_ptr)cinfo, coef->whole_image[ci],  | 
495  | 0  |          (cinfo->output_iMCU_row - 2) * compptr->v_samp_factor,  | 
496  | 0  |          (JDIMENSION)access_rows, FALSE);  | 
497  | 0  |       buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */  | 
498  | 0  |     } else if (cinfo->output_iMCU_row > 0) { | 
499  | 0  |       buffer = (*cinfo->mem->access_virt_barray)  | 
500  | 0  |         ((j_common_ptr)cinfo, coef->whole_image[ci],  | 
501  | 0  |          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,  | 
502  | 0  |          (JDIMENSION)access_rows, FALSE);  | 
503  | 0  |       buffer += compptr->v_samp_factor; /* point to current iMCU row */  | 
504  | 0  |     } else { | 
505  | 0  |       buffer = (*cinfo->mem->access_virt_barray)  | 
506  | 0  |         ((j_common_ptr)cinfo, coef->whole_image[ci],  | 
507  | 0  |          (JDIMENSION)0, (JDIMENSION)access_rows, FALSE);  | 
508  | 0  |     }  | 
509  |  |     /* Fetch component-dependent info.  | 
510  |  |      * If the current scan is incomplete, then we use the component-dependent  | 
511  |  |      * info from the previous scan.  | 
512  |  |      */  | 
513  | 0  |     if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row)  | 
514  | 0  |       coef_bits =  | 
515  | 0  |         coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS);  | 
516  | 0  |     else  | 
517  | 0  |       coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);  | 
518  |  |  | 
519  |  |     /* We only do DC interpolation if no AC coefficient data is available. */  | 
520  | 0  |     change_dc =  | 
521  | 0  |       coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 &&  | 
522  | 0  |       coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 &&  | 
523  | 0  |       coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1;  | 
524  |  | 
  | 
525  | 0  |     quanttbl = compptr->quant_table;  | 
526  | 0  |     Q00 = quanttbl->quantval[0];  | 
527  | 0  |     Q01 = quanttbl->quantval[Q01_POS];  | 
528  | 0  |     Q10 = quanttbl->quantval[Q10_POS];  | 
529  | 0  |     Q20 = quanttbl->quantval[Q20_POS];  | 
530  | 0  |     Q11 = quanttbl->quantval[Q11_POS];  | 
531  | 0  |     Q02 = quanttbl->quantval[Q02_POS];  | 
532  | 0  |     if (change_dc) { | 
533  | 0  |       Q03 = quanttbl->quantval[Q03_POS];  | 
534  | 0  |       Q12 = quanttbl->quantval[Q12_POS];  | 
535  | 0  |       Q21 = quanttbl->quantval[Q21_POS];  | 
536  | 0  |       Q30 = quanttbl->quantval[Q30_POS];  | 
537  | 0  |     }  | 
538  | 0  |     inverse_DCT = cinfo->idct->inverse_DCT[ci];  | 
539  | 0  |     output_ptr = output_buf[ci];  | 
540  |  |     /* Loop over all DCT blocks to be processed. */  | 
541  | 0  |     for (block_row = 0; block_row < block_rows; block_row++) { | 
542  | 0  |       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];  | 
543  |  | 
  | 
544  | 0  |       if (block_row > 0 || cinfo->output_iMCU_row > 0)  | 
545  | 0  |         prev_block_row =  | 
546  | 0  |           buffer[block_row - 1] + cinfo->master->first_MCU_col[ci];  | 
547  | 0  |       else  | 
548  | 0  |         prev_block_row = buffer_ptr;  | 
549  |  | 
  | 
550  | 0  |       if (block_row > 1 || cinfo->output_iMCU_row > 1)  | 
551  | 0  |         prev_prev_block_row =  | 
552  | 0  |           buffer[block_row - 2] + cinfo->master->first_MCU_col[ci];  | 
553  | 0  |       else  | 
554  | 0  |         prev_prev_block_row = prev_block_row;  | 
555  |  | 
  | 
556  | 0  |       if (block_row < block_rows - 1 || cinfo->output_iMCU_row < last_iMCU_row)  | 
557  | 0  |         next_block_row =  | 
558  | 0  |           buffer[block_row + 1] + cinfo->master->first_MCU_col[ci];  | 
559  | 0  |       else  | 
560  | 0  |         next_block_row = buffer_ptr;  | 
561  |  | 
  | 
562  | 0  |       if (block_row < block_rows - 2 ||  | 
563  | 0  |           cinfo->output_iMCU_row + 1 < last_iMCU_row)  | 
564  | 0  |         next_next_block_row =  | 
565  | 0  |           buffer[block_row + 2] + cinfo->master->first_MCU_col[ci];  | 
566  | 0  |       else  | 
567  | 0  |         next_next_block_row = next_block_row;  | 
568  |  |  | 
569  |  |       /* We fetch the surrounding DC values using a sliding-register approach.  | 
570  |  |        * Initialize all 25 here so as to do the right thing on narrow pics.  | 
571  |  |        */  | 
572  | 0  |       DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0];  | 
573  | 0  |       DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0];  | 
574  | 0  |       DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0];  | 
575  | 0  |       DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0];  | 
576  | 0  |       DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0];  | 
577  | 0  |       output_col = 0;  | 
578  | 0  |       last_block_column = compptr->width_in_blocks - 1;  | 
579  | 0  |       for (block_num = cinfo->master->first_MCU_col[ci];  | 
580  | 0  |            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { | 
581  |  |         /* Fetch current DCT block into workspace so we can modify it. */  | 
582  | 0  |         jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);  | 
583  |  |         /* Update DC values */  | 
584  | 0  |         if (block_num == cinfo->master->first_MCU_col[ci] &&  | 
585  | 0  |             block_num < last_block_column) { | 
586  | 0  |           DC04 = (int)prev_prev_block_row[1][0];  | 
587  | 0  |           DC09 = (int)prev_block_row[1][0];  | 
588  | 0  |           DC14 = (int)buffer_ptr[1][0];  | 
589  | 0  |           DC19 = (int)next_block_row[1][0];  | 
590  | 0  |           DC24 = (int)next_next_block_row[1][0];  | 
591  | 0  |         }  | 
592  | 0  |         if (block_num + 1 < last_block_column) { | 
593  | 0  |           DC05 = (int)prev_prev_block_row[2][0];  | 
594  | 0  |           DC10 = (int)prev_block_row[2][0];  | 
595  | 0  |           DC15 = (int)buffer_ptr[2][0];  | 
596  | 0  |           DC20 = (int)next_block_row[2][0];  | 
597  | 0  |           DC25 = (int)next_next_block_row[2][0];  | 
598  | 0  |         }  | 
599  |  |         /* If DC interpolation is enabled, compute coefficient estimates using  | 
600  |  |          * a Gaussian-like kernel, keeping the averages of the DC values.  | 
601  |  |          *  | 
602  |  |          * If DC interpolation is disabled, compute coefficient estimates using  | 
603  |  |          * an algorithm similar to the one described in Section K.8 of the JPEG  | 
604  |  |          * standard, except applied to a 5x5 window rather than a 3x3 window.  | 
605  |  |          *  | 
606  |  |          * An estimate is applied only if the coefficient is still zero and is  | 
607  |  |          * not known to be fully accurate.  | 
608  |  |          */  | 
609  |  |         /* AC01 */  | 
610  | 0  |         if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) { | 
611  | 0  |           num = Q00 * (change_dc ?  | 
612  | 0  |                 (-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 -  | 
613  | 0  |                  13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 +  | 
614  | 0  |                  3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 -  | 
615  | 0  |                  DC21 - DC22 + DC24 + DC25) :  | 
616  | 0  |                 (-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15));  | 
617  | 0  |           if (num >= 0) { | 
618  | 0  |             pred = (int)(((Q01 << 7) + num) / (Q01 << 8));  | 
619  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
620  | 0  |               pred = (1 << Al) - 1;  | 
621  | 0  |           } else { | 
622  | 0  |             pred = (int)(((Q01 << 7) - num) / (Q01 << 8));  | 
623  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
624  | 0  |               pred = (1 << Al) - 1;  | 
625  | 0  |             pred = -pred;  | 
626  | 0  |           }  | 
627  | 0  |           workspace[1] = (JCOEF)pred;  | 
628  | 0  |         }  | 
629  |  |         /* AC10 */  | 
630  | 0  |         if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) { | 
631  | 0  |           num = Q00 * (change_dc ?  | 
632  | 0  |                 (-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 +  | 
633  | 0  |                  13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 -  | 
634  | 0  |                  13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 +  | 
635  | 0  |                  3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) :  | 
636  | 0  |                 (-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23));  | 
637  | 0  |           if (num >= 0) { | 
638  | 0  |             pred = (int)(((Q10 << 7) + num) / (Q10 << 8));  | 
639  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
640  | 0  |               pred = (1 << Al) - 1;  | 
641  | 0  |           } else { | 
642  | 0  |             pred = (int)(((Q10 << 7) - num) / (Q10 << 8));  | 
643  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
644  | 0  |               pred = (1 << Al) - 1;  | 
645  | 0  |             pred = -pred;  | 
646  | 0  |           }  | 
647  | 0  |           workspace[8] = (JCOEF)pred;  | 
648  | 0  |         }  | 
649  |  |         /* AC20 */  | 
650  | 0  |         if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) { | 
651  | 0  |           num = Q00 * (change_dc ?  | 
652  | 0  |                 (DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 -  | 
653  | 0  |                  5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) :  | 
654  | 0  |                 (-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23));  | 
655  | 0  |           if (num >= 0) { | 
656  | 0  |             pred = (int)(((Q20 << 7) + num) / (Q20 << 8));  | 
657  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
658  | 0  |               pred = (1 << Al) - 1;  | 
659  | 0  |           } else { | 
660  | 0  |             pred = (int)(((Q20 << 7) - num) / (Q20 << 8));  | 
661  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
662  | 0  |               pred = (1 << Al) - 1;  | 
663  | 0  |             pred = -pred;  | 
664  | 0  |           }  | 
665  | 0  |           workspace[16] = (JCOEF)pred;  | 
666  | 0  |         }  | 
667  |  |         /* AC11 */  | 
668  | 0  |         if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) { | 
669  | 0  |           num = Q00 * (change_dc ?  | 
670  | 0  |                 (-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 +  | 
671  | 0  |                  9 * DC19 + DC21 - DC25) :  | 
672  | 0  |                 (DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 -  | 
673  | 0  |                  DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09));  | 
674  | 0  |           if (num >= 0) { | 
675  | 0  |             pred = (int)(((Q11 << 7) + num) / (Q11 << 8));  | 
676  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
677  | 0  |               pred = (1 << Al) - 1;  | 
678  | 0  |           } else { | 
679  | 0  |             pred = (int)(((Q11 << 7) - num) / (Q11 << 8));  | 
680  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
681  | 0  |               pred = (1 << Al) - 1;  | 
682  | 0  |             pred = -pred;  | 
683  | 0  |           }  | 
684  | 0  |           workspace[9] = (JCOEF)pred;  | 
685  | 0  |         }  | 
686  |  |         /* AC02 */  | 
687  | 0  |         if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) { | 
688  | 0  |           num = Q00 * (change_dc ?  | 
689  | 0  |                 (2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 +  | 
690  | 0  |                  7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) :  | 
691  | 0  |                 (-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15));  | 
692  | 0  |           if (num >= 0) { | 
693  | 0  |             pred = (int)(((Q02 << 7) + num) / (Q02 << 8));  | 
694  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
695  | 0  |               pred = (1 << Al) - 1;  | 
696  | 0  |           } else { | 
697  | 0  |             pred = (int)(((Q02 << 7) - num) / (Q02 << 8));  | 
698  | 0  |             if (Al > 0 && pred >= (1 << Al))  | 
699  | 0  |               pred = (1 << Al) - 1;  | 
700  | 0  |             pred = -pred;  | 
701  | 0  |           }  | 
702  | 0  |           workspace[2] = (JCOEF)pred;  | 
703  | 0  |         }  | 
704  | 0  |         if (change_dc) { | 
705  |  |           /* AC03 */  | 
706  | 0  |           if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) { | 
707  | 0  |             num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19);  | 
708  | 0  |             if (num >= 0) { | 
709  | 0  |               pred = (int)(((Q03 << 7) + num) / (Q03 << 8));  | 
710  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
711  | 0  |                 pred = (1 << Al) - 1;  | 
712  | 0  |             } else { | 
713  | 0  |               pred = (int)(((Q03 << 7) - num) / (Q03 << 8));  | 
714  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
715  | 0  |                 pred = (1 << Al) - 1;  | 
716  | 0  |               pred = -pred;  | 
717  | 0  |             }  | 
718  | 0  |             workspace[3] = (JCOEF)pred;  | 
719  | 0  |           }  | 
720  |  |           /* AC12 */  | 
721  | 0  |           if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) { | 
722  | 0  |             num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19);  | 
723  | 0  |             if (num >= 0) { | 
724  | 0  |               pred = (int)(((Q12 << 7) + num) / (Q12 << 8));  | 
725  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
726  | 0  |                 pred = (1 << Al) - 1;  | 
727  | 0  |             } else { | 
728  | 0  |               pred = (int)(((Q12 << 7) - num) / (Q12 << 8));  | 
729  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
730  | 0  |                 pred = (1 << Al) - 1;  | 
731  | 0  |               pred = -pred;  | 
732  | 0  |             }  | 
733  | 0  |             workspace[10] = (JCOEF)pred;  | 
734  | 0  |           }  | 
735  |  |           /* AC21 */  | 
736  | 0  |           if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) { | 
737  | 0  |             num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19);  | 
738  | 0  |             if (num >= 0) { | 
739  | 0  |               pred = (int)(((Q21 << 7) + num) / (Q21 << 8));  | 
740  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
741  | 0  |                 pred = (1 << Al) - 1;  | 
742  | 0  |             } else { | 
743  | 0  |               pred = (int)(((Q21 << 7) - num) / (Q21 << 8));  | 
744  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
745  | 0  |                 pred = (1 << Al) - 1;  | 
746  | 0  |               pred = -pred;  | 
747  | 0  |             }  | 
748  | 0  |             workspace[17] = (JCOEF)pred;  | 
749  | 0  |           }  | 
750  |  |           /* AC30 */  | 
751  | 0  |           if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) { | 
752  | 0  |             num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19);  | 
753  | 0  |             if (num >= 0) { | 
754  | 0  |               pred = (int)(((Q30 << 7) + num) / (Q30 << 8));  | 
755  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
756  | 0  |                 pred = (1 << Al) - 1;  | 
757  | 0  |             } else { | 
758  | 0  |               pred = (int)(((Q30 << 7) - num) / (Q30 << 8));  | 
759  | 0  |               if (Al > 0 && pred >= (1 << Al))  | 
760  | 0  |                 pred = (1 << Al) - 1;  | 
761  | 0  |               pred = -pred;  | 
762  | 0  |             }  | 
763  | 0  |             workspace[24] = (JCOEF)pred;  | 
764  | 0  |           }  | 
765  |  |           /* coef_bits[0] is non-negative.  Otherwise this function would not  | 
766  |  |            * be called.  | 
767  |  |            */  | 
768  | 0  |           num = Q00 *  | 
769  | 0  |                 (-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 -  | 
770  | 0  |                  6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 -  | 
771  | 0  |                  8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 -  | 
772  | 0  |                  6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 -  | 
773  | 0  |                  2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25);  | 
774  | 0  |           if (num >= 0) { | 
775  | 0  |             pred = (int)(((Q00 << 7) + num) / (Q00 << 8));  | 
776  | 0  |           } else { | 
777  | 0  |             pred = (int)(((Q00 << 7) - num) / (Q00 << 8));  | 
778  | 0  |             pred = -pred;  | 
779  | 0  |           }  | 
780  | 0  |           workspace[0] = (JCOEF)pred;  | 
781  | 0  |         }  /* change_dc */  | 
782  |  |  | 
783  |  |         /* OK, do the IDCT */  | 
784  | 0  |         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,  | 
785  | 0  |                         output_col);  | 
786  |  |         /* Advance for next column */  | 
787  | 0  |         DC01 = DC02;  DC02 = DC03;  DC03 = DC04;  DC04 = DC05;  | 
788  | 0  |         DC06 = DC07;  DC07 = DC08;  DC08 = DC09;  DC09 = DC10;  | 
789  | 0  |         DC11 = DC12;  DC12 = DC13;  DC13 = DC14;  DC14 = DC15;  | 
790  | 0  |         DC16 = DC17;  DC17 = DC18;  DC18 = DC19;  DC19 = DC20;  | 
791  | 0  |         DC21 = DC22;  DC22 = DC23;  DC23 = DC24;  DC24 = DC25;  | 
792  | 0  |         buffer_ptr++, prev_block_row++, next_block_row++,  | 
793  | 0  |           prev_prev_block_row++, next_next_block_row++;  | 
794  | 0  |         output_col += compptr->_DCT_scaled_size;  | 
795  | 0  |       }  | 
796  | 0  |       output_ptr += compptr->_DCT_scaled_size;  | 
797  | 0  |     }  | 
798  | 0  |   }  | 
799  |  | 
  | 
800  | 0  |   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)  | 
801  | 0  |     return JPEG_ROW_COMPLETED;  | 
802  | 0  |   return JPEG_SCAN_COMPLETED;  | 
803  | 0  | }  | 
804  |  |  | 
805  |  | #endif /* BLOCK_SMOOTHING_SUPPORTED */  | 
806  |  |  | 
807  |  |  | 
808  |  | /*  | 
809  |  |  * Initialize coefficient buffer controller.  | 
810  |  |  */  | 
811  |  |  | 
812  |  | GLOBAL(void)  | 
813  |  | jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)  | 
814  | 0  | { | 
815  | 0  |   my_coef_ptr coef;  | 
816  |  | 
  | 
817  | 0  |   coef = (my_coef_ptr)  | 
818  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
819  | 0  |                                 sizeof(my_coef_controller));  | 
820  | 0  |   cinfo->coef = (struct jpeg_d_coef_controller *)coef;  | 
821  | 0  |   coef->pub.start_input_pass = start_input_pass;  | 
822  | 0  |   coef->pub.start_output_pass = start_output_pass;  | 
823  | 0  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
824  | 0  |   coef->coef_bits_latch = NULL;  | 
825  | 0  | #endif  | 
826  |  |  | 
827  |  |   /* Create the coefficient buffer. */  | 
828  | 0  |   if (need_full_buffer) { | 
829  | 0  | #ifdef D_MULTISCAN_FILES_SUPPORTED  | 
830  |  |     /* Allocate a full-image virtual array for each component, */  | 
831  |  |     /* padded to a multiple of samp_factor DCT blocks in each direction. */  | 
832  |  |     /* Note we ask for a pre-zeroed array. */  | 
833  | 0  |     int ci, access_rows;  | 
834  | 0  |     jpeg_component_info *compptr;  | 
835  |  | 
  | 
836  | 0  |     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
837  | 0  |          ci++, compptr++) { | 
838  | 0  |       access_rows = compptr->v_samp_factor;  | 
839  | 0  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
840  |  |       /* If block smoothing could be used, need a bigger window */  | 
841  | 0  |       if (cinfo->progressive_mode)  | 
842  | 0  |         access_rows *= 5;  | 
843  | 0  | #endif  | 
844  | 0  |       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)  | 
845  | 0  |         ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,  | 
846  | 0  |          (JDIMENSION)jround_up((long)compptr->width_in_blocks,  | 
847  | 0  |                                (long)compptr->h_samp_factor),  | 
848  | 0  |          (JDIMENSION)jround_up((long)compptr->height_in_blocks,  | 
849  | 0  |                                (long)compptr->v_samp_factor),  | 
850  | 0  |          (JDIMENSION)access_rows);  | 
851  | 0  |     }  | 
852  | 0  |     coef->pub.consume_data = consume_data;  | 
853  | 0  |     coef->pub.decompress_data = decompress_data;  | 
854  | 0  |     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */  | 
855  |  | #else  | 
856  |  |     ERREXIT(cinfo, JERR_NOT_COMPILED);  | 
857  |  | #endif  | 
858  | 0  |   } else { | 
859  |  |     /* We only need a single-MCU buffer. */  | 
860  | 0  |     JBLOCKROW buffer;  | 
861  | 0  |     int i;  | 
862  |  | 
  | 
863  | 0  |     buffer = (JBLOCKROW)  | 
864  | 0  |       (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
865  | 0  |                                   D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));  | 
866  | 0  |     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { | 
867  | 0  |       coef->MCU_buffer[i] = buffer + i;  | 
868  | 0  |     }  | 
869  | 0  |     coef->pub.consume_data = dummy_consume_data;  | 
870  | 0  |     coef->pub.decompress_data = decompress_onepass;  | 
871  | 0  |     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */  | 
872  | 0  |   }  | 
873  |  |  | 
874  |  |   /* Allocate the workspace buffer */  | 
875  | 0  |   coef->workspace = (JCOEF *)  | 
876  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
877  | 0  |                                 sizeof(JCOEF) * DCTSIZE2);  | 
878  | 0  | }  |