/src/libjpeg-turbo.2.1.x/jdhuff.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jdhuff.c  | 
3  |  |  *  | 
4  |  |  * This file was part of the Independent JPEG Group's software:  | 
5  |  |  * Copyright (C) 1991-1997, Thomas G. Lane.  | 
6  |  |  * libjpeg-turbo Modifications:  | 
7  |  |  * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.  | 
8  |  |  * Copyright (C) 2018, Matthias Räncker.  | 
9  |  |  * For conditions of distribution and use, see the accompanying README.ijg  | 
10  |  |  * file.  | 
11  |  |  *  | 
12  |  |  * This file contains Huffman entropy decoding routines.  | 
13  |  |  *  | 
14  |  |  * Much of the complexity here has to do with supporting input suspension.  | 
15  |  |  * If the data source module demands suspension, we want to be able to back  | 
16  |  |  * up to the start of the current MCU.  To do this, we copy state variables  | 
17  |  |  * into local working storage, and update them back to the permanent  | 
18  |  |  * storage only upon successful completion of an MCU.  | 
19  |  |  *  | 
20  |  |  * NOTE: All referenced figures are from  | 
21  |  |  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.  | 
22  |  |  */  | 
23  |  |  | 
24  |  | #define JPEG_INTERNALS  | 
25  |  | #include "jinclude.h"  | 
26  |  | #include "jpeglib.h"  | 
27  |  | #include "jdhuff.h"             /* Declarations shared with jdphuff.c */  | 
28  |  | #include "jpegcomp.h"  | 
29  |  | #include "jstdhuff.c"  | 
30  |  |  | 
31  |  |  | 
32  |  | /*  | 
33  |  |  * Expanded entropy decoder object for Huffman decoding.  | 
34  |  |  *  | 
35  |  |  * The savable_state subrecord contains fields that change within an MCU,  | 
36  |  |  * but must not be updated permanently until we complete the MCU.  | 
37  |  |  */  | 
38  |  |  | 
39  |  | typedef struct { | 
40  |  |   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */  | 
41  |  | } savable_state;  | 
42  |  |  | 
43  |  | typedef struct { | 
44  |  |   struct jpeg_entropy_decoder pub; /* public fields */  | 
45  |  |  | 
46  |  |   /* These fields are loaded into local variables at start of each MCU.  | 
47  |  |    * In case of suspension, we exit WITHOUT updating them.  | 
48  |  |    */  | 
49  |  |   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */  | 
50  |  |   savable_state saved;          /* Other state at start of MCU */  | 
51  |  |  | 
52  |  |   /* These fields are NOT loaded into local working state. */  | 
53  |  |   unsigned int restarts_to_go;  /* MCUs left in this restart interval */  | 
54  |  |  | 
55  |  |   /* Pointers to derived tables (these workspaces have image lifespan) */  | 
56  |  |   d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];  | 
57  |  |   d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];  | 
58  |  |  | 
59  |  |   /* Precalculated info set up by start_pass for use in decode_mcu: */  | 
60  |  |  | 
61  |  |   /* Pointers to derived tables to be used for each block within an MCU */  | 
62  |  |   d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];  | 
63  |  |   d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];  | 
64  |  |   /* Whether we care about the DC and AC coefficient values for each block */  | 
65  |  |   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];  | 
66  |  |   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];  | 
67  |  | } huff_entropy_decoder;  | 
68  |  |  | 
69  |  | typedef huff_entropy_decoder *huff_entropy_ptr;  | 
70  |  |  | 
71  |  |  | 
72  |  | /*  | 
73  |  |  * Initialize for a Huffman-compressed scan.  | 
74  |  |  */  | 
75  |  |  | 
76  |  | METHODDEF(void)  | 
77  |  | start_pass_huff_decoder(j_decompress_ptr cinfo)  | 
78  | 0  | { | 
79  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;  | 
80  | 0  |   int ci, blkn, dctbl, actbl;  | 
81  | 0  |   d_derived_tbl **pdtbl;  | 
82  | 0  |   jpeg_component_info *compptr;  | 
83  |  |  | 
84  |  |   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.  | 
85  |  |    * This ought to be an error condition, but we make it a warning because  | 
86  |  |    * there are some baseline files out there with all zeroes in these bytes.  | 
87  |  |    */  | 
88  | 0  |   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||  | 
89  | 0  |       cinfo->Ah != 0 || cinfo->Al != 0)  | 
90  | 0  |     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);  | 
91  |  | 
  | 
92  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
93  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
94  | 0  |     dctbl = compptr->dc_tbl_no;  | 
95  | 0  |     actbl = compptr->ac_tbl_no;  | 
96  |  |     /* Compute derived values for Huffman tables */  | 
97  |  |     /* We may do this more than once for a table, but it's not expensive */  | 
98  | 0  |     pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;  | 
99  | 0  |     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);  | 
100  | 0  |     pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;  | 
101  | 0  |     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);  | 
102  |  |     /* Initialize DC predictions to 0 */  | 
103  | 0  |     entropy->saved.last_dc_val[ci] = 0;  | 
104  | 0  |   }  | 
105  |  |  | 
106  |  |   /* Precalculate decoding info for each block in an MCU of this scan */  | 
107  | 0  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
108  | 0  |     ci = cinfo->MCU_membership[blkn];  | 
109  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
110  |  |     /* Precalculate which table to use for each block */  | 
111  | 0  |     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];  | 
112  | 0  |     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];  | 
113  |  |     /* Decide whether we really care about the coefficient values */  | 
114  | 0  |     if (compptr->component_needed) { | 
115  | 0  |       entropy->dc_needed[blkn] = TRUE;  | 
116  |  |       /* we don't need the ACs if producing a 1/8th-size image */  | 
117  | 0  |       entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);  | 
118  | 0  |     } else { | 
119  | 0  |       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;  | 
120  | 0  |     }  | 
121  | 0  |   }  | 
122  |  |  | 
123  |  |   /* Initialize bitread state variables */  | 
124  | 0  |   entropy->bitstate.bits_left = 0;  | 
125  | 0  |   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */  | 
126  | 0  |   entropy->pub.insufficient_data = FALSE;  | 
127  |  |  | 
128  |  |   /* Initialize restart counter */  | 
129  | 0  |   entropy->restarts_to_go = cinfo->restart_interval;  | 
130  | 0  | }  | 
131  |  |  | 
132  |  |  | 
133  |  | /*  | 
134  |  |  * Compute the derived values for a Huffman table.  | 
135  |  |  * This routine also performs some validation checks on the table.  | 
136  |  |  *  | 
137  |  |  * Note this is also used by jdphuff.c.  | 
138  |  |  */  | 
139  |  |  | 
140  |  | GLOBAL(void)  | 
141  |  | jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,  | 
142  |  |                         d_derived_tbl **pdtbl)  | 
143  | 0  | { | 
144  | 0  |   JHUFF_TBL *htbl;  | 
145  | 0  |   d_derived_tbl *dtbl;  | 
146  | 0  |   int p, i, l, si, numsymbols;  | 
147  | 0  |   int lookbits, ctr;  | 
148  | 0  |   char huffsize[257];  | 
149  | 0  |   unsigned int huffcode[257];  | 
150  | 0  |   unsigned int code;  | 
151  |  |  | 
152  |  |   /* Note that huffsize[] and huffcode[] are filled in code-length order,  | 
153  |  |    * paralleling the order of the symbols themselves in htbl->huffval[].  | 
154  |  |    */  | 
155  |  |  | 
156  |  |   /* Find the input Huffman table */  | 
157  | 0  |   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)  | 
158  | 0  |     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);  | 
159  | 0  |   htbl =  | 
160  | 0  |     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];  | 
161  | 0  |   if (htbl == NULL)  | 
162  | 0  |     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);  | 
163  |  |  | 
164  |  |   /* Allocate a workspace if we haven't already done so. */  | 
165  | 0  |   if (*pdtbl == NULL)  | 
166  | 0  |     *pdtbl = (d_derived_tbl *)  | 
167  | 0  |       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
168  | 0  |                                   sizeof(d_derived_tbl));  | 
169  | 0  |   dtbl = *pdtbl;  | 
170  | 0  |   dtbl->pub = htbl;             /* fill in back link */  | 
171  |  |  | 
172  |  |   /* Figure C.1: make table of Huffman code length for each symbol */  | 
173  |  | 
  | 
174  | 0  |   p = 0;  | 
175  | 0  |   for (l = 1; l <= 16; l++) { | 
176  | 0  |     i = (int)htbl->bits[l];  | 
177  | 0  |     if (i < 0 || p + i > 256)   /* protect against table overrun */  | 
178  | 0  |       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);  | 
179  | 0  |     while (i--)  | 
180  | 0  |       huffsize[p++] = (char)l;  | 
181  | 0  |   }  | 
182  | 0  |   huffsize[p] = 0;  | 
183  | 0  |   numsymbols = p;  | 
184  |  |  | 
185  |  |   /* Figure C.2: generate the codes themselves */  | 
186  |  |   /* We also validate that the counts represent a legal Huffman code tree. */  | 
187  |  | 
  | 
188  | 0  |   code = 0;  | 
189  | 0  |   si = huffsize[0];  | 
190  | 0  |   p = 0;  | 
191  | 0  |   while (huffsize[p]) { | 
192  | 0  |     while (((int)huffsize[p]) == si) { | 
193  | 0  |       huffcode[p++] = code;  | 
194  | 0  |       code++;  | 
195  | 0  |     }  | 
196  |  |     /* code is now 1 more than the last code used for codelength si; but  | 
197  |  |      * it must still fit in si bits, since no code is allowed to be all ones.  | 
198  |  |      */  | 
199  | 0  |     if (((JLONG)code) >= (((JLONG)1) << si))  | 
200  | 0  |       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);  | 
201  | 0  |     code <<= 1;  | 
202  | 0  |     si++;  | 
203  | 0  |   }  | 
204  |  |  | 
205  |  |   /* Figure F.15: generate decoding tables for bit-sequential decoding */  | 
206  |  | 
  | 
207  | 0  |   p = 0;  | 
208  | 0  |   for (l = 1; l <= 16; l++) { | 
209  | 0  |     if (htbl->bits[l]) { | 
210  |  |       /* valoffset[l] = huffval[] index of 1st symbol of code length l,  | 
211  |  |        * minus the minimum code of length l  | 
212  |  |        */  | 
213  | 0  |       dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];  | 
214  | 0  |       p += htbl->bits[l];  | 
215  | 0  |       dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */  | 
216  | 0  |     } else { | 
217  | 0  |       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */  | 
218  | 0  |     }  | 
219  | 0  |   }  | 
220  | 0  |   dtbl->valoffset[17] = 0;  | 
221  | 0  |   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */  | 
222  |  |  | 
223  |  |   /* Compute lookahead tables to speed up decoding.  | 
224  |  |    * First we set all the table entries to 0, indicating "too long";  | 
225  |  |    * then we iterate through the Huffman codes that are short enough and  | 
226  |  |    * fill in all the entries that correspond to bit sequences starting  | 
227  |  |    * with that code.  | 
228  |  |    */  | 
229  |  | 
  | 
230  | 0  |   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)  | 
231  | 0  |     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;  | 
232  |  | 
  | 
233  | 0  |   p = 0;  | 
234  | 0  |   for (l = 1; l <= HUFF_LOOKAHEAD; l++) { | 
235  | 0  |     for (i = 1; i <= (int)htbl->bits[l]; i++, p++) { | 
236  |  |       /* l = current code's length, p = its index in huffcode[] & huffval[]. */  | 
237  |  |       /* Generate left-justified code followed by all possible bit sequences */  | 
238  | 0  |       lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);  | 
239  | 0  |       for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) { | 
240  | 0  |         dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];  | 
241  | 0  |         lookbits++;  | 
242  | 0  |       }  | 
243  | 0  |     }  | 
244  | 0  |   }  | 
245  |  |  | 
246  |  |   /* Validate symbols as being reasonable.  | 
247  |  |    * For AC tables, we make no check, but accept all byte values 0..255.  | 
248  |  |    * For DC tables, we require the symbols to be in range 0..15.  | 
249  |  |    * (Tighter bounds could be applied depending on the data depth and mode,  | 
250  |  |    * but this is sufficient to ensure safe decoding.)  | 
251  |  |    */  | 
252  | 0  |   if (isDC) { | 
253  | 0  |     for (i = 0; i < numsymbols; i++) { | 
254  | 0  |       int sym = htbl->huffval[i];  | 
255  | 0  |       if (sym < 0 || sym > 15)  | 
256  | 0  |         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);  | 
257  | 0  |     }  | 
258  | 0  |   }  | 
259  | 0  | }  | 
260  |  |  | 
261  |  |  | 
262  |  | /*  | 
263  |  |  * Out-of-line code for bit fetching (shared with jdphuff.c).  | 
264  |  |  * See jdhuff.h for info about usage.  | 
265  |  |  * Note: current values of get_buffer and bits_left are passed as parameters,  | 
266  |  |  * but are returned in the corresponding fields of the state struct.  | 
267  |  |  *  | 
268  |  |  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width  | 
269  |  |  * of get_buffer to be used.  (On machines with wider words, an even larger  | 
270  |  |  * buffer could be used.)  However, on some machines 32-bit shifts are  | 
271  |  |  * quite slow and take time proportional to the number of places shifted.  | 
272  |  |  * (This is true with most PC compilers, for instance.)  In this case it may  | 
273  |  |  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the  | 
274  |  |  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.  | 
275  |  |  */  | 
276  |  |  | 
277  |  | #ifdef SLOW_SHIFT_32  | 
278  |  | #define MIN_GET_BITS  15        /* minimum allowable value */  | 
279  |  | #else  | 
280  | 0  | #define MIN_GET_BITS  (BIT_BUF_SIZE - 7)  | 
281  |  | #endif  | 
282  |  |  | 
283  |  |  | 
284  |  | GLOBAL(boolean)  | 
285  |  | jpeg_fill_bit_buffer(bitread_working_state *state,  | 
286  |  |                      register bit_buf_type get_buffer, register int bits_left,  | 
287  |  |                      int nbits)  | 
288  |  | /* Load up the bit buffer to a depth of at least nbits */  | 
289  | 0  | { | 
290  |  |   /* Copy heavily used state fields into locals (hopefully registers) */  | 
291  | 0  |   register const JOCTET *next_input_byte = state->next_input_byte;  | 
292  | 0  |   register size_t bytes_in_buffer = state->bytes_in_buffer;  | 
293  | 0  |   j_decompress_ptr cinfo = state->cinfo;  | 
294  |  |  | 
295  |  |   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */  | 
296  |  |   /* (It is assumed that no request will be for more than that many bits.) */  | 
297  |  |   /* We fail to do so only if we hit a marker or are forced to suspend. */  | 
298  |  | 
  | 
299  | 0  |   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */ | 
300  | 0  |     while (bits_left < MIN_GET_BITS) { | 
301  | 0  |       register int c;  | 
302  |  |  | 
303  |  |       /* Attempt to read a byte */  | 
304  | 0  |       if (bytes_in_buffer == 0) { | 
305  | 0  |         if (!(*cinfo->src->fill_input_buffer) (cinfo))  | 
306  | 0  |           return FALSE;  | 
307  | 0  |         next_input_byte = cinfo->src->next_input_byte;  | 
308  | 0  |         bytes_in_buffer = cinfo->src->bytes_in_buffer;  | 
309  | 0  |       }  | 
310  | 0  |       bytes_in_buffer--;  | 
311  | 0  |       c = *next_input_byte++;  | 
312  |  |  | 
313  |  |       /* If it's 0xFF, check and discard stuffed zero byte */  | 
314  | 0  |       if (c == 0xFF) { | 
315  |  |         /* Loop here to discard any padding FF's on terminating marker,  | 
316  |  |          * so that we can save a valid unread_marker value.  NOTE: we will  | 
317  |  |          * accept multiple FF's followed by a 0 as meaning a single FF data  | 
318  |  |          * byte.  This data pattern is not valid according to the standard.  | 
319  |  |          */  | 
320  | 0  |         do { | 
321  | 0  |           if (bytes_in_buffer == 0) { | 
322  | 0  |             if (!(*cinfo->src->fill_input_buffer) (cinfo))  | 
323  | 0  |               return FALSE;  | 
324  | 0  |             next_input_byte = cinfo->src->next_input_byte;  | 
325  | 0  |             bytes_in_buffer = cinfo->src->bytes_in_buffer;  | 
326  | 0  |           }  | 
327  | 0  |           bytes_in_buffer--;  | 
328  | 0  |           c = *next_input_byte++;  | 
329  | 0  |         } while (c == 0xFF);  | 
330  |  |  | 
331  | 0  |         if (c == 0) { | 
332  |  |           /* Found FF/00, which represents an FF data byte */  | 
333  | 0  |           c = 0xFF;  | 
334  | 0  |         } else { | 
335  |  |           /* Oops, it's actually a marker indicating end of compressed data.  | 
336  |  |            * Save the marker code for later use.  | 
337  |  |            * Fine point: it might appear that we should save the marker into  | 
338  |  |            * bitread working state, not straight into permanent state.  But  | 
339  |  |            * once we have hit a marker, we cannot need to suspend within the  | 
340  |  |            * current MCU, because we will read no more bytes from the data  | 
341  |  |            * source.  So it is OK to update permanent state right away.  | 
342  |  |            */  | 
343  | 0  |           cinfo->unread_marker = c;  | 
344  |  |           /* See if we need to insert some fake zero bits. */  | 
345  | 0  |           goto no_more_bytes;  | 
346  | 0  |         }  | 
347  | 0  |       }  | 
348  |  |  | 
349  |  |       /* OK, load c into get_buffer */  | 
350  | 0  |       get_buffer = (get_buffer << 8) | c;  | 
351  | 0  |       bits_left += 8;  | 
352  | 0  |     } /* end while */  | 
353  | 0  |   } else { | 
354  | 0  | no_more_bytes:  | 
355  |  |     /* We get here if we've read the marker that terminates the compressed  | 
356  |  |      * data segment.  There should be enough bits in the buffer register  | 
357  |  |      * to satisfy the request; if so, no problem.  | 
358  |  |      */  | 
359  | 0  |     if (nbits > bits_left) { | 
360  |  |       /* Uh-oh.  Report corrupted data to user and stuff zeroes into  | 
361  |  |        * the data stream, so that we can produce some kind of image.  | 
362  |  |        * We use a nonvolatile flag to ensure that only one warning message  | 
363  |  |        * appears per data segment.  | 
364  |  |        */  | 
365  | 0  |       if (!cinfo->entropy->insufficient_data) { | 
366  | 0  |         WARNMS(cinfo, JWRN_HIT_MARKER);  | 
367  | 0  |         cinfo->entropy->insufficient_data = TRUE;  | 
368  | 0  |       }  | 
369  |  |       /* Fill the buffer with zero bits */  | 
370  | 0  |       get_buffer <<= MIN_GET_BITS - bits_left;  | 
371  | 0  |       bits_left = MIN_GET_BITS;  | 
372  | 0  |     }  | 
373  | 0  |   }  | 
374  |  |  | 
375  |  |   /* Unload the local registers */  | 
376  | 0  |   state->next_input_byte = next_input_byte;  | 
377  | 0  |   state->bytes_in_buffer = bytes_in_buffer;  | 
378  | 0  |   state->get_buffer = get_buffer;  | 
379  | 0  |   state->bits_left = bits_left;  | 
380  |  | 
  | 
381  | 0  |   return TRUE;  | 
382  | 0  | }  | 
383  |  |  | 
384  |  |  | 
385  |  | /* Macro version of the above, which performs much better but does not  | 
386  |  |    handle markers.  We have to hand off any blocks with markers to the  | 
387  |  |    slower routines. */  | 
388  |  |  | 
389  | 0  | #define GET_BYTE { \ | 
390  | 0  |   register int c0, c1; \  | 
391  | 0  |   c0 = *buffer++; \  | 
392  | 0  |   c1 = *buffer; \  | 
393  | 0  |   /* Pre-execute most common case */ \  | 
394  | 0  |   get_buffer = (get_buffer << 8) | c0; \  | 
395  | 0  |   bits_left += 8; \  | 
396  | 0  |   if (c0 == 0xFF) { \ | 
397  | 0  |     /* Pre-execute case of FF/00, which represents an FF data byte */ \  | 
398  | 0  |     buffer++; \  | 
399  | 0  |     if (c1 != 0) { \ | 
400  | 0  |       /* Oops, it's actually a marker indicating end of compressed data. */ \  | 
401  | 0  |       cinfo->unread_marker = c1; \  | 
402  | 0  |       /* Back out pre-execution and fill the buffer with zero bits */ \  | 
403  | 0  |       buffer -= 2; \  | 
404  | 0  |       get_buffer &= ~0xFF; \  | 
405  | 0  |     } \  | 
406  | 0  |   } \  | 
407  | 0  | }  | 
408  |  |  | 
409  |  | #if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))  | 
410  |  |  | 
411  |  | /* Pre-fetch 48 bytes, because the holding register is 64-bit */  | 
412  |  | #define FILL_BIT_BUFFER_FAST \  | 
413  | 0  |   if (bits_left <= 16) { \ | 
414  | 0  |     GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \  | 
415  | 0  |   }  | 
416  |  |  | 
417  |  | #else  | 
418  |  |  | 
419  |  | /* Pre-fetch 16 bytes, because the holding register is 32-bit */  | 
420  |  | #define FILL_BIT_BUFFER_FAST \  | 
421  |  |   if (bits_left <= 16) { \ | 
422  |  |     GET_BYTE GET_BYTE \  | 
423  |  |   }  | 
424  |  |  | 
425  |  | #endif  | 
426  |  |  | 
427  |  |  | 
428  |  | /*  | 
429  |  |  * Out-of-line code for Huffman code decoding.  | 
430  |  |  * See jdhuff.h for info about usage.  | 
431  |  |  */  | 
432  |  |  | 
433  |  | GLOBAL(int)  | 
434  |  | jpeg_huff_decode(bitread_working_state *state,  | 
435  |  |                  register bit_buf_type get_buffer, register int bits_left,  | 
436  |  |                  d_derived_tbl *htbl, int min_bits)  | 
437  | 0  | { | 
438  | 0  |   register int l = min_bits;  | 
439  | 0  |   register JLONG code;  | 
440  |  |  | 
441  |  |   /* HUFF_DECODE has determined that the code is at least min_bits */  | 
442  |  |   /* bits long, so fetch that many bits in one swoop. */  | 
443  |  | 
  | 
444  | 0  |   CHECK_BIT_BUFFER(*state, l, return -1);  | 
445  | 0  |   code = GET_BITS(l);  | 
446  |  |  | 
447  |  |   /* Collect the rest of the Huffman code one bit at a time. */  | 
448  |  |   /* This is per Figure F.16. */  | 
449  |  | 
  | 
450  | 0  |   while (code > htbl->maxcode[l]) { | 
451  | 0  |     code <<= 1;  | 
452  | 0  |     CHECK_BIT_BUFFER(*state, 1, return -1);  | 
453  | 0  |     code |= GET_BITS(1);  | 
454  | 0  |     l++;  | 
455  | 0  |   }  | 
456  |  |  | 
457  |  |   /* Unload the local registers */  | 
458  | 0  |   state->get_buffer = get_buffer;  | 
459  | 0  |   state->bits_left = bits_left;  | 
460  |  |  | 
461  |  |   /* With garbage input we may reach the sentinel value l = 17. */  | 
462  |  | 
  | 
463  | 0  |   if (l > 16) { | 
464  | 0  |     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);  | 
465  | 0  |     return 0;                   /* fake a zero as the safest result */  | 
466  | 0  |   }  | 
467  |  |  | 
468  | 0  |   return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];  | 
469  | 0  | }  | 
470  |  |  | 
471  |  |  | 
472  |  | /*  | 
473  |  |  * Figure F.12: extend sign bit.  | 
474  |  |  * On some machines, a shift and add will be faster than a table lookup.  | 
475  |  |  */  | 
476  |  |  | 
477  |  | #define AVOID_TABLES  | 
478  |  | #ifdef AVOID_TABLES  | 
479  |  |  | 
480  | 0  | #define NEG_1  ((unsigned int)-1)  | 
481  |  | #define HUFF_EXTEND(x, s) \  | 
482  | 0  |   ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))  | 
483  |  |  | 
484  |  | #else  | 
485  |  |  | 
486  |  | #define HUFF_EXTEND(x, s) \  | 
487  |  |   ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))  | 
488  |  |  | 
489  |  | static const int extend_test[16] = {   /* entry n is 2**(n-1) */ | 
490  |  |   0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,  | 
491  |  |   0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000  | 
492  |  | };  | 
493  |  |  | 
494  |  | static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */ | 
495  |  |   0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,  | 
496  |  |   ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,  | 
497  |  |   ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,  | 
498  |  |   ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1  | 
499  |  | };  | 
500  |  |  | 
501  |  | #endif /* AVOID_TABLES */  | 
502  |  |  | 
503  |  |  | 
504  |  | /*  | 
505  |  |  * Check for a restart marker & resynchronize decoder.  | 
506  |  |  * Returns FALSE if must suspend.  | 
507  |  |  */  | 
508  |  |  | 
509  |  | LOCAL(boolean)  | 
510  |  | process_restart(j_decompress_ptr cinfo)  | 
511  | 0  | { | 
512  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;  | 
513  | 0  |   int ci;  | 
514  |  |  | 
515  |  |   /* Throw away any unused bits remaining in bit buffer; */  | 
516  |  |   /* include any full bytes in next_marker's count of discarded bytes */  | 
517  | 0  |   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;  | 
518  | 0  |   entropy->bitstate.bits_left = 0;  | 
519  |  |  | 
520  |  |   /* Advance past the RSTn marker */  | 
521  | 0  |   if (!(*cinfo->marker->read_restart_marker) (cinfo))  | 
522  | 0  |     return FALSE;  | 
523  |  |  | 
524  |  |   /* Re-initialize DC predictions to 0 */  | 
525  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++)  | 
526  | 0  |     entropy->saved.last_dc_val[ci] = 0;  | 
527  |  |  | 
528  |  |   /* Reset restart counter */  | 
529  | 0  |   entropy->restarts_to_go = cinfo->restart_interval;  | 
530  |  |  | 
531  |  |   /* Reset out-of-data flag, unless read_restart_marker left us smack up  | 
532  |  |    * against a marker.  In that case we will end up treating the next data  | 
533  |  |    * segment as empty, and we can avoid producing bogus output pixels by  | 
534  |  |    * leaving the flag set.  | 
535  |  |    */  | 
536  | 0  |   if (cinfo->unread_marker == 0)  | 
537  | 0  |     entropy->pub.insufficient_data = FALSE;  | 
538  |  | 
  | 
539  | 0  |   return TRUE;  | 
540  | 0  | }  | 
541  |  |  | 
542  |  |  | 
543  |  | #if defined(__has_feature)  | 
544  |  | #if __has_feature(undefined_behavior_sanitizer)  | 
545  |  | __attribute__((no_sanitize("signed-integer-overflow"), | 
546  |  |                no_sanitize("unsigned-integer-overflow"))) | 
547  |  | #endif  | 
548  |  | #endif  | 
549  |  | LOCAL(boolean)  | 
550  |  | decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
551  | 0  | { | 
552  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;  | 
553  | 0  |   BITREAD_STATE_VARS;  | 
554  | 0  |   int blkn;  | 
555  | 0  |   savable_state state;  | 
556  |  |   /* Outer loop handles each block in the MCU */  | 
557  |  |  | 
558  |  |   /* Load up working state */  | 
559  | 0  |   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);  | 
560  | 0  |   state = entropy->saved;  | 
561  |  | 
  | 
562  | 0  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
563  | 0  |     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;  | 
564  | 0  |     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];  | 
565  | 0  |     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];  | 
566  | 0  |     register int s, k, r;  | 
567  |  |  | 
568  |  |     /* Decode a single block's worth of coefficients */  | 
569  |  |  | 
570  |  |     /* Section F.2.2.1: decode the DC coefficient difference */  | 
571  | 0  |     HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);  | 
572  | 0  |     if (s) { | 
573  | 0  |       CHECK_BIT_BUFFER(br_state, s, return FALSE);  | 
574  | 0  |       r = GET_BITS(s);  | 
575  | 0  |       s = HUFF_EXTEND(r, s);  | 
576  | 0  |     }  | 
577  |  |  | 
578  | 0  |     if (entropy->dc_needed[blkn]) { | 
579  |  |       /* Convert DC difference to actual value, update last_dc_val */  | 
580  | 0  |       int ci = cinfo->MCU_membership[blkn];  | 
581  |  |       /* Certain malformed JPEG images produce repeated DC coefficient  | 
582  |  |        * differences of 2047 or -2047, which causes state.last_dc_val[ci] to  | 
583  |  |        * grow until it overflows or underflows a 32-bit signed integer.  This  | 
584  |  |        * behavior is, to the best of our understanding, innocuous, and it is  | 
585  |  |        * unclear how to work around it without potentially affecting  | 
586  |  |        * performance.  Thus, we (hopefully temporarily) suppress UBSan integer  | 
587  |  |        * overflow errors for this function and decode_mcu_fast().  | 
588  |  |        */  | 
589  | 0  |       s += state.last_dc_val[ci];  | 
590  | 0  |       state.last_dc_val[ci] = s;  | 
591  | 0  |       if (block) { | 
592  |  |         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */  | 
593  | 0  |         (*block)[0] = (JCOEF)s;  | 
594  | 0  |       }  | 
595  | 0  |     }  | 
596  |  | 
  | 
597  | 0  |     if (entropy->ac_needed[blkn] && block) { | 
598  |  |  | 
599  |  |       /* Section F.2.2.2: decode the AC coefficients */  | 
600  |  |       /* Since zeroes are skipped, output area must be cleared beforehand */  | 
601  | 0  |       for (k = 1; k < DCTSIZE2; k++) { | 
602  | 0  |         HUFF_DECODE(s, br_state, actbl, return FALSE, label2);  | 
603  |  | 
  | 
604  | 0  |         r = s >> 4;  | 
605  | 0  |         s &= 15;  | 
606  |  | 
  | 
607  | 0  |         if (s) { | 
608  | 0  |           k += r;  | 
609  | 0  |           CHECK_BIT_BUFFER(br_state, s, return FALSE);  | 
610  | 0  |           r = GET_BITS(s);  | 
611  | 0  |           s = HUFF_EXTEND(r, s);  | 
612  |  |           /* Output coefficient in natural (dezigzagged) order.  | 
613  |  |            * Note: the extra entries in jpeg_natural_order[] will save us  | 
614  |  |            * if k >= DCTSIZE2, which could happen if the data is corrupted.  | 
615  |  |            */  | 
616  | 0  |           (*block)[jpeg_natural_order[k]] = (JCOEF)s;  | 
617  | 0  |         } else { | 
618  | 0  |           if (r != 15)  | 
619  | 0  |             break;  | 
620  | 0  |           k += 15;  | 
621  | 0  |         }  | 
622  | 0  |       }  | 
623  |  | 
  | 
624  | 0  |     } else { | 
625  |  |  | 
626  |  |       /* Section F.2.2.2: decode the AC coefficients */  | 
627  |  |       /* In this path we just discard the values */  | 
628  | 0  |       for (k = 1; k < DCTSIZE2; k++) { | 
629  | 0  |         HUFF_DECODE(s, br_state, actbl, return FALSE, label3);  | 
630  |  | 
  | 
631  | 0  |         r = s >> 4;  | 
632  | 0  |         s &= 15;  | 
633  |  | 
  | 
634  | 0  |         if (s) { | 
635  | 0  |           k += r;  | 
636  | 0  |           CHECK_BIT_BUFFER(br_state, s, return FALSE);  | 
637  | 0  |           DROP_BITS(s);  | 
638  | 0  |         } else { | 
639  | 0  |           if (r != 15)  | 
640  | 0  |             break;  | 
641  | 0  |           k += 15;  | 
642  | 0  |         }  | 
643  | 0  |       }  | 
644  | 0  |     }  | 
645  | 0  |   }  | 
646  |  |  | 
647  |  |   /* Completed MCU, so update state */  | 
648  | 0  |   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);  | 
649  | 0  |   entropy->saved = state;  | 
650  | 0  |   return TRUE;  | 
651  | 0  | }  | 
652  |  |  | 
653  |  |  | 
654  |  | #if defined(__has_feature)  | 
655  |  | #if __has_feature(undefined_behavior_sanitizer)  | 
656  |  | __attribute__((no_sanitize("signed-integer-overflow"), | 
657  |  |                no_sanitize("unsigned-integer-overflow"))) | 
658  |  | #endif  | 
659  |  | #endif  | 
660  |  | LOCAL(boolean)  | 
661  |  | decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
662  | 0  | { | 
663  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;  | 
664  | 0  |   BITREAD_STATE_VARS;  | 
665  | 0  |   JOCTET *buffer;  | 
666  | 0  |   int blkn;  | 
667  | 0  |   savable_state state;  | 
668  |  |   /* Outer loop handles each block in the MCU */  | 
669  |  |  | 
670  |  |   /* Load up working state */  | 
671  | 0  |   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);  | 
672  | 0  |   buffer = (JOCTET *)br_state.next_input_byte;  | 
673  | 0  |   state = entropy->saved;  | 
674  |  | 
  | 
675  | 0  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
676  | 0  |     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;  | 
677  | 0  |     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];  | 
678  | 0  |     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];  | 
679  | 0  |     register int s, k, r, l;  | 
680  |  | 
  | 
681  | 0  |     HUFF_DECODE_FAST(s, l, dctbl);  | 
682  | 0  |     if (s) { | 
683  | 0  |       FILL_BIT_BUFFER_FAST  | 
684  | 0  |       r = GET_BITS(s);  | 
685  | 0  |       s = HUFF_EXTEND(r, s);  | 
686  | 0  |     }  | 
687  |  | 
  | 
688  | 0  |     if (entropy->dc_needed[blkn]) { | 
689  | 0  |       int ci = cinfo->MCU_membership[blkn];  | 
690  |  |       /* Refer to the comment in decode_mcu_slow() regarding the supression of  | 
691  |  |        * a UBSan integer overflow error in this line of code.  | 
692  |  |        */  | 
693  | 0  |       s += state.last_dc_val[ci];  | 
694  | 0  |       state.last_dc_val[ci] = s;  | 
695  | 0  |       if (block)  | 
696  | 0  |         (*block)[0] = (JCOEF)s;  | 
697  | 0  |     }  | 
698  |  | 
  | 
699  | 0  |     if (entropy->ac_needed[blkn] && block) { | 
700  |  | 
  | 
701  | 0  |       for (k = 1; k < DCTSIZE2; k++) { | 
702  | 0  |         HUFF_DECODE_FAST(s, l, actbl);  | 
703  | 0  |         r = s >> 4;  | 
704  | 0  |         s &= 15;  | 
705  |  | 
  | 
706  | 0  |         if (s) { | 
707  | 0  |           k += r;  | 
708  | 0  |           FILL_BIT_BUFFER_FAST  | 
709  | 0  |           r = GET_BITS(s);  | 
710  | 0  |           s = HUFF_EXTEND(r, s);  | 
711  | 0  |           (*block)[jpeg_natural_order[k]] = (JCOEF)s;  | 
712  | 0  |         } else { | 
713  | 0  |           if (r != 15) break;  | 
714  | 0  |           k += 15;  | 
715  | 0  |         }  | 
716  | 0  |       }  | 
717  |  | 
  | 
718  | 0  |     } else { | 
719  |  | 
  | 
720  | 0  |       for (k = 1; k < DCTSIZE2; k++) { | 
721  | 0  |         HUFF_DECODE_FAST(s, l, actbl);  | 
722  | 0  |         r = s >> 4;  | 
723  | 0  |         s &= 15;  | 
724  |  | 
  | 
725  | 0  |         if (s) { | 
726  | 0  |           k += r;  | 
727  | 0  |           FILL_BIT_BUFFER_FAST  | 
728  | 0  |           DROP_BITS(s);  | 
729  | 0  |         } else { | 
730  | 0  |           if (r != 15) break;  | 
731  | 0  |           k += 15;  | 
732  | 0  |         }  | 
733  | 0  |       }  | 
734  | 0  |     }  | 
735  | 0  |   }  | 
736  |  | 
  | 
737  | 0  |   if (cinfo->unread_marker != 0) { | 
738  | 0  |     cinfo->unread_marker = 0;  | 
739  | 0  |     return FALSE;  | 
740  | 0  |   }  | 
741  |  |  | 
742  | 0  |   br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);  | 
743  | 0  |   br_state.next_input_byte = buffer;  | 
744  | 0  |   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);  | 
745  | 0  |   entropy->saved = state;  | 
746  | 0  |   return TRUE;  | 
747  | 0  | }  | 
748  |  |  | 
749  |  |  | 
750  |  | /*  | 
751  |  |  * Decode and return one MCU's worth of Huffman-compressed coefficients.  | 
752  |  |  * The coefficients are reordered from zigzag order into natural array order,  | 
753  |  |  * but are not dequantized.  | 
754  |  |  *  | 
755  |  |  * The i'th block of the MCU is stored into the block pointed to by  | 
756  |  |  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.  | 
757  |  |  * (Wholesale zeroing is usually a little faster than retail...)  | 
758  |  |  *  | 
759  |  |  * Returns FALSE if data source requested suspension.  In that case no  | 
760  |  |  * changes have been made to permanent state.  (Exception: some output  | 
761  |  |  * coefficients may already have been assigned.  This is harmless for  | 
762  |  |  * this module, since we'll just re-assign them on the next call.)  | 
763  |  |  */  | 
764  |  |  | 
765  | 0  | #define BUFSIZE  (DCTSIZE2 * 8)  | 
766  |  |  | 
767  |  | METHODDEF(boolean)  | 
768  |  | decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
769  | 0  | { | 
770  | 0  |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;  | 
771  | 0  |   int usefast = 1;  | 
772  |  |  | 
773  |  |   /* Process restart marker if needed; may have to suspend */  | 
774  | 0  |   if (cinfo->restart_interval) { | 
775  | 0  |     if (entropy->restarts_to_go == 0)  | 
776  | 0  |       if (!process_restart(cinfo))  | 
777  | 0  |         return FALSE;  | 
778  | 0  |     usefast = 0;  | 
779  | 0  |   }  | 
780  |  |  | 
781  | 0  |   if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||  | 
782  | 0  |       cinfo->unread_marker != 0)  | 
783  | 0  |     usefast = 0;  | 
784  |  |  | 
785  |  |   /* If we've run out of data, just leave the MCU set to zeroes.  | 
786  |  |    * This way, we return uniform gray for the remainder of the segment.  | 
787  |  |    */  | 
788  | 0  |   if (!entropy->pub.insufficient_data) { | 
789  |  | 
  | 
790  | 0  |     if (usefast) { | 
791  | 0  |       if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;  | 
792  | 0  |     } else { | 
793  | 0  | use_slow:  | 
794  | 0  |       if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;  | 
795  | 0  |     }  | 
796  |  | 
  | 
797  | 0  |   }  | 
798  |  |  | 
799  |  |   /* Account for restart interval (no-op if not using restarts) */  | 
800  | 0  |   if (cinfo->restart_interval)  | 
801  | 0  |     entropy->restarts_to_go--;  | 
802  |  | 
  | 
803  | 0  |   return TRUE;  | 
804  | 0  | }  | 
805  |  |  | 
806  |  |  | 
807  |  | /*  | 
808  |  |  * Module initialization routine for Huffman entropy decoding.  | 
809  |  |  */  | 
810  |  |  | 
811  |  | GLOBAL(void)  | 
812  |  | jinit_huff_decoder(j_decompress_ptr cinfo)  | 
813  | 0  | { | 
814  | 0  |   huff_entropy_ptr entropy;  | 
815  | 0  |   int i;  | 
816  |  |  | 
817  |  |   /* Motion JPEG frames typically do not include the Huffman tables if they  | 
818  |  |      are the default tables.  Thus, if the tables are not set by the time  | 
819  |  |      the Huffman decoder is initialized (usually within the body of  | 
820  |  |      jpeg_start_decompress()), we set them to default values. */  | 
821  | 0  |   std_huff_tables((j_common_ptr)cinfo);  | 
822  |  | 
  | 
823  | 0  |   entropy = (huff_entropy_ptr)  | 
824  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
825  | 0  |                                 sizeof(huff_entropy_decoder));  | 
826  | 0  |   cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;  | 
827  | 0  |   entropy->pub.start_pass = start_pass_huff_decoder;  | 
828  | 0  |   entropy->pub.decode_mcu = decode_mcu;  | 
829  |  |  | 
830  |  |   /* Mark tables unallocated */  | 
831  | 0  |   for (i = 0; i < NUM_HUFF_TBLS; i++) { | 
832  | 0  |     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;  | 
833  | 0  |   }  | 
834  | 0  | }  |