Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.2.1.x/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
0
{
79
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
0
  int ci, blkn, dctbl, actbl;
81
0
  d_derived_tbl **pdtbl;
82
0
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
0
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
0
      cinfo->Ah != 0 || cinfo->Al != 0)
90
0
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
0
    compptr = cinfo->cur_comp_info[ci];
94
0
    dctbl = compptr->dc_tbl_no;
95
0
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
0
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
0
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
0
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
0
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
0
    entropy->saved.last_dc_val[ci] = 0;
104
0
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
0
    ci = cinfo->MCU_membership[blkn];
109
0
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
0
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
0
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
0
    if (compptr->component_needed) {
115
0
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
0
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
0
    } else {
119
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
0
    }
121
0
  }
122
123
  /* Initialize bitread state variables */
124
0
  entropy->bitstate.bits_left = 0;
125
0
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
0
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
0
  entropy->restarts_to_go = cinfo->restart_interval;
130
0
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
0
{
144
0
  JHUFF_TBL *htbl;
145
0
  d_derived_tbl *dtbl;
146
0
  int p, i, l, si, numsymbols;
147
0
  int lookbits, ctr;
148
0
  char huffsize[257];
149
0
  unsigned int huffcode[257];
150
0
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
0
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
0
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
0
  htbl =
160
0
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
0
  if (htbl == NULL)
162
0
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
0
  if (*pdtbl == NULL)
166
0
    *pdtbl = (d_derived_tbl *)
167
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
0
                                  sizeof(d_derived_tbl));
169
0
  dtbl = *pdtbl;
170
0
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
0
  p = 0;
175
0
  for (l = 1; l <= 16; l++) {
176
0
    i = (int)htbl->bits[l];
177
0
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
0
    while (i--)
180
0
      huffsize[p++] = (char)l;
181
0
  }
182
0
  huffsize[p] = 0;
183
0
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
0
  code = 0;
189
0
  si = huffsize[0];
190
0
  p = 0;
191
0
  while (huffsize[p]) {
192
0
    while (((int)huffsize[p]) == si) {
193
0
      huffcode[p++] = code;
194
0
      code++;
195
0
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
0
    if (((JLONG)code) >= (((JLONG)1) << si))
200
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
0
    code <<= 1;
202
0
    si++;
203
0
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
0
  p = 0;
208
0
  for (l = 1; l <= 16; l++) {
209
0
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
0
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
0
      p += htbl->bits[l];
215
0
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
0
    } else {
217
0
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
0
    }
219
0
  }
220
0
  dtbl->valoffset[17] = 0;
221
0
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
0
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
0
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
0
  p = 0;
234
0
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
0
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
0
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
0
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
0
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
0
        lookbits++;
242
0
      }
243
0
    }
244
0
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
0
  if (isDC) {
253
0
    for (i = 0; i < numsymbols; i++) {
254
0
      int sym = htbl->huffval[i];
255
0
      if (sym < 0 || sym > 15)
256
0
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
0
    }
258
0
  }
259
0
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
0
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
0
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
0
  register const JOCTET *next_input_byte = state->next_input_byte;
292
0
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
0
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
0
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
0
    while (bits_left < MIN_GET_BITS) {
301
0
      register int c;
302
303
      /* Attempt to read a byte */
304
0
      if (bytes_in_buffer == 0) {
305
0
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
0
        next_input_byte = cinfo->src->next_input_byte;
308
0
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
0
      }
310
0
      bytes_in_buffer--;
311
0
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
0
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
0
        do {
321
0
          if (bytes_in_buffer == 0) {
322
0
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
0
            next_input_byte = cinfo->src->next_input_byte;
325
0
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
0
          }
327
0
          bytes_in_buffer--;
328
0
          c = *next_input_byte++;
329
0
        } while (c == 0xFF);
330
331
0
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
0
          c = 0xFF;
334
0
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
0
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
0
          goto no_more_bytes;
346
0
        }
347
0
      }
348
349
      /* OK, load c into get_buffer */
350
0
      get_buffer = (get_buffer << 8) | c;
351
0
      bits_left += 8;
352
0
    } /* end while */
353
0
  } else {
354
0
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
0
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
0
      if (!cinfo->entropy->insufficient_data) {
366
0
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
0
        cinfo->entropy->insufficient_data = TRUE;
368
0
      }
369
      /* Fill the buffer with zero bits */
370
0
      get_buffer <<= MIN_GET_BITS - bits_left;
371
0
      bits_left = MIN_GET_BITS;
372
0
    }
373
0
  }
374
375
  /* Unload the local registers */
376
0
  state->next_input_byte = next_input_byte;
377
0
  state->bytes_in_buffer = bytes_in_buffer;
378
0
  state->get_buffer = get_buffer;
379
0
  state->bits_left = bits_left;
380
381
0
  return TRUE;
382
0
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
0
#define GET_BYTE { \
390
0
  register int c0, c1; \
391
0
  c0 = *buffer++; \
392
0
  c1 = *buffer; \
393
0
  /* Pre-execute most common case */ \
394
0
  get_buffer = (get_buffer << 8) | c0; \
395
0
  bits_left += 8; \
396
0
  if (c0 == 0xFF) { \
397
0
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
0
    buffer++; \
399
0
    if (c1 != 0) { \
400
0
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
0
      cinfo->unread_marker = c1; \
402
0
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
0
      buffer -= 2; \
404
0
      get_buffer &= ~0xFF; \
405
0
    } \
406
0
  } \
407
0
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
0
  if (bits_left <= 16) { \
414
0
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
0
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
0
{
438
0
  register int l = min_bits;
439
0
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
0
  CHECK_BIT_BUFFER(*state, l, return -1);
445
0
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
0
  while (code > htbl->maxcode[l]) {
451
0
    code <<= 1;
452
0
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
0
    code |= GET_BITS(1);
454
0
    l++;
455
0
  }
456
457
  /* Unload the local registers */
458
0
  state->get_buffer = get_buffer;
459
0
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
0
  if (l > 16) {
464
0
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
0
    return 0;                   /* fake a zero as the safest result */
466
0
  }
467
468
0
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
0
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
0
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
0
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
0
{
512
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
0
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
0
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
0
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
0
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
0
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
0
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
0
  if (cinfo->unread_marker == 0)
537
0
    entropy->pub.insufficient_data = FALSE;
538
539
0
  return TRUE;
540
0
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
0
{
552
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
0
  BITREAD_STATE_VARS;
554
0
  int blkn;
555
0
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
0
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
0
  state = entropy->saved;
561
562
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
0
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
0
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
0
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
0
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
0
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
0
    if (s) {
573
0
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
0
      r = GET_BITS(s);
575
0
      s = HUFF_EXTEND(r, s);
576
0
    }
577
578
0
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
0
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
0
      s += state.last_dc_val[ci];
590
0
      state.last_dc_val[ci] = s;
591
0
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
0
        (*block)[0] = (JCOEF)s;
594
0
      }
595
0
    }
596
597
0
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
0
      for (k = 1; k < DCTSIZE2; k++) {
602
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
0
        r = s >> 4;
605
0
        s &= 15;
606
607
0
        if (s) {
608
0
          k += r;
609
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
0
          r = GET_BITS(s);
611
0
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
0
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
0
        } else {
618
0
          if (r != 15)
619
0
            break;
620
0
          k += 15;
621
0
        }
622
0
      }
623
624
0
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
0
      for (k = 1; k < DCTSIZE2; k++) {
629
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
0
        r = s >> 4;
632
0
        s &= 15;
633
634
0
        if (s) {
635
0
          k += r;
636
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
0
          DROP_BITS(s);
638
0
        } else {
639
0
          if (r != 15)
640
0
            break;
641
0
          k += 15;
642
0
        }
643
0
      }
644
0
    }
645
0
  }
646
647
  /* Completed MCU, so update state */
648
0
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
0
  entropy->saved = state;
650
0
  return TRUE;
651
0
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
0
{
663
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
0
  BITREAD_STATE_VARS;
665
0
  JOCTET *buffer;
666
0
  int blkn;
667
0
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
0
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
0
  buffer = (JOCTET *)br_state.next_input_byte;
673
0
  state = entropy->saved;
674
675
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
0
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
0
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
0
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
0
    register int s, k, r, l;
680
681
0
    HUFF_DECODE_FAST(s, l, dctbl);
682
0
    if (s) {
683
0
      FILL_BIT_BUFFER_FAST
684
0
      r = GET_BITS(s);
685
0
      s = HUFF_EXTEND(r, s);
686
0
    }
687
688
0
    if (entropy->dc_needed[blkn]) {
689
0
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
0
      s += state.last_dc_val[ci];
694
0
      state.last_dc_val[ci] = s;
695
0
      if (block)
696
0
        (*block)[0] = (JCOEF)s;
697
0
    }
698
699
0
    if (entropy->ac_needed[blkn] && block) {
700
701
0
      for (k = 1; k < DCTSIZE2; k++) {
702
0
        HUFF_DECODE_FAST(s, l, actbl);
703
0
        r = s >> 4;
704
0
        s &= 15;
705
706
0
        if (s) {
707
0
          k += r;
708
0
          FILL_BIT_BUFFER_FAST
709
0
          r = GET_BITS(s);
710
0
          s = HUFF_EXTEND(r, s);
711
0
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
0
        } else {
713
0
          if (r != 15) break;
714
0
          k += 15;
715
0
        }
716
0
      }
717
718
0
    } else {
719
720
0
      for (k = 1; k < DCTSIZE2; k++) {
721
0
        HUFF_DECODE_FAST(s, l, actbl);
722
0
        r = s >> 4;
723
0
        s &= 15;
724
725
0
        if (s) {
726
0
          k += r;
727
0
          FILL_BIT_BUFFER_FAST
728
0
          DROP_BITS(s);
729
0
        } else {
730
0
          if (r != 15) break;
731
0
          k += 15;
732
0
        }
733
0
      }
734
0
    }
735
0
  }
736
737
0
  if (cinfo->unread_marker != 0) {
738
0
    cinfo->unread_marker = 0;
739
0
    return FALSE;
740
0
  }
741
742
0
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
0
  br_state.next_input_byte = buffer;
744
0
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
0
  entropy->saved = state;
746
0
  return TRUE;
747
0
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
0
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
0
{
770
0
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
0
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
0
  if (cinfo->restart_interval) {
775
0
    if (entropy->restarts_to_go == 0)
776
0
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
0
    usefast = 0;
779
0
  }
780
781
0
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
0
      cinfo->unread_marker != 0)
783
0
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
0
  if (!entropy->pub.insufficient_data) {
789
790
0
    if (usefast) {
791
0
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
0
    } else {
793
0
use_slow:
794
0
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
0
    }
796
797
0
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
0
  if (cinfo->restart_interval)
801
0
    entropy->restarts_to_go--;
802
803
0
  return TRUE;
804
0
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
0
{
814
0
  huff_entropy_ptr entropy;
815
0
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
0
  std_huff_tables((j_common_ptr)cinfo);
822
823
0
  entropy = (huff_entropy_ptr)
824
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
0
                                sizeof(huff_entropy_decoder));
826
0
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
0
  entropy->pub.start_pass = start_pass_huff_decoder;
828
0
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
0
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
0
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
0
  }
834
0
}