/src/libjpeg-turbo.2.1.x/jidctred.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jidctred.c  | 
3  |  |  *  | 
4  |  |  * This file was part of the Independent JPEG Group's software:  | 
5  |  |  * Copyright (C) 1994-1998, Thomas G. Lane.  | 
6  |  |  * libjpeg-turbo Modifications:  | 
7  |  |  * Copyright (C) 2015, D. R. Commander.  | 
8  |  |  * For conditions of distribution and use, see the accompanying README.ijg  | 
9  |  |  * file.  | 
10  |  |  *  | 
11  |  |  * This file contains inverse-DCT routines that produce reduced-size output:  | 
12  |  |  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.  | 
13  |  |  *  | 
14  |  |  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)  | 
15  |  |  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step  | 
16  |  |  * with an 8-to-4 step that produces the four averages of two adjacent outputs  | 
17  |  |  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).  | 
18  |  |  * These steps were derived by computing the corresponding values at the end  | 
19  |  |  * of the normal LL&M code, then simplifying as much as possible.  | 
20  |  |  *  | 
21  |  |  * 1x1 is trivial: just take the DC coefficient divided by 8.  | 
22  |  |  *  | 
23  |  |  * See jidctint.c for additional comments.  | 
24  |  |  */  | 
25  |  |  | 
26  |  | #define JPEG_INTERNALS  | 
27  |  | #include "jinclude.h"  | 
28  |  | #include "jpeglib.h"  | 
29  |  | #include "jdct.h"               /* Private declarations for DCT subsystem */  | 
30  |  |  | 
31  |  | #ifdef IDCT_SCALING_SUPPORTED  | 
32  |  |  | 
33  |  |  | 
34  |  | /*  | 
35  |  |  * This module is specialized to the case DCTSIZE = 8.  | 
36  |  |  */  | 
37  |  |  | 
38  |  | #if DCTSIZE != 8  | 
39  |  |   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */  | 
40  |  | #endif  | 
41  |  |  | 
42  |  |  | 
43  |  | /* Scaling is the same as in jidctint.c. */  | 
44  |  |  | 
45  |  | #if BITS_IN_JSAMPLE == 8  | 
46  |  | #define CONST_BITS  13  | 
47  |  | #define PASS1_BITS  2  | 
48  |  | #else  | 
49  |  | #define CONST_BITS  13  | 
50  |  | #define PASS1_BITS  1           /* lose a little precision to avoid overflow */  | 
51  |  | #endif  | 
52  |  |  | 
53  |  | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus  | 
54  |  |  * causing a lot of useless floating-point operations at run time.  | 
55  |  |  * To get around this we use the following pre-calculated constants.  | 
56  |  |  * If you change CONST_BITS you may want to add appropriate values.  | 
57  |  |  * (With a reasonable C compiler, you can just rely on the FIX() macro...)  | 
58  |  |  */  | 
59  |  |  | 
60  |  | #if CONST_BITS == 13  | 
61  |  | #define FIX_0_211164243  ((JLONG)1730)          /* FIX(0.211164243) */  | 
62  |  | #define FIX_0_509795579  ((JLONG)4176)          /* FIX(0.509795579) */  | 
63  |  | #define FIX_0_601344887  ((JLONG)4926)          /* FIX(0.601344887) */  | 
64  |  | #define FIX_0_720959822  ((JLONG)5906)          /* FIX(0.720959822) */  | 
65  |  | #define FIX_0_765366865  ((JLONG)6270)          /* FIX(0.765366865) */  | 
66  |  | #define FIX_0_850430095  ((JLONG)6967)          /* FIX(0.850430095) */  | 
67  |  | #define FIX_0_899976223  ((JLONG)7373)          /* FIX(0.899976223) */  | 
68  |  | #define FIX_1_061594337  ((JLONG)8697)          /* FIX(1.061594337) */  | 
69  |  | #define FIX_1_272758580  ((JLONG)10426)         /* FIX(1.272758580) */  | 
70  |  | #define FIX_1_451774981  ((JLONG)11893)         /* FIX(1.451774981) */  | 
71  |  | #define FIX_1_847759065  ((JLONG)15137)         /* FIX(1.847759065) */  | 
72  |  | #define FIX_2_172734803  ((JLONG)17799)         /* FIX(2.172734803) */  | 
73  |  | #define FIX_2_562915447  ((JLONG)20995)         /* FIX(2.562915447) */  | 
74  |  | #define FIX_3_624509785  ((JLONG)29692)         /* FIX(3.624509785) */  | 
75  |  | #else  | 
76  |  | #define FIX_0_211164243  FIX(0.211164243)  | 
77  |  | #define FIX_0_509795579  FIX(0.509795579)  | 
78  |  | #define FIX_0_601344887  FIX(0.601344887)  | 
79  |  | #define FIX_0_720959822  FIX(0.720959822)  | 
80  |  | #define FIX_0_765366865  FIX(0.765366865)  | 
81  |  | #define FIX_0_850430095  FIX(0.850430095)  | 
82  |  | #define FIX_0_899976223  FIX(0.899976223)  | 
83  |  | #define FIX_1_061594337  FIX(1.061594337)  | 
84  |  | #define FIX_1_272758580  FIX(1.272758580)  | 
85  |  | #define FIX_1_451774981  FIX(1.451774981)  | 
86  |  | #define FIX_1_847759065  FIX(1.847759065)  | 
87  |  | #define FIX_2_172734803  FIX(2.172734803)  | 
88  |  | #define FIX_2_562915447  FIX(2.562915447)  | 
89  |  | #define FIX_3_624509785  FIX(3.624509785)  | 
90  |  | #endif  | 
91  |  |  | 
92  |  |  | 
93  |  | /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.  | 
94  |  |  * For 8-bit samples with the recommended scaling, all the variable  | 
95  |  |  * and constant values involved are no more than 16 bits wide, so a  | 
96  |  |  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.  | 
97  |  |  * For 12-bit samples, a full 32-bit multiplication will be needed.  | 
98  |  |  */  | 
99  |  |  | 
100  |  | #if BITS_IN_JSAMPLE == 8  | 
101  | 0  | #define MULTIPLY(var, const)  MULTIPLY16C16(var, const)  | 
102  |  | #else  | 
103  |  | #define MULTIPLY(var, const)  ((var) * (const))  | 
104  |  | #endif  | 
105  |  |  | 
106  |  |  | 
107  |  | /* Dequantize a coefficient by multiplying it by the multiplier-table  | 
108  |  |  * entry; produce an int result.  In this module, both inputs and result  | 
109  |  |  * are 16 bits or less, so either int or short multiply will work.  | 
110  |  |  */  | 
111  |  |  | 
112  | 0  | #define DEQUANTIZE(coef, quantval)  (((ISLOW_MULT_TYPE)(coef)) * (quantval))  | 
113  |  |  | 
114  |  |  | 
115  |  | /*  | 
116  |  |  * Perform dequantization and inverse DCT on one block of coefficients,  | 
117  |  |  * producing a reduced-size 4x4 output block.  | 
118  |  |  */  | 
119  |  |  | 
120  |  | GLOBAL(void)  | 
121  |  | jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr,  | 
122  |  |               JCOEFPTR coef_block, JSAMPARRAY output_buf,  | 
123  |  |               JDIMENSION output_col)  | 
124  | 0  | { | 
125  | 0  |   JLONG tmp0, tmp2, tmp10, tmp12;  | 
126  | 0  |   JLONG z1, z2, z3, z4;  | 
127  | 0  |   JCOEFPTR inptr;  | 
128  | 0  |   ISLOW_MULT_TYPE *quantptr;  | 
129  | 0  |   int *wsptr;  | 
130  | 0  |   JSAMPROW outptr;  | 
131  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
132  | 0  |   int ctr;  | 
133  | 0  |   int workspace[DCTSIZE * 4];   /* buffers data between passes */  | 
134  |  |   SHIFT_TEMPS  | 
135  |  |  | 
136  |  |   /* Pass 1: process columns from input, store into work array. */  | 
137  |  | 
  | 
138  | 0  |   inptr = coef_block;  | 
139  | 0  |   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;  | 
140  | 0  |   wsptr = workspace;  | 
141  | 0  |   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
142  |  |     /* Don't bother to process column 4, because second pass won't use it */  | 
143  | 0  |     if (ctr == DCTSIZE - 4)  | 
144  | 0  |       continue;  | 
145  | 0  |     if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&  | 
146  | 0  |         inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 &&  | 
147  | 0  |         inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { | 
148  |  |       /* AC terms all zero; we need not examine term 4 for 4x4 output */  | 
149  | 0  |       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],  | 
150  | 0  |                                         quantptr[DCTSIZE * 0]), PASS1_BITS);  | 
151  |  | 
  | 
152  | 0  |       wsptr[DCTSIZE * 0] = dcval;  | 
153  | 0  |       wsptr[DCTSIZE * 1] = dcval;  | 
154  | 0  |       wsptr[DCTSIZE * 2] = dcval;  | 
155  | 0  |       wsptr[DCTSIZE * 3] = dcval;  | 
156  |  | 
  | 
157  | 0  |       continue;  | 
158  | 0  |     }  | 
159  |  |  | 
160  |  |     /* Even part */  | 
161  |  |  | 
162  | 0  |     tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);  | 
163  | 0  |     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1);  | 
164  |  | 
  | 
165  | 0  |     z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);  | 
166  | 0  |     z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);  | 
167  |  | 
  | 
168  | 0  |     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865);  | 
169  |  | 
  | 
170  | 0  |     tmp10 = tmp0 + tmp2;  | 
171  | 0  |     tmp12 = tmp0 - tmp2;  | 
172  |  |  | 
173  |  |     /* Odd part */  | 
174  |  | 
  | 
175  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);  | 
176  | 0  |     z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);  | 
177  | 0  |     z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);  | 
178  | 0  |     z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);  | 
179  |  | 
  | 
180  | 0  |     tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */  | 
181  | 0  |            MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */  | 
182  | 0  |            MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */  | 
183  | 0  |            MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */  | 
184  |  | 
  | 
185  | 0  |     tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */  | 
186  | 0  |            MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */  | 
187  | 0  |            MULTIPLY(z3,  FIX_0_899976223) + /* sqrt(2) * (c3-c7) */  | 
188  | 0  |            MULTIPLY(z4,  FIX_2_562915447);  /* sqrt(2) * (c1+c3) */  | 
189  |  |  | 
190  |  |     /* Final output stage */  | 
191  |  | 
  | 
192  | 0  |     wsptr[DCTSIZE * 0] =  | 
193  | 0  |       (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1);  | 
194  | 0  |     wsptr[DCTSIZE * 3] =  | 
195  | 0  |       (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1);  | 
196  | 0  |     wsptr[DCTSIZE * 1] =  | 
197  | 0  |       (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1);  | 
198  | 0  |     wsptr[DCTSIZE * 2] =  | 
199  | 0  |       (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1);  | 
200  | 0  |   }  | 
201  |  |  | 
202  |  |   /* Pass 2: process 4 rows from work array, store into output array. */  | 
203  |  | 
  | 
204  | 0  |   wsptr = workspace;  | 
205  | 0  |   for (ctr = 0; ctr < 4; ctr++) { | 
206  | 0  |     outptr = output_buf[ctr] + output_col;  | 
207  |  |     /* It's not clear whether a zero row test is worthwhile here ... */  | 
208  |  | 
  | 
209  | 0  | #ifndef NO_ZERO_ROW_TEST  | 
210  | 0  |     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&  | 
211  | 0  |         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 
212  |  |       /* AC terms all zero */  | 
213  | 0  |       JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],  | 
214  | 0  |                                                PASS1_BITS + 3) & RANGE_MASK];  | 
215  |  | 
  | 
216  | 0  |       outptr[0] = dcval;  | 
217  | 0  |       outptr[1] = dcval;  | 
218  | 0  |       outptr[2] = dcval;  | 
219  | 0  |       outptr[3] = dcval;  | 
220  |  | 
  | 
221  | 0  |       wsptr += DCTSIZE;         /* advance pointer to next row */  | 
222  | 0  |       continue;  | 
223  | 0  |     }  | 
224  | 0  | #endif  | 
225  |  |  | 
226  |  |     /* Even part */  | 
227  |  |  | 
228  | 0  |     tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1);  | 
229  |  | 
  | 
230  | 0  |     tmp2 = MULTIPLY((JLONG)wsptr[2],  FIX_1_847759065) +  | 
231  | 0  |            MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865);  | 
232  |  | 
  | 
233  | 0  |     tmp10 = tmp0 + tmp2;  | 
234  | 0  |     tmp12 = tmp0 - tmp2;  | 
235  |  |  | 
236  |  |     /* Odd part */  | 
237  |  | 
  | 
238  | 0  |     z1 = (JLONG)wsptr[7];  | 
239  | 0  |     z2 = (JLONG)wsptr[5];  | 
240  | 0  |     z3 = (JLONG)wsptr[3];  | 
241  | 0  |     z4 = (JLONG)wsptr[1];  | 
242  |  | 
  | 
243  | 0  |     tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */  | 
244  | 0  |            MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */  | 
245  | 0  |            MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */  | 
246  | 0  |            MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */  | 
247  |  | 
  | 
248  | 0  |     tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */  | 
249  | 0  |            MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */  | 
250  | 0  |            MULTIPLY(z3, FIX_0_899976223) +  /* sqrt(2) * (c3-c7) */  | 
251  | 0  |            MULTIPLY(z4, FIX_2_562915447);   /* sqrt(2) * (c1+c3) */  | 
252  |  |  | 
253  |  |     /* Final output stage */  | 
254  |  | 
  | 
255  | 0  |     outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2,  | 
256  | 0  |                                          CONST_BITS + PASS1_BITS + 3 + 1) &  | 
257  | 0  |                             RANGE_MASK];  | 
258  | 0  |     outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2,  | 
259  | 0  |                                          CONST_BITS + PASS1_BITS + 3 + 1) &  | 
260  | 0  |                             RANGE_MASK];  | 
261  | 0  |     outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0,  | 
262  | 0  |                                          CONST_BITS + PASS1_BITS + 3 + 1) &  | 
263  | 0  |                             RANGE_MASK];  | 
264  | 0  |     outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0,  | 
265  | 0  |                                          CONST_BITS + PASS1_BITS + 3 + 1) &  | 
266  | 0  |                             RANGE_MASK];  | 
267  |  | 
  | 
268  | 0  |     wsptr += DCTSIZE;           /* advance pointer to next row */  | 
269  | 0  |   }  | 
270  | 0  | }  | 
271  |  |  | 
272  |  |  | 
273  |  | /*  | 
274  |  |  * Perform dequantization and inverse DCT on one block of coefficients,  | 
275  |  |  * producing a reduced-size 2x2 output block.  | 
276  |  |  */  | 
277  |  |  | 
278  |  | GLOBAL(void)  | 
279  |  | jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr,  | 
280  |  |               JCOEFPTR coef_block, JSAMPARRAY output_buf,  | 
281  |  |               JDIMENSION output_col)  | 
282  | 0  | { | 
283  | 0  |   JLONG tmp0, tmp10, z1;  | 
284  | 0  |   JCOEFPTR inptr;  | 
285  | 0  |   ISLOW_MULT_TYPE *quantptr;  | 
286  | 0  |   int *wsptr;  | 
287  | 0  |   JSAMPROW outptr;  | 
288  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
289  | 0  |   int ctr;  | 
290  | 0  |   int workspace[DCTSIZE * 2];   /* buffers data between passes */  | 
291  |  |   SHIFT_TEMPS  | 
292  |  |  | 
293  |  |   /* Pass 1: process columns from input, store into work array. */  | 
294  |  | 
  | 
295  | 0  |   inptr = coef_block;  | 
296  | 0  |   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;  | 
297  | 0  |   wsptr = workspace;  | 
298  | 0  |   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 
299  |  |     /* Don't bother to process columns 2,4,6 */  | 
300  | 0  |     if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6)  | 
301  | 0  |       continue;  | 
302  | 0  |     if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 &&  | 
303  | 0  |         inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) { | 
304  |  |       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */  | 
305  | 0  |       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],  | 
306  | 0  |                              quantptr[DCTSIZE * 0]), PASS1_BITS);  | 
307  |  | 
  | 
308  | 0  |       wsptr[DCTSIZE * 0] = dcval;  | 
309  | 0  |       wsptr[DCTSIZE * 1] = dcval;  | 
310  |  | 
  | 
311  | 0  |       continue;  | 
312  | 0  |     }  | 
313  |  |  | 
314  |  |     /* Even part */  | 
315  |  |  | 
316  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);  | 
317  | 0  |     tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2);  | 
318  |  |  | 
319  |  |     /* Odd part */  | 
320  |  | 
  | 
321  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);  | 
322  | 0  |     tmp0 = MULTIPLY(z1, -FIX_0_720959822);  /* sqrt(2) * ( c7-c5+c3-c1) */  | 
323  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);  | 
324  | 0  |     tmp0 += MULTIPLY(z1, FIX_0_850430095);  /* sqrt(2) * (-c1+c3+c5+c7) */  | 
325  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);  | 
326  | 0  |     tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */  | 
327  | 0  |     z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);  | 
328  | 0  |     tmp0 += MULTIPLY(z1, FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */  | 
329  |  |  | 
330  |  |     /* Final output stage */  | 
331  |  | 
  | 
332  | 0  |     wsptr[DCTSIZE * 0] =  | 
333  | 0  |       (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2);  | 
334  | 0  |     wsptr[DCTSIZE * 1] =  | 
335  | 0  |       (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2);  | 
336  | 0  |   }  | 
337  |  |  | 
338  |  |   /* Pass 2: process 2 rows from work array, store into output array. */  | 
339  |  | 
  | 
340  | 0  |   wsptr = workspace;  | 
341  | 0  |   for (ctr = 0; ctr < 2; ctr++) { | 
342  | 0  |     outptr = output_buf[ctr] + output_col;  | 
343  |  |     /* It's not clear whether a zero row test is worthwhile here ... */  | 
344  |  | 
  | 
345  | 0  | #ifndef NO_ZERO_ROW_TEST  | 
346  | 0  |     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { | 
347  |  |       /* AC terms all zero */  | 
348  | 0  |       JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],  | 
349  | 0  |                                                PASS1_BITS + 3) & RANGE_MASK];  | 
350  |  | 
  | 
351  | 0  |       outptr[0] = dcval;  | 
352  | 0  |       outptr[1] = dcval;  | 
353  |  | 
  | 
354  | 0  |       wsptr += DCTSIZE;         /* advance pointer to next row */  | 
355  | 0  |       continue;  | 
356  | 0  |     }  | 
357  | 0  | #endif  | 
358  |  |  | 
359  |  |     /* Even part */  | 
360  |  |  | 
361  | 0  |     tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2);  | 
362  |  |  | 
363  |  |     /* Odd part */  | 
364  |  | 
  | 
365  | 0  |     tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */  | 
366  | 0  |            MULTIPLY((JLONG)wsptr[5],  FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */  | 
367  | 0  |            MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */  | 
368  | 0  |            MULTIPLY((JLONG)wsptr[1],  FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */  | 
369  |  |  | 
370  |  |     /* Final output stage */  | 
371  |  | 
  | 
372  | 0  |     outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0,  | 
373  | 0  |                                          CONST_BITS + PASS1_BITS + 3 + 2) &  | 
374  | 0  |                             RANGE_MASK];  | 
375  | 0  |     outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0,  | 
376  | 0  |                                          CONST_BITS + PASS1_BITS + 3 + 2) &  | 
377  | 0  |                             RANGE_MASK];  | 
378  |  | 
  | 
379  | 0  |     wsptr += DCTSIZE;           /* advance pointer to next row */  | 
380  | 0  |   }  | 
381  | 0  | }  | 
382  |  |  | 
383  |  |  | 
384  |  | /*  | 
385  |  |  * Perform dequantization and inverse DCT on one block of coefficients,  | 
386  |  |  * producing a reduced-size 1x1 output block.  | 
387  |  |  */  | 
388  |  |  | 
389  |  | GLOBAL(void)  | 
390  |  | jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr,  | 
391  |  |               JCOEFPTR coef_block, JSAMPARRAY output_buf,  | 
392  |  |               JDIMENSION output_col)  | 
393  | 0  | { | 
394  | 0  |   int dcval;  | 
395  | 0  |   ISLOW_MULT_TYPE *quantptr;  | 
396  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
397  | 0  |   SHIFT_TEMPS  | 
398  |  |  | 
399  |  |   /* We hardly need an inverse DCT routine for this: just take the  | 
400  |  |    * average pixel value, which is one-eighth of the DC coefficient.  | 
401  |  |    */  | 
402  | 0  |   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;  | 
403  | 0  |   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);  | 
404  | 0  |   dcval = (int)DESCALE((JLONG)dcval, 3);  | 
405  |  | 
  | 
406  | 0  |   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];  | 
407  | 0  | }  | 
408  |  |  | 
409  |  | #endif /* IDCT_SCALING_SUPPORTED */  |