/src/libjpeg-turbo.main/jdcoefct.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * jdcoefct.c | 
| 3 |  |  * | 
| 4 |  |  * This file was part of the Independent JPEG Group's software: | 
| 5 |  |  * Copyright (C) 1994-1997, Thomas G. Lane. | 
| 6 |  |  * libjpeg-turbo Modifications: | 
| 7 |  |  * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB | 
| 8 |  |  * Copyright (C) 2010, 2015-2016, 2019-2020, 2022, D. R. Commander. | 
| 9 |  |  * Copyright (C) 2015, 2020, Google, Inc. | 
| 10 |  |  * For conditions of distribution and use, see the accompanying README.ijg | 
| 11 |  |  * file. | 
| 12 |  |  * | 
| 13 |  |  * This file contains the coefficient buffer controller for decompression. | 
| 14 |  |  * This controller is the top level of the lossy JPEG decompressor proper. | 
| 15 |  |  * The coefficient buffer lies between entropy decoding and inverse-DCT steps. | 
| 16 |  |  * | 
| 17 |  |  * In buffered-image mode, this controller is the interface between | 
| 18 |  |  * input-oriented processing and output-oriented processing. | 
| 19 |  |  * Also, the input side (only) is used when reading a file for transcoding. | 
| 20 |  |  */ | 
| 21 |  |  | 
| 22 |  | #include "jinclude.h" | 
| 23 |  | #include "jdcoefct.h" | 
| 24 |  | #include "jpegapicomp.h" | 
| 25 |  | #include "jsamplecomp.h" | 
| 26 |  |  | 
| 27 |  |  | 
| 28 |  | /* Forward declarations */ | 
| 29 |  | METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo, | 
| 30 |  |                                   _JSAMPIMAGE output_buf); | 
| 31 |  | #ifdef D_MULTISCAN_FILES_SUPPORTED | 
| 32 |  | METHODDEF(int) decompress_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf); | 
| 33 |  | #endif | 
| 34 |  | #ifdef BLOCK_SMOOTHING_SUPPORTED | 
| 35 |  | LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo); | 
| 36 |  | METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo, | 
| 37 |  |                                       _JSAMPIMAGE output_buf); | 
| 38 |  | #endif | 
| 39 |  |  | 
| 40 |  |  | 
| 41 |  | /* | 
| 42 |  |  * Initialize for an input processing pass. | 
| 43 |  |  */ | 
| 44 |  |  | 
| 45 |  | METHODDEF(void) | 
| 46 |  | start_input_pass(j_decompress_ptr cinfo) | 
| 47 | 21.5k | { | 
| 48 | 21.5k |   cinfo->input_iMCU_row = 0; | 
| 49 | 21.5k |   start_iMCU_row(cinfo); | 
| 50 | 21.5k | } | 
| 51 |  |  | 
| 52 |  |  | 
| 53 |  | /* | 
| 54 |  |  * Initialize for an output processing pass. | 
| 55 |  |  */ | 
| 56 |  |  | 
| 57 |  | METHODDEF(void) | 
| 58 |  | start_output_pass(j_decompress_ptr cinfo) | 
| 59 | 2.93k | { | 
| 60 | 2.93k | #ifdef BLOCK_SMOOTHING_SUPPORTED | 
| 61 | 2.93k |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef; | 
| 62 |  |  | 
| 63 |  |   /* If multipass, check to see whether to use block smoothing on this pass */ | 
| 64 | 2.93k |   if (coef->pub.coef_arrays != NULL) { | 
| 65 | 2.27k |     if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) | 
| 66 | 671 |       coef->pub._decompress_data = decompress_smooth_data; | 
| 67 | 1.60k |     else | 
| 68 | 1.60k |       coef->pub._decompress_data = decompress_data; | 
| 69 | 2.27k |   } | 
| 70 | 2.93k | #endif | 
| 71 | 2.93k |   cinfo->output_iMCU_row = 0; | 
| 72 | 2.93k | } | 
| 73 |  |  | 
| 74 |  |  | 
| 75 |  | /* | 
| 76 |  |  * Decompress and return some data in the single-pass case. | 
| 77 |  |  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | 
| 78 |  |  * Input and output must run in lockstep since we have only a one-MCU buffer. | 
| 79 |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | 
| 80 |  |  * | 
| 81 |  |  * NB: output_buf contains a plane for each component in image, | 
| 82 |  |  * which we index according to the component's SOF position. | 
| 83 |  |  */ | 
| 84 |  |  | 
| 85 |  | METHODDEF(int) | 
| 86 |  | decompress_onepass(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf) | 
| 87 | 129k | { | 
| 88 | 129k |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef; | 
| 89 | 129k |   JDIMENSION MCU_col_num;       /* index of current MCU within row */ | 
| 90 | 129k |   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | 
| 91 | 129k |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | 
| 92 | 129k |   int blkn, ci, xindex, yindex, yoffset, useful_width; | 
| 93 | 129k |   _JSAMPARRAY output_ptr; | 
| 94 | 129k |   JDIMENSION start_col, output_col; | 
| 95 | 129k |   jpeg_component_info *compptr; | 
| 96 | 129k |   _inverse_DCT_method_ptr inverse_DCT; | 
| 97 |  |  | 
| 98 |  |   /* Loop to process as much as one whole iMCU row */ | 
| 99 | 301k |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | 
| 100 | 171k |        yoffset++) { | 
| 101 | 3.72M |     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | 
| 102 | 3.55M |          MCU_col_num++) { | 
| 103 |  |       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */ | 
| 104 | 3.55M |       jzero_far((void *)coef->MCU_buffer[0], | 
| 105 | 3.55M |                 (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK))); | 
| 106 | 3.55M |       if (!cinfo->entropy->insufficient_data) | 
| 107 | 522k |         cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row; | 
| 108 | 3.55M |       if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | 
| 109 |  |         /* Suspension forced; update state counters and exit */ | 
| 110 | 0 |         coef->MCU_vert_offset = yoffset; | 
| 111 | 0 |         coef->MCU_ctr = MCU_col_num; | 
| 112 | 0 |         return JPEG_SUSPENDED; | 
| 113 | 0 |       } | 
| 114 |  |  | 
| 115 |  |       /* Only perform the IDCT on blocks that are contained within the desired | 
| 116 |  |        * cropping region. | 
| 117 |  |        */ | 
| 118 | 3.55M |       if (MCU_col_num >= cinfo->master->first_iMCU_col && | 
| 119 | 3.55M |           MCU_col_num <= cinfo->master->last_iMCU_col) { | 
| 120 |  |         /* Determine where data should go in output_buf and do the IDCT thing. | 
| 121 |  |          * We skip dummy blocks at the right and bottom edges (but blkn gets | 
| 122 |  |          * incremented past them!).  Note the inner loop relies on having | 
| 123 |  |          * allocated the MCU_buffer[] blocks sequentially. | 
| 124 |  |          */ | 
| 125 | 3.55M |         blkn = 0;               /* index of current DCT block within MCU */ | 
| 126 | 7.18M |         for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
| 127 | 3.62M |           compptr = cinfo->cur_comp_info[ci]; | 
| 128 |  |           /* Don't bother to IDCT an uninteresting component. */ | 
| 129 | 3.62M |           if (!compptr->component_needed) { | 
| 130 | 0 |             blkn += compptr->MCU_blocks; | 
| 131 | 0 |             continue; | 
| 132 | 0 |           } | 
| 133 | 3.62M |           inverse_DCT = cinfo->idct->_inverse_DCT[compptr->component_index]; | 
| 134 | 3.62M |           useful_width = (MCU_col_num < last_MCU_col) ? | 
| 135 | 3.43M |                          compptr->MCU_width : compptr->last_col_width; | 
| 136 | 3.62M |           output_ptr = output_buf[compptr->component_index] + | 
| 137 | 3.62M |                        yoffset * compptr->_DCT_scaled_size; | 
| 138 | 3.62M |           start_col = (MCU_col_num - cinfo->master->first_iMCU_col) * | 
| 139 | 3.62M |                       compptr->MCU_sample_width; | 
| 140 | 7.29M |           for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
| 141 | 3.66M |             if (cinfo->input_iMCU_row < last_iMCU_row || | 
| 142 | 3.66M |                 yoffset + yindex < compptr->last_row_height) { | 
| 143 | 3.66M |               output_col = start_col; | 
| 144 | 7.38M |               for (xindex = 0; xindex < useful_width; xindex++) { | 
| 145 | 3.72M |                 (*inverse_DCT) (cinfo, compptr, | 
| 146 | 3.72M |                                 (JCOEFPTR)coef->MCU_buffer[blkn + xindex], | 
| 147 | 3.72M |                                 output_ptr, output_col); | 
| 148 | 3.72M |                 output_col += compptr->_DCT_scaled_size; | 
| 149 | 3.72M |               } | 
| 150 | 3.66M |             } | 
| 151 | 3.66M |             blkn += compptr->MCU_width; | 
| 152 | 3.66M |             output_ptr += compptr->_DCT_scaled_size; | 
| 153 | 3.66M |           } | 
| 154 | 3.62M |         } | 
| 155 | 3.55M |       } | 
| 156 | 3.55M |     } | 
| 157 |  |     /* Completed an MCU row, but perhaps not an iMCU row */ | 
| 158 | 171k |     coef->MCU_ctr = 0; | 
| 159 | 171k |   } | 
| 160 |  |   /* Completed the iMCU row, advance counters for next one */ | 
| 161 | 129k |   cinfo->output_iMCU_row++; | 
| 162 | 129k |   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | 
| 163 | 128k |     start_iMCU_row(cinfo); | 
| 164 | 128k |     return JPEG_ROW_COMPLETED; | 
| 165 | 128k |   } | 
| 166 |  |   /* Completed the scan */ | 
| 167 | 651 |   (*cinfo->inputctl->finish_input_pass) (cinfo); | 
| 168 | 651 |   return JPEG_SCAN_COMPLETED; | 
| 169 | 129k | } | 
| 170 |  |  | 
| 171 |  |  | 
| 172 |  | /* | 
| 173 |  |  * Dummy consume-input routine for single-pass operation. | 
| 174 |  |  */ | 
| 175 |  |  | 
| 176 |  | METHODDEF(int) | 
| 177 |  | dummy_consume_data(j_decompress_ptr cinfo) | 
| 178 | 0 | { | 
| 179 | 0 |   return JPEG_SUSPENDED;        /* Always indicate nothing was done */ | 
| 180 | 0 | } | 
| 181 |  |  | 
| 182 |  |  | 
| 183 |  | #ifdef D_MULTISCAN_FILES_SUPPORTED | 
| 184 |  |  | 
| 185 |  | /* | 
| 186 |  |  * Consume input data and store it in the full-image coefficient buffer. | 
| 187 |  |  * We read as much as one fully interleaved MCU row ("iMCU" row) per call, | 
| 188 |  |  * ie, v_samp_factor block rows for each component in the scan. | 
| 189 |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | 
| 190 |  |  */ | 
| 191 |  |  | 
| 192 |  | METHODDEF(int) | 
| 193 |  | consume_data(j_decompress_ptr cinfo) | 
| 194 | 6.79M | { | 
| 195 | 6.79M |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef; | 
| 196 | 6.79M |   JDIMENSION MCU_col_num;       /* index of current MCU within row */ | 
| 197 | 6.79M |   int blkn, ci, xindex, yindex, yoffset; | 
| 198 | 6.79M |   JDIMENSION start_col; | 
| 199 | 6.79M |   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | 
| 200 | 6.79M |   JBLOCKROW buffer_ptr; | 
| 201 | 6.79M |   jpeg_component_info *compptr; | 
| 202 |  |  | 
| 203 |  |   /* Align the virtual buffers for the components used in this scan. */ | 
| 204 | 14.0M |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
| 205 | 7.27M |     compptr = cinfo->cur_comp_info[ci]; | 
| 206 | 7.27M |     buffer[ci] = (*cinfo->mem->access_virt_barray) | 
| 207 | 7.27M |       ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], | 
| 208 | 7.27M |        cinfo->input_iMCU_row * compptr->v_samp_factor, | 
| 209 | 7.27M |        (JDIMENSION)compptr->v_samp_factor, TRUE); | 
| 210 |  |     /* Note: entropy decoder expects buffer to be zeroed, | 
| 211 |  |      * but this is handled automatically by the memory manager | 
| 212 |  |      * because we requested a pre-zeroed array. | 
| 213 |  |      */ | 
| 214 | 7.27M |   } | 
| 215 |  |  | 
| 216 |  |   /* Loop to process one whole iMCU row */ | 
| 217 | 14.0M |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | 
| 218 | 7.28M |        yoffset++) { | 
| 219 | 69.8M |     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | 
| 220 | 62.5M |          MCU_col_num++) { | 
| 221 |  |       /* Construct list of pointers to DCT blocks belonging to this MCU */ | 
| 222 | 62.5M |       blkn = 0;                 /* index of current DCT block within MCU */ | 
| 223 | 132M |       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
| 224 | 70.3M |         compptr = cinfo->cur_comp_info[ci]; | 
| 225 | 70.3M |         start_col = MCU_col_num * compptr->MCU_width; | 
| 226 | 151M |         for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
| 227 | 81.3M |           buffer_ptr = buffer[ci][yindex + yoffset] + start_col; | 
| 228 | 168M |           for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | 
| 229 | 86.6M |             coef->MCU_buffer[blkn++] = buffer_ptr++; | 
| 230 | 86.6M |           } | 
| 231 | 81.3M |         } | 
| 232 | 70.3M |       } | 
| 233 | 62.5M |       if (!cinfo->entropy->insufficient_data) | 
| 234 | 39.1M |         cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row; | 
| 235 |  |       /* Try to fetch the MCU. */ | 
| 236 | 62.5M |       if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | 
| 237 |  |         /* Suspension forced; update state counters and exit */ | 
| 238 | 0 |         coef->MCU_vert_offset = yoffset; | 
| 239 | 0 |         coef->MCU_ctr = MCU_col_num; | 
| 240 | 0 |         return JPEG_SUSPENDED; | 
| 241 | 0 |       } | 
| 242 | 62.5M |     } | 
| 243 |  |     /* Completed an MCU row, but perhaps not an iMCU row */ | 
| 244 | 7.28M |     coef->MCU_ctr = 0; | 
| 245 | 7.28M |   } | 
| 246 |  |   /* Completed the iMCU row, advance counters for next one */ | 
| 247 | 6.79M |   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | 
| 248 | 6.77M |     start_iMCU_row(cinfo); | 
| 249 | 6.77M |     return JPEG_ROW_COMPLETED; | 
| 250 | 6.77M |   } | 
| 251 |  |   /* Completed the scan */ | 
| 252 | 20.0k |   (*cinfo->inputctl->finish_input_pass) (cinfo); | 
| 253 | 20.0k |   return JPEG_SCAN_COMPLETED; | 
| 254 | 6.79M | } | 
| 255 |  |  | 
| 256 |  |  | 
| 257 |  | /* | 
| 258 |  |  * Decompress and return some data in the multi-pass case. | 
| 259 |  |  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | 
| 260 |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | 
| 261 |  |  * | 
| 262 |  |  * NB: output_buf contains a plane for each component in image. | 
| 263 |  |  */ | 
| 264 |  |  | 
| 265 |  | METHODDEF(int) | 
| 266 |  | decompress_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf) | 
| 267 | 618k | { | 
| 268 | 618k |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef; | 
| 269 | 618k |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | 
| 270 | 618k |   JDIMENSION block_num; | 
| 271 | 618k |   int ci, block_row, block_rows; | 
| 272 | 618k |   JBLOCKARRAY buffer; | 
| 273 | 618k |   JBLOCKROW buffer_ptr; | 
| 274 | 618k |   _JSAMPARRAY output_ptr; | 
| 275 | 618k |   JDIMENSION output_col; | 
| 276 | 618k |   jpeg_component_info *compptr; | 
| 277 | 618k |   _inverse_DCT_method_ptr inverse_DCT; | 
| 278 |  |  | 
| 279 |  |   /* Force some input to be done if we are getting ahead of the input. */ | 
| 280 | 618k |   while (cinfo->input_scan_number < cinfo->output_scan_number || | 
| 281 | 618k |          (cinfo->input_scan_number == cinfo->output_scan_number && | 
| 282 | 618k |           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | 
| 283 | 0 |     if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) | 
| 284 | 0 |       return JPEG_SUSPENDED; | 
| 285 | 0 |   } | 
| 286 |  |  | 
| 287 |  |   /* OK, output from the virtual arrays. */ | 
| 288 | 1.93M |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
| 289 | 1.31M |        ci++, compptr++) { | 
| 290 |  |     /* Don't bother to IDCT an uninteresting component. */ | 
| 291 | 1.31M |     if (!compptr->component_needed) | 
| 292 | 0 |       continue; | 
| 293 |  |     /* Align the virtual buffer for this component. */ | 
| 294 | 1.31M |     buffer = (*cinfo->mem->access_virt_barray) | 
| 295 | 1.31M |       ((j_common_ptr)cinfo, coef->whole_image[ci], | 
| 296 | 1.31M |        cinfo->output_iMCU_row * compptr->v_samp_factor, | 
| 297 | 1.31M |        (JDIMENSION)compptr->v_samp_factor, FALSE); | 
| 298 |  |     /* Count non-dummy DCT block rows in this iMCU row. */ | 
| 299 | 1.31M |     if (cinfo->output_iMCU_row < last_iMCU_row) | 
| 300 | 1.31M |       block_rows = compptr->v_samp_factor; | 
| 301 | 2.80k |     else { | 
| 302 |  |       /* NB: can't use last_row_height here; it is input-side-dependent! */ | 
| 303 | 2.80k |       block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); | 
| 304 | 2.80k |       if (block_rows == 0) block_rows = compptr->v_samp_factor; | 
| 305 | 2.80k |     } | 
| 306 | 1.31M |     inverse_DCT = cinfo->idct->_inverse_DCT[ci]; | 
| 307 | 1.31M |     output_ptr = output_buf[ci]; | 
| 308 |  |     /* Loop over all DCT blocks to be processed. */ | 
| 309 | 2.82M |     for (block_row = 0; block_row < block_rows; block_row++) { | 
| 310 | 1.50M |       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; | 
| 311 | 1.50M |       output_col = 0; | 
| 312 | 1.50M |       for (block_num = cinfo->master->first_MCU_col[ci]; | 
| 313 | 13.6M |            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { | 
| 314 | 12.1M |         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr, | 
| 315 | 12.1M |                         output_col); | 
| 316 | 12.1M |         buffer_ptr++; | 
| 317 | 12.1M |         output_col += compptr->_DCT_scaled_size; | 
| 318 | 12.1M |       } | 
| 319 | 1.50M |       output_ptr += compptr->_DCT_scaled_size; | 
| 320 | 1.50M |     } | 
| 321 | 1.31M |   } | 
| 322 |  |  | 
| 323 | 618k |   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | 
| 324 | 616k |     return JPEG_ROW_COMPLETED; | 
| 325 | 1.38k |   return JPEG_SCAN_COMPLETED; | 
| 326 | 618k | } | 
| 327 |  |  | 
| 328 |  | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | 
| 329 |  |  | 
| 330 |  |  | 
| 331 |  | #ifdef BLOCK_SMOOTHING_SUPPORTED | 
| 332 |  |  | 
| 333 |  | /* | 
| 334 |  |  * This code applies interblock smoothing; the first 9 AC coefficients are | 
| 335 |  |  * estimated from the DC values of a DCT block and its 24 neighboring blocks. | 
| 336 |  |  * We apply smoothing only for progressive JPEG decoding, and only if | 
| 337 |  |  * the coefficients it can estimate are not yet known to full precision. | 
| 338 |  |  */ | 
| 339 |  |  | 
| 340 |  | /* Natural-order array positions of the first 9 zigzag-order coefficients */ | 
| 341 | 613k | #define Q01_POS  1 | 
| 342 | 613k | #define Q10_POS  8 | 
| 343 | 613k | #define Q20_POS  16 | 
| 344 | 613k | #define Q11_POS  9 | 
| 345 | 612k | #define Q02_POS  2 | 
| 346 | 428k | #define Q03_POS  3 | 
| 347 | 428k | #define Q12_POS  10 | 
| 348 | 428k | #define Q21_POS  17 | 
| 349 | 428k | #define Q30_POS  24 | 
| 350 |  |  | 
| 351 |  | /* | 
| 352 |  |  * Determine whether block smoothing is applicable and safe. | 
| 353 |  |  * We also latch the current states of the coef_bits[] entries for the | 
| 354 |  |  * AC coefficients; otherwise, if the input side of the decompressor | 
| 355 |  |  * advances into a new scan, we might think the coefficients are known | 
| 356 |  |  * more accurately than they really are. | 
| 357 |  |  */ | 
| 358 |  |  | 
| 359 |  | LOCAL(boolean) | 
| 360 |  | smoothing_ok(j_decompress_ptr cinfo) | 
| 361 | 2.27k | { | 
| 362 | 2.27k |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef; | 
| 363 | 2.27k |   boolean smoothing_useful = FALSE; | 
| 364 | 2.27k |   int ci, coefi; | 
| 365 | 2.27k |   jpeg_component_info *compptr; | 
| 366 | 2.27k |   JQUANT_TBL *qtable; | 
| 367 | 2.27k |   int *coef_bits, *prev_coef_bits; | 
| 368 | 2.27k |   int *coef_bits_latch, *prev_coef_bits_latch; | 
| 369 |  |  | 
| 370 | 2.27k |   if (!cinfo->progressive_mode || cinfo->coef_bits == NULL) | 
| 371 | 343 |     return FALSE; | 
| 372 |  |  | 
| 373 |  |   /* Allocate latch area if not already done */ | 
| 374 | 1.93k |   if (coef->coef_bits_latch == NULL) | 
| 375 | 1.93k |     coef->coef_bits_latch = (int *) | 
| 376 | 1.93k |       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 377 | 1.93k |                                   cinfo->num_components * 2 * | 
| 378 | 1.93k |                                   (SAVED_COEFS * sizeof(int))); | 
| 379 | 1.93k |   coef_bits_latch = coef->coef_bits_latch; | 
| 380 | 1.93k |   prev_coef_bits_latch = | 
| 381 | 1.93k |     &coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS]; | 
| 382 |  |  | 
| 383 | 2.84k |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
| 384 | 2.16k |        ci++, compptr++) { | 
| 385 |  |     /* All components' quantization values must already be latched. */ | 
| 386 | 2.16k |     if ((qtable = compptr->quant_table) == NULL) | 
| 387 | 334 |       return FALSE; | 
| 388 |  |     /* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */ | 
| 389 | 1.83k |     if (qtable->quantval[0] == 0 || | 
| 390 | 1.83k |         qtable->quantval[Q01_POS] == 0 || | 
| 391 | 1.83k |         qtable->quantval[Q10_POS] == 0 || | 
| 392 | 1.83k |         qtable->quantval[Q20_POS] == 0 || | 
| 393 | 1.83k |         qtable->quantval[Q11_POS] == 0 || | 
| 394 | 1.83k |         qtable->quantval[Q02_POS] == 0 || | 
| 395 | 1.83k |         qtable->quantval[Q03_POS] == 0 || | 
| 396 | 1.83k |         qtable->quantval[Q12_POS] == 0 || | 
| 397 | 1.83k |         qtable->quantval[Q21_POS] == 0 || | 
| 398 | 1.83k |         qtable->quantval[Q30_POS] == 0) | 
| 399 | 793 |       return FALSE; | 
| 400 |  |     /* DC values must be at least partly known for all components. */ | 
| 401 | 1.04k |     coef_bits = cinfo->coef_bits[ci]; | 
| 402 | 1.04k |     prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components]; | 
| 403 | 1.04k |     if (coef_bits[0] < 0) | 
| 404 | 129 |       return FALSE; | 
| 405 | 911 |     coef_bits_latch[0] = coef_bits[0]; | 
| 406 |  |     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ | 
| 407 | 9.11k |     for (coefi = 1; coefi < SAVED_COEFS; coefi++) { | 
| 408 | 8.19k |       if (cinfo->input_scan_number > 1) | 
| 409 | 4.12k |         prev_coef_bits_latch[coefi] = prev_coef_bits[coefi]; | 
| 410 | 4.07k |       else | 
| 411 | 4.07k |         prev_coef_bits_latch[coefi] = -1; | 
| 412 | 8.19k |       coef_bits_latch[coefi] = coef_bits[coefi]; | 
| 413 | 8.19k |       if (coef_bits[coefi] != 0) | 
| 414 | 7.86k |         smoothing_useful = TRUE; | 
| 415 | 8.19k |     } | 
| 416 | 911 |     coef_bits_latch += SAVED_COEFS; | 
| 417 | 911 |     prev_coef_bits_latch += SAVED_COEFS; | 
| 418 | 911 |   } | 
| 419 |  |  | 
| 420 | 678 |   return smoothing_useful; | 
| 421 | 1.93k | } | 
| 422 |  |  | 
| 423 |  |  | 
| 424 |  | /* | 
| 425 |  |  * Variant of decompress_data for use when doing block smoothing. | 
| 426 |  |  */ | 
| 427 |  |  | 
| 428 |  | METHODDEF(int) | 
| 429 |  | decompress_smooth_data(j_decompress_ptr cinfo, _JSAMPIMAGE output_buf) | 
| 430 | 359k | { | 
| 431 | 359k |   my_coef_ptr coef = (my_coef_ptr)cinfo->coef; | 
| 432 | 359k |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | 
| 433 | 359k |   JDIMENSION block_num, last_block_column; | 
| 434 | 359k |   int ci, block_row, block_rows, access_rows; | 
| 435 | 359k |   JBLOCKARRAY buffer; | 
| 436 | 359k |   JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row; | 
| 437 | 359k |   JBLOCKROW next_block_row, next_next_block_row; | 
| 438 | 359k |   _JSAMPARRAY output_ptr; | 
| 439 | 359k |   JDIMENSION output_col; | 
| 440 | 359k |   jpeg_component_info *compptr; | 
| 441 | 359k |   _inverse_DCT_method_ptr inverse_DCT; | 
| 442 | 359k |   boolean change_dc; | 
| 443 | 359k |   JCOEF *workspace; | 
| 444 | 359k |   int *coef_bits; | 
| 445 | 359k |   JQUANT_TBL *quanttbl; | 
| 446 | 359k |   JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num; | 
| 447 | 359k |   int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12, | 
| 448 | 359k |       DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24, | 
| 449 | 359k |       DC25; | 
| 450 | 359k |   int Al, pred; | 
| 451 |  |  | 
| 452 |  |   /* Keep a local variable to avoid looking it up more than once */ | 
| 453 | 359k |   workspace = coef->workspace; | 
| 454 |  |  | 
| 455 |  |   /* Force some input to be done if we are getting ahead of the input. */ | 
| 456 | 359k |   while (cinfo->input_scan_number <= cinfo->output_scan_number && | 
| 457 | 359k |          !cinfo->inputctl->eoi_reached) { | 
| 458 | 0 |     if (cinfo->input_scan_number == cinfo->output_scan_number) { | 
| 459 |  |       /* If input is working on current scan, we ordinarily want it to | 
| 460 |  |        * have completed the current row.  But if input scan is DC, | 
| 461 |  |        * we want it to keep two rows ahead so that next two block rows' DC | 
| 462 |  |        * values are up to date. | 
| 463 |  |        */ | 
| 464 | 0 |       JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0; | 
| 465 | 0 |       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta) | 
| 466 | 0 |         break; | 
| 467 | 0 |     } | 
| 468 | 0 |     if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) | 
| 469 | 0 |       return JPEG_SUSPENDED; | 
| 470 | 0 |   } | 
| 471 |  |  | 
| 472 |  |   /* OK, output from the virtual arrays. */ | 
| 473 | 970k |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
| 474 | 611k |        ci++, compptr++) { | 
| 475 |  |     /* Don't bother to IDCT an uninteresting component. */ | 
| 476 | 611k |     if (!compptr->component_needed) | 
| 477 | 0 |       continue; | 
| 478 |  |     /* Count non-dummy DCT block rows in this iMCU row. */ | 
| 479 | 611k |     if (cinfo->output_iMCU_row + 1 < last_iMCU_row) { | 
| 480 | 610k |       block_rows = compptr->v_samp_factor; | 
| 481 | 610k |       access_rows = block_rows * 3; /* this and next two iMCU rows */ | 
| 482 | 610k |     } else if (cinfo->output_iMCU_row < last_iMCU_row) { | 
| 483 | 683 |       block_rows = compptr->v_samp_factor; | 
| 484 | 683 |       access_rows = block_rows * 2; /* this and next iMCU row */ | 
| 485 | 780 |     } else { | 
| 486 |  |       /* NB: can't use last_row_height here; it is input-side-dependent! */ | 
| 487 | 780 |       block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); | 
| 488 | 780 |       if (block_rows == 0) block_rows = compptr->v_samp_factor; | 
| 489 | 780 |       access_rows = block_rows; /* this iMCU row only */ | 
| 490 | 780 |     } | 
| 491 |  |     /* Align the virtual buffer for this component. */ | 
| 492 | 611k |     if (cinfo->output_iMCU_row > 1) { | 
| 493 | 610k |       access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */ | 
| 494 | 610k |       buffer = (*cinfo->mem->access_virt_barray) | 
| 495 | 610k |         ((j_common_ptr)cinfo, coef->whole_image[ci], | 
| 496 | 610k |          (cinfo->output_iMCU_row - 2) * compptr->v_samp_factor, | 
| 497 | 610k |          (JDIMENSION)access_rows, FALSE); | 
| 498 | 610k |       buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */ | 
| 499 | 610k |     } else if (cinfo->output_iMCU_row > 0) { | 
| 500 | 683 |       buffer = (*cinfo->mem->access_virt_barray) | 
| 501 | 683 |         ((j_common_ptr)cinfo, coef->whole_image[ci], | 
| 502 | 683 |          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, | 
| 503 | 683 |          (JDIMENSION)access_rows, FALSE); | 
| 504 | 683 |       buffer += compptr->v_samp_factor; /* point to current iMCU row */ | 
| 505 | 780 |     } else { | 
| 506 | 780 |       buffer = (*cinfo->mem->access_virt_barray) | 
| 507 | 780 |         ((j_common_ptr)cinfo, coef->whole_image[ci], | 
| 508 | 780 |          (JDIMENSION)0, (JDIMENSION)access_rows, FALSE); | 
| 509 | 780 |     } | 
| 510 |  |     /* Fetch component-dependent info. | 
| 511 |  |      * If the current scan is incomplete, then we use the component-dependent | 
| 512 |  |      * info from the previous scan. | 
| 513 |  |      */ | 
| 514 | 611k |     if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row) | 
| 515 | 423k |       coef_bits = | 
| 516 | 423k |         coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS); | 
| 517 | 188k |     else | 
| 518 | 188k |       coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); | 
| 519 |  |  | 
| 520 |  |     /* We only do DC interpolation if no AC coefficient data is available. */ | 
| 521 | 611k |     change_dc = | 
| 522 | 611k |       coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 && | 
| 523 | 611k |       coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 && | 
| 524 | 611k |       coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1; | 
| 525 |  |  | 
| 526 | 611k |     quanttbl = compptr->quant_table; | 
| 527 | 611k |     Q00 = quanttbl->quantval[0]; | 
| 528 | 611k |     Q01 = quanttbl->quantval[Q01_POS]; | 
| 529 | 611k |     Q10 = quanttbl->quantval[Q10_POS]; | 
| 530 | 611k |     Q20 = quanttbl->quantval[Q20_POS]; | 
| 531 | 611k |     Q11 = quanttbl->quantval[Q11_POS]; | 
| 532 | 611k |     Q02 = quanttbl->quantval[Q02_POS]; | 
| 533 | 611k |     if (change_dc) { | 
| 534 | 426k |       Q03 = quanttbl->quantval[Q03_POS]; | 
| 535 | 426k |       Q12 = quanttbl->quantval[Q12_POS]; | 
| 536 | 426k |       Q21 = quanttbl->quantval[Q21_POS]; | 
| 537 | 426k |       Q30 = quanttbl->quantval[Q30_POS]; | 
| 538 | 426k |     } | 
| 539 | 611k |     inverse_DCT = cinfo->idct->_inverse_DCT[ci]; | 
| 540 | 611k |     output_ptr = output_buf[ci]; | 
| 541 |  |     /* Loop over all DCT blocks to be processed. */ | 
| 542 | 1.39M |     for (block_row = 0; block_row < block_rows; block_row++) { | 
| 543 | 781k |       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; | 
| 544 |  |  | 
| 545 | 781k |       if (block_row > 0 || cinfo->output_iMCU_row > 0) | 
| 546 | 781k |         prev_block_row = | 
| 547 | 781k |           buffer[block_row - 1] + cinfo->master->first_MCU_col[ci]; | 
| 548 | 780 |       else | 
| 549 | 780 |         prev_block_row = buffer_ptr; | 
| 550 |  |  | 
| 551 | 781k |       if (block_row > 1 || cinfo->output_iMCU_row > 1) | 
| 552 | 779k |         prev_prev_block_row = | 
| 553 | 779k |           buffer[block_row - 2] + cinfo->master->first_MCU_col[ci]; | 
| 554 | 2.15k |       else | 
| 555 | 2.15k |         prev_prev_block_row = prev_block_row; | 
| 556 |  |  | 
| 557 | 781k |       if (block_row < block_rows - 1 || cinfo->output_iMCU_row < last_iMCU_row) | 
| 558 | 781k |         next_block_row = | 
| 559 | 781k |           buffer[block_row + 1] + cinfo->master->first_MCU_col[ci]; | 
| 560 | 780 |       else | 
| 561 | 780 |         next_block_row = buffer_ptr; | 
| 562 |  |  | 
| 563 | 781k |       if (block_row < block_rows - 2 || | 
| 564 | 781k |           cinfo->output_iMCU_row + 1 < last_iMCU_row) | 
| 565 | 779k |         next_next_block_row = | 
| 566 | 779k |           buffer[block_row + 2] + cinfo->master->first_MCU_col[ci]; | 
| 567 | 2.04k |       else | 
| 568 | 2.04k |         next_next_block_row = next_block_row; | 
| 569 |  |  | 
| 570 |  |       /* We fetch the surrounding DC values using a sliding-register approach. | 
| 571 |  |        * Initialize all 25 here so as to do the right thing on narrow pics. | 
| 572 |  |        */ | 
| 573 | 781k |       DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0]; | 
| 574 | 781k |       DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0]; | 
| 575 | 781k |       DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0]; | 
| 576 | 781k |       DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0]; | 
| 577 | 781k |       DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0]; | 
| 578 | 781k |       output_col = 0; | 
| 579 | 781k |       last_block_column = compptr->width_in_blocks - 1; | 
| 580 | 781k |       for (block_num = cinfo->master->first_MCU_col[ci]; | 
| 581 | 5.18M |            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { | 
| 582 |  |         /* Fetch current DCT block into workspace so we can modify it. */ | 
| 583 | 4.40M |         jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1); | 
| 584 |  |         /* Update DC values */ | 
| 585 | 4.40M |         if (block_num == cinfo->master->first_MCU_col[ci] && | 
| 586 | 4.40M |             block_num < last_block_column) { | 
| 587 | 421k |           DC04 = (int)prev_prev_block_row[1][0]; | 
| 588 | 421k |           DC09 = (int)prev_block_row[1][0]; | 
| 589 | 421k |           DC14 = (int)buffer_ptr[1][0]; | 
| 590 | 421k |           DC19 = (int)next_block_row[1][0]; | 
| 591 | 421k |           DC24 = (int)next_next_block_row[1][0]; | 
| 592 | 421k |         } | 
| 593 | 4.40M |         if (block_num + 1 < last_block_column) { | 
| 594 | 3.20M |           DC05 = (int)prev_prev_block_row[2][0]; | 
| 595 | 3.20M |           DC10 = (int)prev_block_row[2][0]; | 
| 596 | 3.20M |           DC15 = (int)buffer_ptr[2][0]; | 
| 597 | 3.20M |           DC20 = (int)next_block_row[2][0]; | 
| 598 | 3.20M |           DC25 = (int)next_next_block_row[2][0]; | 
| 599 | 3.20M |         } | 
| 600 |  |         /* If DC interpolation is enabled, compute coefficient estimates using | 
| 601 |  |          * a Gaussian-like kernel, keeping the averages of the DC values. | 
| 602 |  |          * | 
| 603 |  |          * If DC interpolation is disabled, compute coefficient estimates using | 
| 604 |  |          * an algorithm similar to the one described in Section K.8 of the JPEG | 
| 605 |  |          * standard, except applied to a 5x5 window rather than a 3x3 window. | 
| 606 |  |          * | 
| 607 |  |          * An estimate is applied only if the coefficient is still zero and is | 
| 608 |  |          * not known to be fully accurate. | 
| 609 |  |          */ | 
| 610 |  |         /* AC01 */ | 
| 611 | 4.40M |         if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) { | 
| 612 | 4.15M |           num = Q00 * (change_dc ? | 
| 613 | 2.98M |                 (-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 - | 
| 614 | 2.98M |                  13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 + | 
| 615 | 2.98M |                  3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 - | 
| 616 | 2.98M |                  DC21 - DC22 + DC24 + DC25) : | 
| 617 | 4.15M |                 (-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15)); | 
| 618 | 4.15M |           if (num >= 0) { | 
| 619 | 3.39M |             pred = (int)(((Q01 << 7) + num) / (Q01 << 8)); | 
| 620 | 3.39M |             if (Al > 0 && pred >= (1 << Al)) | 
| 621 | 196k |               pred = (1 << Al) - 1; | 
| 622 | 3.39M |           } else { | 
| 623 | 763k |             pred = (int)(((Q01 << 7) - num) / (Q01 << 8)); | 
| 624 | 763k |             if (Al > 0 && pred >= (1 << Al)) | 
| 625 | 116k |               pred = (1 << Al) - 1; | 
| 626 | 763k |             pred = -pred; | 
| 627 | 763k |           } | 
| 628 | 4.15M |           workspace[1] = (JCOEF)pred; | 
| 629 | 4.15M |         } | 
| 630 |  |         /* AC10 */ | 
| 631 | 4.40M |         if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) { | 
| 632 | 4.16M |           num = Q00 * (change_dc ? | 
| 633 | 2.98M |                 (-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 + | 
| 634 | 2.98M |                  13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 - | 
| 635 | 2.98M |                  13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 + | 
| 636 | 2.98M |                  3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) : | 
| 637 | 4.16M |                 (-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23)); | 
| 638 | 4.16M |           if (num >= 0) { | 
| 639 | 3.11M |             pred = (int)(((Q10 << 7) + num) / (Q10 << 8)); | 
| 640 | 3.11M |             if (Al > 0 && pred >= (1 << Al)) | 
| 641 | 314k |               pred = (1 << Al) - 1; | 
| 642 | 3.11M |           } else { | 
| 643 | 1.05M |             pred = (int)(((Q10 << 7) - num) / (Q10 << 8)); | 
| 644 | 1.05M |             if (Al > 0 && pred >= (1 << Al)) | 
| 645 | 228k |               pred = (1 << Al) - 1; | 
| 646 | 1.05M |             pred = -pred; | 
| 647 | 1.05M |           } | 
| 648 | 4.16M |           workspace[8] = (JCOEF)pred; | 
| 649 | 4.16M |         } | 
| 650 |  |         /* AC20 */ | 
| 651 | 4.40M |         if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) { | 
| 652 | 4.14M |           num = Q00 * (change_dc ? | 
| 653 | 2.98M |                 (DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 - | 
| 654 | 2.98M |                  5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) : | 
| 655 | 4.14M |                 (-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23)); | 
| 656 | 4.14M |           if (num >= 0) { | 
| 657 | 2.73M |             pred = (int)(((Q20 << 7) + num) / (Q20 << 8)); | 
| 658 | 2.73M |             if (Al > 0 && pred >= (1 << Al)) | 
| 659 | 241k |               pred = (1 << Al) - 1; | 
| 660 | 2.73M |           } else { | 
| 661 | 1.40M |             pred = (int)(((Q20 << 7) - num) / (Q20 << 8)); | 
| 662 | 1.40M |             if (Al > 0 && pred >= (1 << Al)) | 
| 663 | 250k |               pred = (1 << Al) - 1; | 
| 664 | 1.40M |             pred = -pred; | 
| 665 | 1.40M |           } | 
| 666 | 4.14M |           workspace[16] = (JCOEF)pred; | 
| 667 | 4.14M |         } | 
| 668 |  |         /* AC11 */ | 
| 669 | 4.40M |         if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) { | 
| 670 | 4.13M |           num = Q00 * (change_dc ? | 
| 671 | 2.98M |                 (-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 + | 
| 672 | 2.98M |                  9 * DC19 + DC21 - DC25) : | 
| 673 | 4.13M |                 (DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 - | 
| 674 | 1.15M |                  DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09)); | 
| 675 | 4.13M |           if (num >= 0) { | 
| 676 | 3.49M |             pred = (int)(((Q11 << 7) + num) / (Q11 << 8)); | 
| 677 | 3.49M |             if (Al > 0 && pred >= (1 << Al)) | 
| 678 | 111k |               pred = (1 << Al) - 1; | 
| 679 | 3.49M |           } else { | 
| 680 | 643k |             pred = (int)(((Q11 << 7) - num) / (Q11 << 8)); | 
| 681 | 643k |             if (Al > 0 && pred >= (1 << Al)) | 
| 682 | 118k |               pred = (1 << Al) - 1; | 
| 683 | 643k |             pred = -pred; | 
| 684 | 643k |           } | 
| 685 | 4.13M |           workspace[9] = (JCOEF)pred; | 
| 686 | 4.13M |         } | 
| 687 |  |         /* AC02 */ | 
| 688 | 4.40M |         if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) { | 
| 689 | 4.12M |           num = Q00 * (change_dc ? | 
| 690 | 2.98M |                 (2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 + | 
| 691 | 2.98M |                  7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) : | 
| 692 | 4.12M |                 (-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15)); | 
| 693 | 4.12M |           if (num >= 0) { | 
| 694 | 2.69M |             pred = (int)(((Q02 << 7) + num) / (Q02 << 8)); | 
| 695 | 2.69M |             if (Al > 0 && pred >= (1 << Al)) | 
| 696 | 169k |               pred = (1 << Al) - 1; | 
| 697 | 2.69M |           } else { | 
| 698 | 1.43M |             pred = (int)(((Q02 << 7) - num) / (Q02 << 8)); | 
| 699 | 1.43M |             if (Al > 0 && pred >= (1 << Al)) | 
| 700 | 170k |               pred = (1 << Al) - 1; | 
| 701 | 1.43M |             pred = -pred; | 
| 702 | 1.43M |           } | 
| 703 | 4.12M |           workspace[2] = (JCOEF)pred; | 
| 704 | 4.12M |         } | 
| 705 | 4.40M |         if (change_dc) { | 
| 706 |  |           /* AC03 */ | 
| 707 | 2.98M |           if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) { | 
| 708 | 2.98M |             num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19); | 
| 709 | 2.98M |             if (num >= 0) { | 
| 710 | 2.58M |               pred = (int)(((Q03 << 7) + num) / (Q03 << 8)); | 
| 711 | 2.58M |               if (Al > 0 && pred >= (1 << Al)) | 
| 712 | 0 |                 pred = (1 << Al) - 1; | 
| 713 | 2.58M |             } else { | 
| 714 | 402k |               pred = (int)(((Q03 << 7) - num) / (Q03 << 8)); | 
| 715 | 402k |               if (Al > 0 && pred >= (1 << Al)) | 
| 716 | 0 |                 pred = (1 << Al) - 1; | 
| 717 | 402k |               pred = -pred; | 
| 718 | 402k |             } | 
| 719 | 2.98M |             workspace[3] = (JCOEF)pred; | 
| 720 | 2.98M |           } | 
| 721 |  |           /* AC12 */ | 
| 722 | 2.98M |           if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) { | 
| 723 | 2.98M |             num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19); | 
| 724 | 2.98M |             if (num >= 0) { | 
| 725 | 1.79M |               pred = (int)(((Q12 << 7) + num) / (Q12 << 8)); | 
| 726 | 1.79M |               if (Al > 0 && pred >= (1 << Al)) | 
| 727 | 0 |                 pred = (1 << Al) - 1; | 
| 728 | 1.79M |             } else { | 
| 729 | 1.19M |               pred = (int)(((Q12 << 7) - num) / (Q12 << 8)); | 
| 730 | 1.19M |               if (Al > 0 && pred >= (1 << Al)) | 
| 731 | 0 |                 pred = (1 << Al) - 1; | 
| 732 | 1.19M |               pred = -pred; | 
| 733 | 1.19M |             } | 
| 734 | 2.98M |             workspace[10] = (JCOEF)pred; | 
| 735 | 2.98M |           } | 
| 736 |  |           /* AC21 */ | 
| 737 | 2.98M |           if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) { | 
| 738 | 2.98M |             num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19); | 
| 739 | 2.98M |             if (num >= 0) { | 
| 740 | 1.67M |               pred = (int)(((Q21 << 7) + num) / (Q21 << 8)); | 
| 741 | 1.67M |               if (Al > 0 && pred >= (1 << Al)) | 
| 742 | 0 |                 pred = (1 << Al) - 1; | 
| 743 | 1.67M |             } else { | 
| 744 | 1.31M |               pred = (int)(((Q21 << 7) - num) / (Q21 << 8)); | 
| 745 | 1.31M |               if (Al > 0 && pred >= (1 << Al)) | 
| 746 | 0 |                 pred = (1 << Al) - 1; | 
| 747 | 1.31M |               pred = -pred; | 
| 748 | 1.31M |             } | 
| 749 | 2.98M |             workspace[17] = (JCOEF)pred; | 
| 750 | 2.98M |           } | 
| 751 |  |           /* AC30 */ | 
| 752 | 2.98M |           if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) { | 
| 753 | 2.98M |             num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19); | 
| 754 | 2.98M |             if (num >= 0) { | 
| 755 | 2.41M |               pred = (int)(((Q30 << 7) + num) / (Q30 << 8)); | 
| 756 | 2.41M |               if (Al > 0 && pred >= (1 << Al)) | 
| 757 | 0 |                 pred = (1 << Al) - 1; | 
| 758 | 2.41M |             } else { | 
| 759 | 571k |               pred = (int)(((Q30 << 7) - num) / (Q30 << 8)); | 
| 760 | 571k |               if (Al > 0 && pred >= (1 << Al)) | 
| 761 | 0 |                 pred = (1 << Al) - 1; | 
| 762 | 571k |               pred = -pred; | 
| 763 | 571k |             } | 
| 764 | 2.98M |             workspace[24] = (JCOEF)pred; | 
| 765 | 2.98M |           } | 
| 766 |  |           /* coef_bits[0] is non-negative.  Otherwise this function would not | 
| 767 |  |            * be called. | 
| 768 |  |            */ | 
| 769 | 2.98M |           num = Q00 * | 
| 770 | 2.98M |                 (-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 - | 
| 771 | 2.98M |                  6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 - | 
| 772 | 2.98M |                  8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 - | 
| 773 | 2.98M |                  6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 - | 
| 774 | 2.98M |                  2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25); | 
| 775 | 2.98M |           if (num >= 0) { | 
| 776 | 1.77M |             pred = (int)(((Q00 << 7) + num) / (Q00 << 8)); | 
| 777 | 1.77M |           } else { | 
| 778 | 1.20M |             pred = (int)(((Q00 << 7) - num) / (Q00 << 8)); | 
| 779 | 1.20M |             pred = -pred; | 
| 780 | 1.20M |           } | 
| 781 | 2.98M |           workspace[0] = (JCOEF)pred; | 
| 782 | 2.98M |         }  /* change_dc */ | 
| 783 |  |  | 
| 784 |  |         /* OK, do the IDCT */ | 
| 785 | 4.40M |         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr, | 
| 786 | 4.40M |                         output_col); | 
| 787 |  |         /* Advance for next column */ | 
| 788 | 4.40M |         DC01 = DC02;  DC02 = DC03;  DC03 = DC04;  DC04 = DC05; | 
| 789 | 4.40M |         DC06 = DC07;  DC07 = DC08;  DC08 = DC09;  DC09 = DC10; | 
| 790 | 4.40M |         DC11 = DC12;  DC12 = DC13;  DC13 = DC14;  DC14 = DC15; | 
| 791 | 4.40M |         DC16 = DC17;  DC17 = DC18;  DC18 = DC19;  DC19 = DC20; | 
| 792 | 4.40M |         DC21 = DC22;  DC22 = DC23;  DC23 = DC24;  DC24 = DC25; | 
| 793 | 4.40M |         buffer_ptr++, prev_block_row++, next_block_row++, | 
| 794 | 4.40M |           prev_prev_block_row++, next_next_block_row++; | 
| 795 | 4.40M |         output_col += compptr->_DCT_scaled_size; | 
| 796 | 4.40M |       } | 
| 797 | 781k |       output_ptr += compptr->_DCT_scaled_size; | 
| 798 | 781k |     } | 
| 799 | 611k |   } | 
| 800 |  |  | 
| 801 | 359k |   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | 
| 802 | 358k |     return JPEG_ROW_COMPLETED; | 
| 803 | 618 |   return JPEG_SCAN_COMPLETED; | 
| 804 | 359k | } | 
| 805 |  |  | 
| 806 |  | #endif /* BLOCK_SMOOTHING_SUPPORTED */ | 
| 807 |  |  | 
| 808 |  |  | 
| 809 |  | /* | 
| 810 |  |  * Initialize coefficient buffer controller. | 
| 811 |  |  */ | 
| 812 |  |  | 
| 813 |  | GLOBAL(void) | 
| 814 |  | _jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer) | 
| 815 | 4.19k | { | 
| 816 | 4.19k |   my_coef_ptr coef; | 
| 817 |  |  | 
| 818 | 4.19k |   if (cinfo->data_precision != BITS_IN_JSAMPLE) | 
| 819 | 0 |     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | 
| 820 |  |  | 
| 821 | 4.19k |   coef = (my_coef_ptr) | 
| 822 | 4.19k |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 823 | 4.19k |                                 sizeof(my_coef_controller)); | 
| 824 | 4.19k |   cinfo->coef = (struct jpeg_d_coef_controller *)coef; | 
| 825 | 4.19k |   coef->pub.start_input_pass = start_input_pass; | 
| 826 | 4.19k |   coef->pub.start_output_pass = start_output_pass; | 
| 827 | 4.19k | #ifdef BLOCK_SMOOTHING_SUPPORTED | 
| 828 | 4.19k |   coef->coef_bits_latch = NULL; | 
| 829 | 4.19k | #endif | 
| 830 |  |  | 
| 831 |  |   /* Create the coefficient buffer. */ | 
| 832 | 4.19k |   if (need_full_buffer) { | 
| 833 | 2.73k | #ifdef D_MULTISCAN_FILES_SUPPORTED | 
| 834 |  |     /* Allocate a full-image virtual array for each component, */ | 
| 835 |  |     /* padded to a multiple of samp_factor DCT blocks in each direction. */ | 
| 836 |  |     /* Note we ask for a pre-zeroed array. */ | 
| 837 | 2.73k |     int ci, access_rows; | 
| 838 | 2.73k |     jpeg_component_info *compptr; | 
| 839 |  |  | 
| 840 | 7.66k |     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
| 841 | 4.92k |          ci++, compptr++) { | 
| 842 | 4.92k |       access_rows = compptr->v_samp_factor; | 
| 843 | 4.92k | #ifdef BLOCK_SMOOTHING_SUPPORTED | 
| 844 |  |       /* If block smoothing could be used, need a bigger window */ | 
| 845 | 4.92k |       if (cinfo->progressive_mode) | 
| 846 | 3.39k |         access_rows *= 5; | 
| 847 | 4.92k | #endif | 
| 848 | 4.92k |       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | 
| 849 | 4.92k |         ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE, | 
| 850 | 4.92k |          (JDIMENSION)jround_up((long)compptr->width_in_blocks, | 
| 851 | 4.92k |                                (long)compptr->h_samp_factor), | 
| 852 | 4.92k |          (JDIMENSION)jround_up((long)compptr->height_in_blocks, | 
| 853 | 4.92k |                                (long)compptr->v_samp_factor), | 
| 854 | 4.92k |          (JDIMENSION)access_rows); | 
| 855 | 4.92k |     } | 
| 856 | 2.73k |     coef->pub.consume_data = consume_data; | 
| 857 | 2.73k |     coef->pub._decompress_data = decompress_data; | 
| 858 | 2.73k |     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ | 
| 859 |  | #else | 
| 860 |  |     ERREXIT(cinfo, JERR_NOT_COMPILED); | 
| 861 |  | #endif | 
| 862 | 2.73k |   } else { | 
| 863 |  |     /* We only need a single-MCU buffer. */ | 
| 864 | 1.46k |     JBLOCKROW buffer; | 
| 865 | 1.46k |     int i; | 
| 866 |  |  | 
| 867 | 1.46k |     buffer = (JBLOCKROW) | 
| 868 | 1.46k |       (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 869 | 1.46k |                                   D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); | 
| 870 | 16.1k |     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { | 
| 871 | 14.6k |       coef->MCU_buffer[i] = buffer + i; | 
| 872 | 14.6k |     } | 
| 873 | 1.46k |     coef->pub.consume_data = dummy_consume_data; | 
| 874 | 1.46k |     coef->pub._decompress_data = decompress_onepass; | 
| 875 | 1.46k |     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ | 
| 876 | 1.46k |   } | 
| 877 |  |  | 
| 878 |  |   /* Allocate the workspace buffer */ | 
| 879 | 4.19k |   coef->workspace = (JCOEF *) | 
| 880 | 4.19k |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 881 | 4.19k |                                 sizeof(JCOEF) * DCTSIZE2); | 
| 882 | 4.19k | } j12init_d_coef_controller| Line | Count | Source |  | 815 | 311 | { |  | 816 | 311 |   my_coef_ptr coef; |  | 817 |  |  |  | 818 | 311 |   if (cinfo->data_precision != BITS_IN_JSAMPLE) |  | 819 | 0 |     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |  | 820 |  |  |  | 821 | 311 |   coef = (my_coef_ptr) |  | 822 | 311 |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |  | 823 | 311 |                                 sizeof(my_coef_controller)); |  | 824 | 311 |   cinfo->coef = (struct jpeg_d_coef_controller *)coef; |  | 825 | 311 |   coef->pub.start_input_pass = start_input_pass; |  | 826 | 311 |   coef->pub.start_output_pass = start_output_pass; |  | 827 | 311 | #ifdef BLOCK_SMOOTHING_SUPPORTED |  | 828 | 311 |   coef->coef_bits_latch = NULL; |  | 829 | 311 | #endif |  | 830 |  |  |  | 831 |  |   /* Create the coefficient buffer. */ |  | 832 | 311 |   if (need_full_buffer) { |  | 833 | 307 | #ifdef D_MULTISCAN_FILES_SUPPORTED |  | 834 |  |     /* Allocate a full-image virtual array for each component, */ |  | 835 |  |     /* padded to a multiple of samp_factor DCT blocks in each direction. */ |  | 836 |  |     /* Note we ask for a pre-zeroed array. */ |  | 837 | 307 |     int ci, access_rows; |  | 838 | 307 |     jpeg_component_info *compptr; |  | 839 |  |  |  | 840 | 834 |     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |  | 841 | 527 |          ci++, compptr++) { |  | 842 | 527 |       access_rows = compptr->v_samp_factor; |  | 843 | 527 | #ifdef BLOCK_SMOOTHING_SUPPORTED |  | 844 |  |       /* If block smoothing could be used, need a bigger window */ |  | 845 | 527 |       if (cinfo->progressive_mode) |  | 846 | 332 |         access_rows *= 5; |  | 847 | 527 | #endif |  | 848 | 527 |       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |  | 849 | 527 |         ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE, |  | 850 | 527 |          (JDIMENSION)jround_up((long)compptr->width_in_blocks, |  | 851 | 527 |                                (long)compptr->h_samp_factor), |  | 852 | 527 |          (JDIMENSION)jround_up((long)compptr->height_in_blocks, |  | 853 | 527 |                                (long)compptr->v_samp_factor), |  | 854 | 527 |          (JDIMENSION)access_rows); |  | 855 | 527 |     } |  | 856 | 307 |     coef->pub.consume_data = consume_data; |  | 857 | 307 |     coef->pub._decompress_data = decompress_data; |  | 858 | 307 |     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |  | 859 |  | #else |  | 860 |  |     ERREXIT(cinfo, JERR_NOT_COMPILED); |  | 861 |  | #endif |  | 862 | 307 |   } else { |  | 863 |  |     /* We only need a single-MCU buffer. */ |  | 864 | 4 |     JBLOCKROW buffer; |  | 865 | 4 |     int i; |  | 866 |  |  |  | 867 | 4 |     buffer = (JBLOCKROW) |  | 868 | 4 |       (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, |  | 869 | 4 |                                   D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |  | 870 | 44 |     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |  | 871 | 40 |       coef->MCU_buffer[i] = buffer + i; |  | 872 | 40 |     } |  | 873 | 4 |     coef->pub.consume_data = dummy_consume_data; |  | 874 | 4 |     coef->pub._decompress_data = decompress_onepass; |  | 875 | 4 |     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |  | 876 | 4 |   } |  | 877 |  |  |  | 878 |  |   /* Allocate the workspace buffer */ |  | 879 | 311 |   coef->workspace = (JCOEF *) |  | 880 | 311 |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |  | 881 | 311 |                                 sizeof(JCOEF) * DCTSIZE2); |  | 882 | 311 | } | 
| Line | Count | Source |  | 815 | 3.88k | { |  | 816 | 3.88k |   my_coef_ptr coef; |  | 817 |  |  |  | 818 | 3.88k |   if (cinfo->data_precision != BITS_IN_JSAMPLE) |  | 819 | 0 |     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |  | 820 |  |  |  | 821 | 3.88k |   coef = (my_coef_ptr) |  | 822 | 3.88k |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |  | 823 | 3.88k |                                 sizeof(my_coef_controller)); |  | 824 | 3.88k |   cinfo->coef = (struct jpeg_d_coef_controller *)coef; |  | 825 | 3.88k |   coef->pub.start_input_pass = start_input_pass; |  | 826 | 3.88k |   coef->pub.start_output_pass = start_output_pass; |  | 827 | 3.88k | #ifdef BLOCK_SMOOTHING_SUPPORTED |  | 828 | 3.88k |   coef->coef_bits_latch = NULL; |  | 829 | 3.88k | #endif |  | 830 |  |  |  | 831 |  |   /* Create the coefficient buffer. */ |  | 832 | 3.88k |   if (need_full_buffer) { |  | 833 | 2.42k | #ifdef D_MULTISCAN_FILES_SUPPORTED |  | 834 |  |     /* Allocate a full-image virtual array for each component, */ |  | 835 |  |     /* padded to a multiple of samp_factor DCT blocks in each direction. */ |  | 836 |  |     /* Note we ask for a pre-zeroed array. */ |  | 837 | 2.42k |     int ci, access_rows; |  | 838 | 2.42k |     jpeg_component_info *compptr; |  | 839 |  |  |  | 840 | 6.82k |     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |  | 841 | 4.40k |          ci++, compptr++) { |  | 842 | 4.40k |       access_rows = compptr->v_samp_factor; |  | 843 | 4.40k | #ifdef BLOCK_SMOOTHING_SUPPORTED |  | 844 |  |       /* If block smoothing could be used, need a bigger window */ |  | 845 | 4.40k |       if (cinfo->progressive_mode) |  | 846 | 3.06k |         access_rows *= 5; |  | 847 | 4.40k | #endif |  | 848 | 4.40k |       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) |  | 849 | 4.40k |         ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE, |  | 850 | 4.40k |          (JDIMENSION)jround_up((long)compptr->width_in_blocks, |  | 851 | 4.40k |                                (long)compptr->h_samp_factor), |  | 852 | 4.40k |          (JDIMENSION)jround_up((long)compptr->height_in_blocks, |  | 853 | 4.40k |                                (long)compptr->v_samp_factor), |  | 854 | 4.40k |          (JDIMENSION)access_rows); |  | 855 | 4.40k |     } |  | 856 | 2.42k |     coef->pub.consume_data = consume_data; |  | 857 | 2.42k |     coef->pub._decompress_data = decompress_data; |  | 858 | 2.42k |     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ |  | 859 |  | #else |  | 860 |  |     ERREXIT(cinfo, JERR_NOT_COMPILED); |  | 861 |  | #endif |  | 862 | 2.42k |   } else { |  | 863 |  |     /* We only need a single-MCU buffer. */ |  | 864 | 1.46k |     JBLOCKROW buffer; |  | 865 | 1.46k |     int i; |  | 866 |  |  |  | 867 | 1.46k |     buffer = (JBLOCKROW) |  | 868 | 1.46k |       (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, |  | 869 | 1.46k |                                   D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |  | 870 | 16.1k |     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { |  | 871 | 14.6k |       coef->MCU_buffer[i] = buffer + i; |  | 872 | 14.6k |     } |  | 873 | 1.46k |     coef->pub.consume_data = dummy_consume_data; |  | 874 | 1.46k |     coef->pub._decompress_data = decompress_onepass; |  | 875 | 1.46k |     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ |  | 876 | 1.46k |   } |  | 877 |  |  |  | 878 |  |   /* Allocate the workspace buffer */ |  | 879 | 3.88k |   coef->workspace = (JCOEF *) |  | 880 | 3.88k |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |  | 881 | 3.88k |                                 sizeof(JCOEF) * DCTSIZE2); |  | 882 | 3.88k | } | 
 |