/src/libjpeg-turbo.main/jdhuff.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * jdhuff.c | 
| 3 |  |  * | 
| 4 |  |  * This file was part of the Independent JPEG Group's software: | 
| 5 |  |  * Copyright (C) 1991-1997, Thomas G. Lane. | 
| 6 |  |  * Lossless JPEG Modifications: | 
| 7 |  |  * Copyright (C) 1999, Ken Murchison. | 
| 8 |  |  * libjpeg-turbo Modifications: | 
| 9 |  |  * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander. | 
| 10 |  |  * Copyright (C) 2018, Matthias Räncker. | 
| 11 |  |  * For conditions of distribution and use, see the accompanying README.ijg | 
| 12 |  |  * file. | 
| 13 |  |  * | 
| 14 |  |  * This file contains Huffman entropy decoding routines. | 
| 15 |  |  * | 
| 16 |  |  * Much of the complexity here has to do with supporting input suspension. | 
| 17 |  |  * If the data source module demands suspension, we want to be able to back | 
| 18 |  |  * up to the start of the current MCU.  To do this, we copy state variables | 
| 19 |  |  * into local working storage, and update them back to the permanent | 
| 20 |  |  * storage only upon successful completion of an MCU. | 
| 21 |  |  * | 
| 22 |  |  * NOTE: All referenced figures are from | 
| 23 |  |  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. | 
| 24 |  |  */ | 
| 25 |  |  | 
| 26 |  | #define JPEG_INTERNALS | 
| 27 |  | #include "jinclude.h" | 
| 28 |  | #include "jpeglib.h" | 
| 29 |  | #include "jdhuff.h"             /* Declarations shared with jd*huff.c */ | 
| 30 |  | #include "jpegapicomp.h" | 
| 31 |  | #include "jstdhuff.c" | 
| 32 |  |  | 
| 33 |  |  | 
| 34 |  | /* | 
| 35 |  |  * Expanded entropy decoder object for Huffman decoding. | 
| 36 |  |  * | 
| 37 |  |  * The savable_state subrecord contains fields that change within an MCU, | 
| 38 |  |  * but must not be updated permanently until we complete the MCU. | 
| 39 |  |  */ | 
| 40 |  |  | 
| 41 |  | typedef struct { | 
| 42 |  |   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 
| 43 |  | } savable_state; | 
| 44 |  |  | 
| 45 |  | typedef struct { | 
| 46 |  |   struct jpeg_entropy_decoder pub; /* public fields */ | 
| 47 |  |  | 
| 48 |  |   /* These fields are loaded into local variables at start of each MCU. | 
| 49 |  |    * In case of suspension, we exit WITHOUT updating them. | 
| 50 |  |    */ | 
| 51 |  |   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */ | 
| 52 |  |   savable_state saved;          /* Other state at start of MCU */ | 
| 53 |  |  | 
| 54 |  |   /* These fields are NOT loaded into local working state. */ | 
| 55 |  |   unsigned int restarts_to_go;  /* MCUs left in this restart interval */ | 
| 56 |  |  | 
| 57 |  |   /* Pointers to derived tables (these workspaces have image lifespan) */ | 
| 58 |  |   d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; | 
| 59 |  |   d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; | 
| 60 |  |  | 
| 61 |  |   /* Precalculated info set up by start_pass for use in decode_mcu: */ | 
| 62 |  |  | 
| 63 |  |   /* Pointers to derived tables to be used for each block within an MCU */ | 
| 64 |  |   d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | 
| 65 |  |   d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | 
| 66 |  |   /* Whether we care about the DC and AC coefficient values for each block */ | 
| 67 |  |   boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; | 
| 68 |  |   boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; | 
| 69 |  | } huff_entropy_decoder; | 
| 70 |  |  | 
| 71 |  | typedef huff_entropy_decoder *huff_entropy_ptr; | 
| 72 |  |  | 
| 73 |  |  | 
| 74 |  | /* | 
| 75 |  |  * Initialize for a Huffman-compressed scan. | 
| 76 |  |  */ | 
| 77 |  |  | 
| 78 |  | METHODDEF(void) | 
| 79 |  | start_pass_huff_decoder(j_decompress_ptr cinfo) | 
| 80 | 7.72k | { | 
| 81 | 7.72k |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; | 
| 82 | 7.72k |   int ci, blkn, dctbl, actbl; | 
| 83 | 7.72k |   d_derived_tbl **pdtbl; | 
| 84 | 7.72k |   jpeg_component_info *compptr; | 
| 85 |  |  | 
| 86 |  |   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. | 
| 87 |  |    * This ought to be an error condition, but we make it a warning because | 
| 88 |  |    * there are some baseline files out there with all zeroes in these bytes. | 
| 89 |  |    */ | 
| 90 | 7.72k |   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 || | 
| 91 | 7.72k |       cinfo->Ah != 0 || cinfo->Al != 0) | 
| 92 | 7.01k |     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | 
| 93 |  |  | 
| 94 | 23.6k |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
| 95 | 15.9k |     compptr = cinfo->cur_comp_info[ci]; | 
| 96 | 15.9k |     dctbl = compptr->dc_tbl_no; | 
| 97 | 15.9k |     actbl = compptr->ac_tbl_no; | 
| 98 |  |     /* Compute derived values for Huffman tables */ | 
| 99 |  |     /* We may do this more than once for a table, but it's not expensive */ | 
| 100 | 15.9k |     pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl; | 
| 101 | 15.9k |     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl); | 
| 102 | 15.9k |     pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl; | 
| 103 | 15.9k |     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl); | 
| 104 |  |     /* Initialize DC predictions to 0 */ | 
| 105 | 15.9k |     entropy->saved.last_dc_val[ci] = 0; | 
| 106 | 15.9k |   } | 
| 107 |  |  | 
| 108 |  |   /* Precalculate decoding info for each block in an MCU of this scan */ | 
| 109 | 36.1k |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
| 110 | 28.4k |     ci = cinfo->MCU_membership[blkn]; | 
| 111 | 28.4k |     compptr = cinfo->cur_comp_info[ci]; | 
| 112 |  |     /* Precalculate which table to use for each block */ | 
| 113 | 28.4k |     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; | 
| 114 | 28.4k |     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; | 
| 115 |  |     /* Decide whether we really care about the coefficient values */ | 
| 116 | 28.4k |     if (compptr->component_needed) { | 
| 117 | 28.3k |       entropy->dc_needed[blkn] = TRUE; | 
| 118 |  |       /* we don't need the ACs if producing a 1/8th-size image */ | 
| 119 | 28.3k |       entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1); | 
| 120 | 28.3k |     } else { | 
| 121 | 50 |       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; | 
| 122 | 50 |     } | 
| 123 | 28.4k |   } | 
| 124 |  |  | 
| 125 |  |   /* Initialize bitread state variables */ | 
| 126 | 7.72k |   entropy->bitstate.bits_left = 0; | 
| 127 | 7.72k |   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ | 
| 128 | 7.72k |   entropy->pub.insufficient_data = FALSE; | 
| 129 |  |  | 
| 130 |  |   /* Initialize restart counter */ | 
| 131 | 7.72k |   entropy->restarts_to_go = cinfo->restart_interval; | 
| 132 | 7.72k | } | 
| 133 |  |  | 
| 134 |  |  | 
| 135 |  | /* | 
| 136 |  |  * Compute the derived values for a Huffman table. | 
| 137 |  |  * This routine also performs some validation checks on the table. | 
| 138 |  |  * | 
| 139 |  |  * Note this is also used by jdphuff.c and jdlhuff.c. | 
| 140 |  |  */ | 
| 141 |  |  | 
| 142 |  | GLOBAL(void) | 
| 143 |  | jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno, | 
| 144 |  |                         d_derived_tbl **pdtbl) | 
| 145 | 43.4k | { | 
| 146 | 43.4k |   JHUFF_TBL *htbl; | 
| 147 | 43.4k |   d_derived_tbl *dtbl; | 
| 148 | 43.4k |   int p, i, l, si, numsymbols; | 
| 149 | 43.4k |   int lookbits, ctr; | 
| 150 | 43.4k |   char huffsize[257]; | 
| 151 | 43.4k |   unsigned int huffcode[257]; | 
| 152 | 43.4k |   unsigned int code; | 
| 153 |  |  | 
| 154 |  |   /* Note that huffsize[] and huffcode[] are filled in code-length order, | 
| 155 |  |    * paralleling the order of the symbols themselves in htbl->huffval[]. | 
| 156 |  |    */ | 
| 157 |  |  | 
| 158 |  |   /* Find the input Huffman table */ | 
| 159 | 43.4k |   if (tblno < 0 || tblno >= NUM_HUFF_TBLS) | 
| 160 | 37 |     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | 
| 161 | 43.4k |   htbl = | 
| 162 | 43.4k |     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; | 
| 163 | 43.4k |   if (htbl == NULL) | 
| 164 | 17 |     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | 
| 165 |  |  | 
| 166 |  |   /* Allocate a workspace if we haven't already done so. */ | 
| 167 | 43.4k |   if (*pdtbl == NULL) | 
| 168 | 3.99k |     *pdtbl = (d_derived_tbl *) | 
| 169 | 3.99k |       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 170 | 3.99k |                                   sizeof(d_derived_tbl)); | 
| 171 | 43.4k |   dtbl = *pdtbl; | 
| 172 | 43.4k |   dtbl->pub = htbl;             /* fill in back link */ | 
| 173 |  |  | 
| 174 |  |   /* Figure C.1: make table of Huffman code length for each symbol */ | 
| 175 |  |  | 
| 176 | 43.4k |   p = 0; | 
| 177 | 737k |   for (l = 1; l <= 16; l++) { | 
| 178 | 694k |     i = (int)htbl->bits[l]; | 
| 179 | 694k |     if (i < 0 || p + i > 256)   /* protect against table overrun */ | 
| 180 | 0 |       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 
| 181 | 2.18M |     while (i--) | 
| 182 | 1.49M |       huffsize[p++] = (char)l; | 
| 183 | 694k |   } | 
| 184 | 43.4k |   huffsize[p] = 0; | 
| 185 | 43.4k |   numsymbols = p; | 
| 186 |  |  | 
| 187 |  |   /* Figure C.2: generate the codes themselves */ | 
| 188 |  |   /* We also validate that the counts represent a legal Huffman code tree. */ | 
| 189 |  |  | 
| 190 | 43.4k |   code = 0; | 
| 191 | 43.4k |   si = huffsize[0]; | 
| 192 | 43.4k |   p = 0; | 
| 193 | 419k |   while (huffsize[p]) { | 
| 194 | 1.86M |     while (((int)huffsize[p]) == si) { | 
| 195 | 1.49M |       huffcode[p++] = code; | 
| 196 | 1.49M |       code++; | 
| 197 | 1.49M |     } | 
| 198 |  |     /* code is now 1 more than the last code used for codelength si; but | 
| 199 |  |      * it must still fit in si bits, since no code is allowed to be all ones. | 
| 200 |  |      */ | 
| 201 | 376k |     if (((JLONG)code) >= (((JLONG)1) << si)) | 
| 202 | 2 |       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 
| 203 | 376k |     code <<= 1; | 
| 204 | 376k |     si++; | 
| 205 | 376k |   } | 
| 206 |  |  | 
| 207 |  |   /* Figure F.15: generate decoding tables for bit-sequential decoding */ | 
| 208 |  |  | 
| 209 | 43.4k |   p = 0; | 
| 210 | 737k |   for (l = 1; l <= 16; l++) { | 
| 211 | 694k |     if (htbl->bits[l]) { | 
| 212 |  |       /* valoffset[l] = huffval[] index of 1st symbol of code length l, | 
| 213 |  |        * minus the minimum code of length l | 
| 214 |  |        */ | 
| 215 | 283k |       dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p]; | 
| 216 | 283k |       p += htbl->bits[l]; | 
| 217 | 283k |       dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */ | 
| 218 | 410k |     } else { | 
| 219 | 410k |       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */ | 
| 220 | 410k |     } | 
| 221 | 694k |   } | 
| 222 | 43.4k |   dtbl->valoffset[17] = 0; | 
| 223 | 43.4k |   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ | 
| 224 |  |  | 
| 225 |  |   /* Compute lookahead tables to speed up decoding. | 
| 226 |  |    * First we set all the table entries to 0, indicating "too long"; | 
| 227 |  |    * then we iterate through the Huffman codes that are short enough and | 
| 228 |  |    * fill in all the entries that correspond to bit sequences starting | 
| 229 |  |    * with that code. | 
| 230 |  |    */ | 
| 231 |  |  | 
| 232 | 11.1M |   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) | 
| 233 | 11.1M |     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; | 
| 234 |  |  | 
| 235 | 43.4k |   p = 0; | 
| 236 | 390k |   for (l = 1; l <= HUFF_LOOKAHEAD; l++) { | 
| 237 | 754k |     for (i = 1; i <= (int)htbl->bits[l]; i++, p++) { | 
| 238 |  |       /* l = current code's length, p = its index in huffcode[] & huffval[]. */ | 
| 239 |  |       /* Generate left-justified code followed by all possible bit sequences */ | 
| 240 | 407k |       lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l); | 
| 241 | 10.2M |       for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) { | 
| 242 | 9.87M |         dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; | 
| 243 | 9.87M |         lookbits++; | 
| 244 | 9.87M |       } | 
| 245 | 407k |     } | 
| 246 | 347k |   } | 
| 247 |  |  | 
| 248 |  |   /* Validate symbols as being reasonable. | 
| 249 |  |    * For AC tables, we make no check, but accept all byte values 0..255. | 
| 250 |  |    * For DC tables, we require the symbols to be in range 0..15 in lossy mode | 
| 251 |  |    * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on | 
| 252 |  |    * the data depth and mode, but this is sufficient to ensure safe decoding.) | 
| 253 |  |    */ | 
| 254 | 43.4k |   if (isDC) { | 
| 255 | 197k |     for (i = 0; i < numsymbols; i++) { | 
| 256 | 172k |       int sym = htbl->huffval[i]; | 
| 257 | 172k |       if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15)) | 
| 258 | 9 |         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 
| 259 | 172k |     } | 
| 260 | 25.0k |   } | 
| 261 | 43.4k | } | 
| 262 |  |  | 
| 263 |  |  | 
| 264 |  | /* | 
| 265 |  |  * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c). | 
| 266 |  |  * See jdhuff.h for info about usage. | 
| 267 |  |  * Note: current values of get_buffer and bits_left are passed as parameters, | 
| 268 |  |  * but are returned in the corresponding fields of the state struct. | 
| 269 |  |  * | 
| 270 |  |  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width | 
| 271 |  |  * of get_buffer to be used.  (On machines with wider words, an even larger | 
| 272 |  |  * buffer could be used.)  However, on some machines 32-bit shifts are | 
| 273 |  |  * quite slow and take time proportional to the number of places shifted. | 
| 274 |  |  * (This is true with most PC compilers, for instance.)  In this case it may | 
| 275 |  |  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the | 
| 276 |  |  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. | 
| 277 |  |  */ | 
| 278 |  |  | 
| 279 |  | #ifdef SLOW_SHIFT_32 | 
| 280 |  | #define MIN_GET_BITS  15        /* minimum allowable value */ | 
| 281 |  | #else | 
| 282 | 3.79M | #define MIN_GET_BITS  (BIT_BUF_SIZE - 7) | 
| 283 |  | #endif | 
| 284 |  |  | 
| 285 |  |  | 
| 286 |  | GLOBAL(boolean) | 
| 287 |  | jpeg_fill_bit_buffer(bitread_working_state *state, | 
| 288 |  |                      register bit_buf_type get_buffer, register int bits_left, | 
| 289 |  |                      int nbits) | 
| 290 |  | /* Load up the bit buffer to a depth of at least nbits */ | 
| 291 | 5.49M | { | 
| 292 |  |   /* Copy heavily used state fields into locals (hopefully registers) */ | 
| 293 | 5.49M |   register const JOCTET *next_input_byte = state->next_input_byte; | 
| 294 | 5.49M |   register size_t bytes_in_buffer = state->bytes_in_buffer; | 
| 295 | 5.49M |   j_decompress_ptr cinfo = state->cinfo; | 
| 296 |  |  | 
| 297 |  |   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ | 
| 298 |  |   /* (It is assumed that no request will be for more than that many bits.) */ | 
| 299 |  |   /* We fail to do so only if we hit a marker or are forced to suspend. */ | 
| 300 |  |  | 
| 301 | 5.49M |   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */ | 
| 302 | 555k |     while (bits_left < MIN_GET_BITS) { | 
| 303 | 497k |       register int c; | 
| 304 |  |  | 
| 305 |  |       /* Attempt to read a byte */ | 
| 306 | 497k |       if (bytes_in_buffer == 0) { | 
| 307 | 1.66k |         if (!(*cinfo->src->fill_input_buffer) (cinfo)) | 
| 308 | 0 |           return FALSE; | 
| 309 | 1.66k |         next_input_byte = cinfo->src->next_input_byte; | 
| 310 | 1.66k |         bytes_in_buffer = cinfo->src->bytes_in_buffer; | 
| 311 | 1.66k |       } | 
| 312 | 497k |       bytes_in_buffer--; | 
| 313 | 497k |       c = *next_input_byte++; | 
| 314 |  |  | 
| 315 |  |       /* If it's 0xFF, check and discard stuffed zero byte */ | 
| 316 | 497k |       if (c == 0xFF) { | 
| 317 |  |         /* Loop here to discard any padding FF's on terminating marker, | 
| 318 |  |          * so that we can save a valid unread_marker value.  NOTE: we will | 
| 319 |  |          * accept multiple FF's followed by a 0 as meaning a single FF data | 
| 320 |  |          * byte.  This data pattern is not valid according to the standard. | 
| 321 |  |          */ | 
| 322 | 50.0k |         do { | 
| 323 | 50.0k |           if (bytes_in_buffer == 0) { | 
| 324 | 37 |             if (!(*cinfo->src->fill_input_buffer) (cinfo)) | 
| 325 | 0 |               return FALSE; | 
| 326 | 37 |             next_input_byte = cinfo->src->next_input_byte; | 
| 327 | 37 |             bytes_in_buffer = cinfo->src->bytes_in_buffer; | 
| 328 | 37 |           } | 
| 329 | 50.0k |           bytes_in_buffer--; | 
| 330 | 50.0k |           c = *next_input_byte++; | 
| 331 | 50.0k |         } while (c == 0xFF); | 
| 332 |  |  | 
| 333 | 31.5k |         if (c == 0) { | 
| 334 |  |           /* Found FF/00, which represents an FF data byte */ | 
| 335 | 11.8k |           c = 0xFF; | 
| 336 | 19.6k |         } else { | 
| 337 |  |           /* Oops, it's actually a marker indicating end of compressed data. | 
| 338 |  |            * Save the marker code for later use. | 
| 339 |  |            * Fine point: it might appear that we should save the marker into | 
| 340 |  |            * bitread working state, not straight into permanent state.  But | 
| 341 |  |            * once we have hit a marker, we cannot need to suspend within the | 
| 342 |  |            * current MCU, because we will read no more bytes from the data | 
| 343 |  |            * source.  So it is OK to update permanent state right away. | 
| 344 |  |            */ | 
| 345 | 19.6k |           cinfo->unread_marker = c; | 
| 346 |  |           /* See if we need to insert some fake zero bits. */ | 
| 347 | 19.6k |           goto no_more_bytes; | 
| 348 | 19.6k |         } | 
| 349 | 31.5k |       } | 
| 350 |  |  | 
| 351 |  |       /* OK, load c into get_buffer */ | 
| 352 | 478k |       get_buffer = (get_buffer << 8) | c; | 
| 353 | 478k |       bits_left += 8; | 
| 354 | 478k |     } /* end while */ | 
| 355 | 5.41M |   } else { | 
| 356 | 5.43M | no_more_bytes: | 
| 357 |  |     /* We get here if we've read the marker that terminates the compressed | 
| 358 |  |      * data segment.  There should be enough bits in the buffer register | 
| 359 |  |      * to satisfy the request; if so, no problem. | 
| 360 |  |      */ | 
| 361 | 5.43M |     if (nbits > bits_left) { | 
| 362 |  |       /* Uh-oh.  Report corrupted data to user and stuff zeroes into | 
| 363 |  |        * the data stream, so that we can produce some kind of image. | 
| 364 |  |        * We use a nonvolatile flag to ensure that only one warning message | 
| 365 |  |        * appears per data segment. | 
| 366 |  |        */ | 
| 367 | 1.61M |       if (!cinfo->entropy->insufficient_data) { | 
| 368 | 19.4k |         WARNMS(cinfo, JWRN_HIT_MARKER); | 
| 369 | 19.4k |         cinfo->entropy->insufficient_data = TRUE; | 
| 370 | 19.4k |       } | 
| 371 |  |       /* Fill the buffer with zero bits */ | 
| 372 | 1.61M |       get_buffer <<= MIN_GET_BITS - bits_left; | 
| 373 | 1.61M |       bits_left = MIN_GET_BITS; | 
| 374 | 1.61M |     } | 
| 375 | 5.43M |   } | 
| 376 |  |  | 
| 377 |  |   /* Unload the local registers */ | 
| 378 | 5.49M |   state->next_input_byte = next_input_byte; | 
| 379 | 5.49M |   state->bytes_in_buffer = bytes_in_buffer; | 
| 380 | 5.49M |   state->get_buffer = get_buffer; | 
| 381 | 5.49M |   state->bits_left = bits_left; | 
| 382 |  |  | 
| 383 | 5.49M |   return TRUE; | 
| 384 | 5.49M | } | 
| 385 |  |  | 
| 386 |  |  | 
| 387 |  | /* Macro version of the above, which performs much better but does not | 
| 388 |  |    handle markers.  We have to hand off any blocks with markers to the | 
| 389 |  |    slower routines. */ | 
| 390 |  |  | 
| 391 | 919k | #define GET_BYTE { \ | 
| 392 | 919k |   register int c0, c1; \ | 
| 393 | 919k |   c0 = *buffer++; \ | 
| 394 | 919k |   c1 = *buffer; \ | 
| 395 | 919k |   /* Pre-execute most common case */ \ | 
| 396 | 919k |   get_buffer = (get_buffer << 8) | c0; \ | 
| 397 | 919k |   bits_left += 8; \ | 
| 398 | 919k |   if (c0 == 0xFF) { \ | 
| 399 | 132k |     /* Pre-execute case of FF/00, which represents an FF data byte */ \ | 
| 400 | 132k |     buffer++; \ | 
| 401 | 132k |     if (c1 != 0) { \ | 
| 402 | 93.1k |       /* Oops, it's actually a marker indicating end of compressed data. */ \ | 
| 403 | 93.1k |       cinfo->unread_marker = c1; \ | 
| 404 | 93.1k |       /* Back out pre-execution and fill the buffer with zero bits */ \ | 
| 405 | 93.1k |       buffer -= 2; \ | 
| 406 | 93.1k |       get_buffer &= ~0xFF; \ | 
| 407 | 93.1k |     } \ | 
| 408 | 132k |   } \ | 
| 409 | 919k | } | 
| 410 |  |  | 
| 411 |  | #if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__)) | 
| 412 |  |  | 
| 413 |  | /* Pre-fetch 48 bytes, because the holding register is 64-bit */ | 
| 414 |  | #define FILL_BIT_BUFFER_FAST \ | 
| 415 | 2.50M |   if (bits_left <= 16) { \ | 
| 416 | 153k |     GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \ | 
| 417 | 153k |   } | 
| 418 |  |  | 
| 419 |  | #else | 
| 420 |  |  | 
| 421 |  | /* Pre-fetch 16 bytes, because the holding register is 32-bit */ | 
| 422 |  | #define FILL_BIT_BUFFER_FAST \ | 
| 423 |  |   if (bits_left <= 16) { \ | 
| 424 |  |     GET_BYTE GET_BYTE \ | 
| 425 |  |   } | 
| 426 |  |  | 
| 427 |  | #endif | 
| 428 |  |  | 
| 429 |  |  | 
| 430 |  | /* | 
| 431 |  |  * Out-of-line code for Huffman code decoding. | 
| 432 |  |  * See jdhuff.h for info about usage. | 
| 433 |  |  */ | 
| 434 |  |  | 
| 435 |  | GLOBAL(int) | 
| 436 |  | jpeg_huff_decode(bitread_working_state *state, | 
| 437 |  |                  register bit_buf_type get_buffer, register int bits_left, | 
| 438 |  |                  d_derived_tbl *htbl, int min_bits) | 
| 439 | 3.83M | { | 
| 440 | 3.83M |   register int l = min_bits; | 
| 441 | 3.83M |   register JLONG code; | 
| 442 |  |  | 
| 443 |  |   /* HUFF_DECODE has determined that the code is at least min_bits */ | 
| 444 |  |   /* bits long, so fetch that many bits in one swoop. */ | 
| 445 |  |  | 
| 446 | 3.83M |   CHECK_BIT_BUFFER(*state, l, return -1); | 
| 447 | 3.83M |   code = GET_BITS(l); | 
| 448 |  |  | 
| 449 |  |   /* Collect the rest of the Huffman code one bit at a time. */ | 
| 450 |  |   /* This is per Figure F.16. */ | 
| 451 |  |  | 
| 452 | 4.98M |   while (code > htbl->maxcode[l]) { | 
| 453 | 1.14M |     code <<= 1; | 
| 454 | 1.14M |     CHECK_BIT_BUFFER(*state, 1, return -1); | 
| 455 | 1.14M |     code |= GET_BITS(1); | 
| 456 | 1.14M |     l++; | 
| 457 | 1.14M |   } | 
| 458 |  |  | 
| 459 |  |   /* Unload the local registers */ | 
| 460 | 3.83M |   state->get_buffer = get_buffer; | 
| 461 | 3.83M |   state->bits_left = bits_left; | 
| 462 |  |  | 
| 463 |  |   /* With garbage input we may reach the sentinel value l = 17. */ | 
| 464 |  |  | 
| 465 | 3.83M |   if (l > 16) { | 
| 466 | 19.6k |     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); | 
| 467 | 19.6k |     return 0;                   /* fake a zero as the safest result */ | 
| 468 | 19.6k |   } | 
| 469 |  |  | 
| 470 | 3.81M |   return htbl->pub->huffval[(int)(code + htbl->valoffset[l])]; | 
| 471 | 3.83M | } | 
| 472 |  |  | 
| 473 |  |  | 
| 474 |  | /* | 
| 475 |  |  * Figure F.12: extend sign bit. | 
| 476 |  |  * On some machines, a shift and add will be faster than a table lookup. | 
| 477 |  |  */ | 
| 478 |  |  | 
| 479 |  | #define AVOID_TABLES | 
| 480 |  | #ifdef AVOID_TABLES | 
| 481 |  |  | 
| 482 | 1.77M | #define NEG_1  ((unsigned int)-1) | 
| 483 |  | #define HUFF_EXTEND(x, s) \ | 
| 484 | 1.77M |   ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1))) | 
| 485 |  |  | 
| 486 |  | #else | 
| 487 |  |  | 
| 488 |  | #define HUFF_EXTEND(x, s) \ | 
| 489 |  |   ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) | 
| 490 |  |  | 
| 491 |  | static const int extend_test[16] = {   /* entry n is 2**(n-1) */ | 
| 492 |  |   0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | 
| 493 |  |   0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 | 
| 494 |  | }; | 
| 495 |  |  | 
| 496 |  | static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */ | 
| 497 |  |   0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1, | 
| 498 |  |   ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1, | 
| 499 |  |   ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1, | 
| 500 |  |   ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1 | 
| 501 |  | }; | 
| 502 |  |  | 
| 503 |  | #endif /* AVOID_TABLES */ | 
| 504 |  |  | 
| 505 |  |  | 
| 506 |  | /* | 
| 507 |  |  * Check for a restart marker & resynchronize decoder. | 
| 508 |  |  * Returns FALSE if must suspend. | 
| 509 |  |  */ | 
| 510 |  |  | 
| 511 |  | LOCAL(boolean) | 
| 512 |  | process_restart(j_decompress_ptr cinfo) | 
| 513 | 22.5k | { | 
| 514 | 22.5k |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; | 
| 515 | 22.5k |   int ci; | 
| 516 |  |  | 
| 517 |  |   /* Throw away any unused bits remaining in bit buffer; */ | 
| 518 |  |   /* include any full bytes in next_marker's count of discarded bytes */ | 
| 519 | 22.5k |   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; | 
| 520 | 22.5k |   entropy->bitstate.bits_left = 0; | 
| 521 |  |  | 
| 522 |  |   /* Advance past the RSTn marker */ | 
| 523 | 22.5k |   if (!(*cinfo->marker->read_restart_marker) (cinfo)) | 
| 524 | 0 |     return FALSE; | 
| 525 |  |  | 
| 526 |  |   /* Re-initialize DC predictions to 0 */ | 
| 527 | 45.6k |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) | 
| 528 | 23.0k |     entropy->saved.last_dc_val[ci] = 0; | 
| 529 |  |  | 
| 530 |  |   /* Reset restart counter */ | 
| 531 | 22.5k |   entropy->restarts_to_go = cinfo->restart_interval; | 
| 532 |  |  | 
| 533 |  |   /* Reset out-of-data flag, unless read_restart_marker left us smack up | 
| 534 |  |    * against a marker.  In that case we will end up treating the next data | 
| 535 |  |    * segment as empty, and we can avoid producing bogus output pixels by | 
| 536 |  |    * leaving the flag set. | 
| 537 |  |    */ | 
| 538 | 22.5k |   if (cinfo->unread_marker == 0) | 
| 539 | 643 |     entropy->pub.insufficient_data = FALSE; | 
| 540 |  |  | 
| 541 | 22.5k |   return TRUE; | 
| 542 | 22.5k | } | 
| 543 |  |  | 
| 544 |  |  | 
| 545 |  | #if defined(__has_feature) | 
| 546 |  | #if __has_feature(undefined_behavior_sanitizer) | 
| 547 |  | __attribute__((no_sanitize("signed-integer-overflow"), | 
| 548 |  |                no_sanitize("unsigned-integer-overflow"))) | 
| 549 |  | #endif | 
| 550 |  | #endif | 
| 551 |  | LOCAL(boolean) | 
| 552 |  | decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 553 | 50.1k | { | 
| 554 | 50.1k |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; | 
| 555 | 50.1k |   BITREAD_STATE_VARS; | 
| 556 | 50.1k |   int blkn; | 
| 557 | 50.1k |   savable_state state; | 
| 558 |  |   /* Outer loop handles each block in the MCU */ | 
| 559 |  |  | 
| 560 |  |   /* Load up working state */ | 
| 561 | 50.1k |   BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | 
| 562 | 50.1k |   state = entropy->saved; | 
| 563 |  |  | 
| 564 | 165k |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
| 565 | 114k |     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; | 
| 566 | 114k |     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; | 
| 567 | 114k |     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; | 
| 568 | 114k |     register int s, k, r; | 
| 569 |  |  | 
| 570 |  |     /* Decode a single block's worth of coefficients */ | 
| 571 |  |  | 
| 572 |  |     /* Section F.2.2.1: decode the DC coefficient difference */ | 
| 573 | 114k |     HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); | 
| 574 | 114k |     if (s) { | 
| 575 | 60.8k |       CHECK_BIT_BUFFER(br_state, s, return FALSE); | 
| 576 | 60.8k |       r = GET_BITS(s); | 
| 577 | 60.8k |       s = HUFF_EXTEND(r, s); | 
| 578 | 60.8k |     } | 
| 579 |  |  | 
| 580 | 114k |     if (entropy->dc_needed[blkn]) { | 
| 581 |  |       /* Convert DC difference to actual value, update last_dc_val */ | 
| 582 | 114k |       int ci = cinfo->MCU_membership[blkn]; | 
| 583 |  |       /* Certain malformed JPEG images produce repeated DC coefficient | 
| 584 |  |        * differences of 2047 or -2047, which causes state.last_dc_val[ci] to | 
| 585 |  |        * grow until it overflows or underflows a 32-bit signed integer.  This | 
| 586 |  |        * behavior is, to the best of our understanding, innocuous, and it is | 
| 587 |  |        * unclear how to work around it without potentially affecting | 
| 588 |  |        * performance.  Thus, we (hopefully temporarily) suppress UBSan integer | 
| 589 |  |        * overflow errors for this function and decode_mcu_fast(). | 
| 590 |  |        */ | 
| 591 | 114k |       s += state.last_dc_val[ci]; | 
| 592 | 114k |       state.last_dc_val[ci] = s; | 
| 593 | 114k |       if (block) { | 
| 594 |  |         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ | 
| 595 | 114k |         (*block)[0] = (JCOEF)s; | 
| 596 | 114k |       } | 
| 597 | 114k |     } | 
| 598 |  |  | 
| 599 | 114k |     if (entropy->ac_needed[blkn] && block) { | 
| 600 |  |  | 
| 601 |  |       /* Section F.2.2.2: decode the AC coefficients */ | 
| 602 |  |       /* Since zeroes are skipped, output area must be cleared beforehand */ | 
| 603 | 778k |       for (k = 1; k < DCTSIZE2; k++) { | 
| 604 | 766k |         HUFF_DECODE(s, br_state, actbl, return FALSE, label2); | 
| 605 |  |  | 
| 606 | 766k |         r = s >> 4; | 
| 607 | 766k |         s &= 15; | 
| 608 |  |  | 
| 609 | 766k |         if (s) { | 
| 610 | 661k |           k += r; | 
| 611 | 661k |           CHECK_BIT_BUFFER(br_state, s, return FALSE); | 
| 612 | 661k |           r = GET_BITS(s); | 
| 613 | 661k |           s = HUFF_EXTEND(r, s); | 
| 614 |  |           /* Output coefficient in natural (dezigzagged) order. | 
| 615 |  |            * Note: the extra entries in jpeg_natural_order[] will save us | 
| 616 |  |            * if k >= DCTSIZE2, which could happen if the data is corrupted. | 
| 617 |  |            */ | 
| 618 | 661k |           (*block)[jpeg_natural_order[k]] = (JCOEF)s; | 
| 619 | 661k |         } else { | 
| 620 | 105k |           if (r != 15) | 
| 621 | 103k |             break; | 
| 622 | 2.01k |           k += 15; | 
| 623 | 2.01k |         } | 
| 624 | 766k |       } | 
| 625 |  |  | 
| 626 | 114k |     } else { | 
| 627 |  |  | 
| 628 |  |       /* Section F.2.2.2: decode the AC coefficients */ | 
| 629 |  |       /* In this path we just discard the values */ | 
| 630 | 0 |       for (k = 1; k < DCTSIZE2; k++) { | 
| 631 | 0 |         HUFF_DECODE(s, br_state, actbl, return FALSE, label3); | 
| 632 |  | 
 | 
| 633 | 0 |         r = s >> 4; | 
| 634 | 0 |         s &= 15; | 
| 635 |  | 
 | 
| 636 | 0 |         if (s) { | 
| 637 | 0 |           k += r; | 
| 638 | 0 |           CHECK_BIT_BUFFER(br_state, s, return FALSE); | 
| 639 | 0 |           DROP_BITS(s); | 
| 640 | 0 |         } else { | 
| 641 | 0 |           if (r != 15) | 
| 642 | 0 |             break; | 
| 643 | 0 |           k += 15; | 
| 644 | 0 |         } | 
| 645 | 0 |       } | 
| 646 | 0 |     } | 
| 647 | 114k |   } | 
| 648 |  |  | 
| 649 |  |   /* Completed MCU, so update state */ | 
| 650 | 50.1k |   BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | 
| 651 | 50.1k |   entropy->saved = state; | 
| 652 | 50.1k |   return TRUE; | 
| 653 | 50.1k | } | 
| 654 |  |  | 
| 655 |  |  | 
| 656 |  | #if defined(__has_feature) | 
| 657 |  | #if __has_feature(undefined_behavior_sanitizer) | 
| 658 |  | __attribute__((no_sanitize("signed-integer-overflow"), | 
| 659 |  |                no_sanitize("unsigned-integer-overflow"))) | 
| 660 |  | #endif | 
| 661 |  | #endif | 
| 662 |  | LOCAL(boolean) | 
| 663 |  | decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 664 | 135k | { | 
| 665 | 135k |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; | 
| 666 | 135k |   BITREAD_STATE_VARS; | 
| 667 | 135k |   JOCTET *buffer; | 
| 668 | 135k |   int blkn; | 
| 669 | 135k |   savable_state state; | 
| 670 |  |   /* Outer loop handles each block in the MCU */ | 
| 671 |  |  | 
| 672 |  |   /* Load up working state */ | 
| 673 | 135k |   BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | 
| 674 | 135k |   buffer = (JOCTET *)br_state.next_input_byte; | 
| 675 | 135k |   state = entropy->saved; | 
| 676 |  |  | 
| 677 | 432k |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
| 678 | 297k |     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; | 
| 679 | 297k |     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; | 
| 680 | 297k |     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; | 
| 681 | 297k |     register int s, k, r, l; | 
| 682 |  |  | 
| 683 | 297k |     HUFF_DECODE_FAST(s, l, dctbl); | 
| 684 | 297k |     if (s) { | 
| 685 | 175k |       FILL_BIT_BUFFER_FAST | 
| 686 | 175k |       r = GET_BITS(s); | 
| 687 | 175k |       s = HUFF_EXTEND(r, s); | 
| 688 | 175k |     } | 
| 689 |  |  | 
| 690 | 297k |     if (entropy->dc_needed[blkn]) { | 
| 691 | 297k |       int ci = cinfo->MCU_membership[blkn]; | 
| 692 |  |       /* Refer to the comment in decode_mcu_slow() regarding the supression of | 
| 693 |  |        * a UBSan integer overflow error in this line of code. | 
| 694 |  |        */ | 
| 695 | 297k |       s += state.last_dc_val[ci]; | 
| 696 | 297k |       state.last_dc_val[ci] = s; | 
| 697 | 297k |       if (block) | 
| 698 | 297k |         (*block)[0] = (JCOEF)s; | 
| 699 | 297k |     } | 
| 700 |  |  | 
| 701 | 297k |     if (entropy->ac_needed[blkn] && block) { | 
| 702 |  |  | 
| 703 | 1.17M |       for (k = 1; k < DCTSIZE2; k++) { | 
| 704 | 1.15M |         HUFF_DECODE_FAST(s, l, actbl); | 
| 705 | 1.15M |         r = s >> 4; | 
| 706 | 1.15M |         s &= 15; | 
| 707 |  |  | 
| 708 | 1.15M |         if (s) { | 
| 709 | 877k |           k += r; | 
| 710 | 877k |           FILL_BIT_BUFFER_FAST | 
| 711 | 877k |           r = GET_BITS(s); | 
| 712 | 877k |           s = HUFF_EXTEND(r, s); | 
| 713 | 877k |           (*block)[jpeg_natural_order[k]] = (JCOEF)s; | 
| 714 | 877k |         } else { | 
| 715 | 280k |           if (r != 15) break; | 
| 716 | 1.01k |           k += 15; | 
| 717 | 1.01k |         } | 
| 718 | 1.15M |       } | 
| 719 |  |  | 
| 720 | 297k |     } else { | 
| 721 |  | 
 | 
| 722 | 0 |       for (k = 1; k < DCTSIZE2; k++) { | 
| 723 | 0 |         HUFF_DECODE_FAST(s, l, actbl); | 
| 724 | 0 |         r = s >> 4; | 
| 725 | 0 |         s &= 15; | 
| 726 |  | 
 | 
| 727 | 0 |         if (s) { | 
| 728 | 0 |           k += r; | 
| 729 | 0 |           FILL_BIT_BUFFER_FAST | 
| 730 | 0 |           DROP_BITS(s); | 
| 731 | 0 |         } else { | 
| 732 | 0 |           if (r != 15) break; | 
| 733 | 0 |           k += 15; | 
| 734 | 0 |         } | 
| 735 | 0 |       } | 
| 736 | 0 |     } | 
| 737 | 297k |   } | 
| 738 |  |  | 
| 739 | 135k |   if (cinfo->unread_marker != 0) { | 
| 740 | 8.99k |     cinfo->unread_marker = 0; | 
| 741 | 8.99k |     return FALSE; | 
| 742 | 8.99k |   } | 
| 743 |  |  | 
| 744 | 126k |   br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); | 
| 745 | 126k |   br_state.next_input_byte = buffer; | 
| 746 | 126k |   BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | 
| 747 | 126k |   entropy->saved = state; | 
| 748 | 126k |   return TRUE; | 
| 749 | 135k | } | 
| 750 |  |  | 
| 751 |  |  | 
| 752 |  | /* | 
| 753 |  |  * Decode and return one MCU's worth of Huffman-compressed coefficients. | 
| 754 |  |  * The coefficients are reordered from zigzag order into natural array order, | 
| 755 |  |  * but are not dequantized. | 
| 756 |  |  * | 
| 757 |  |  * The i'th block of the MCU is stored into the block pointed to by | 
| 758 |  |  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. | 
| 759 |  |  * (Wholesale zeroing is usually a little faster than retail...) | 
| 760 |  |  * | 
| 761 |  |  * Returns FALSE if data source requested suspension.  In that case no | 
| 762 |  |  * changes have been made to permanent state.  (Exception: some output | 
| 763 |  |  * coefficients may already have been assigned.  This is harmless for | 
| 764 |  |  * this module, since we'll just re-assign them on the next call.) | 
| 765 |  |  */ | 
| 766 |  |  | 
| 767 | 9.17M | #define BUFSIZE  (DCTSIZE2 * 8) | 
| 768 |  |  | 
| 769 |  | METHODDEF(boolean) | 
| 770 |  | decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
| 771 | 9.17M | { | 
| 772 | 9.17M |   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; | 
| 773 | 9.17M |   int usefast = 1; | 
| 774 |  |  | 
| 775 |  |   /* Process restart marker if needed; may have to suspend */ | 
| 776 | 9.17M |   if (cinfo->restart_interval) { | 
| 777 | 333k |     if (entropy->restarts_to_go == 0) | 
| 778 | 22.5k |       if (!process_restart(cinfo)) | 
| 779 | 0 |         return FALSE; | 
| 780 | 333k |     usefast = 0; | 
| 781 | 333k |   } | 
| 782 |  |  | 
| 783 | 9.17M |   if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU || | 
| 784 | 9.17M |       cinfo->unread_marker != 0) | 
| 785 | 9.03M |     usefast = 0; | 
| 786 |  |  | 
| 787 |  |   /* If we've run out of data, just leave the MCU set to zeroes. | 
| 788 |  |    * This way, we return uniform gray for the remainder of the segment. | 
| 789 |  |    */ | 
| 790 | 9.17M |   if (!entropy->pub.insufficient_data) { | 
| 791 |  |  | 
| 792 | 176k |     if (usefast) { | 
| 793 | 135k |       if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow; | 
| 794 | 135k |     } else { | 
| 795 | 50.1k | use_slow: | 
| 796 | 50.1k |       if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; | 
| 797 | 50.1k |     } | 
| 798 |  |  | 
| 799 | 176k |   } | 
| 800 |  |  | 
| 801 |  |   /* Account for restart interval (no-op if not using restarts) */ | 
| 802 | 9.17M |   if (cinfo->restart_interval) | 
| 803 | 333k |     entropy->restarts_to_go--; | 
| 804 |  |  | 
| 805 | 9.17M |   return TRUE; | 
| 806 | 9.17M | } | 
| 807 |  |  | 
| 808 |  |  | 
| 809 |  | /* | 
| 810 |  |  * Module initialization routine for Huffman entropy decoding. | 
| 811 |  |  */ | 
| 812 |  |  | 
| 813 |  | GLOBAL(void) | 
| 814 |  | jinit_huff_decoder(j_decompress_ptr cinfo) | 
| 815 | 1.06k | { | 
| 816 | 1.06k |   huff_entropy_ptr entropy; | 
| 817 | 1.06k |   int i; | 
| 818 |  |  | 
| 819 |  |   /* Motion JPEG frames typically do not include the Huffman tables if they | 
| 820 |  |      are the default tables.  Thus, if the tables are not set by the time | 
| 821 |  |      the Huffman decoder is initialized (usually within the body of | 
| 822 |  |      jpeg_start_decompress()), we set them to default values. */ | 
| 823 | 1.06k |   std_huff_tables((j_common_ptr)cinfo); | 
| 824 |  |  | 
| 825 | 1.06k |   entropy = (huff_entropy_ptr) | 
| 826 | 1.06k |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 827 | 1.06k |                                 sizeof(huff_entropy_decoder)); | 
| 828 | 1.06k |   cinfo->entropy = (struct jpeg_entropy_decoder *)entropy; | 
| 829 | 1.06k |   entropy->pub.start_pass = start_pass_huff_decoder; | 
| 830 | 1.06k |   entropy->pub.decode_mcu = decode_mcu; | 
| 831 |  |  | 
| 832 |  |   /* Mark tables unallocated */ | 
| 833 | 5.34k |   for (i = 0; i < NUM_HUFF_TBLS; i++) { | 
| 834 | 4.27k |     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; | 
| 835 | 4.27k |   } | 
| 836 | 1.06k | } |