Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
7.72k
{
81
7.72k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
7.72k
  int ci, blkn, dctbl, actbl;
83
7.72k
  d_derived_tbl **pdtbl;
84
7.72k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
7.72k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
7.72k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
7.01k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
23.6k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
15.9k
    compptr = cinfo->cur_comp_info[ci];
96
15.9k
    dctbl = compptr->dc_tbl_no;
97
15.9k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
15.9k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
15.9k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
15.9k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
15.9k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
15.9k
    entropy->saved.last_dc_val[ci] = 0;
106
15.9k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
36.1k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
28.4k
    ci = cinfo->MCU_membership[blkn];
111
28.4k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
28.4k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
28.4k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
28.4k
    if (compptr->component_needed) {
117
28.3k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
28.3k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
28.3k
    } else {
121
50
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
50
    }
123
28.4k
  }
124
125
  /* Initialize bitread state variables */
126
7.72k
  entropy->bitstate.bits_left = 0;
127
7.72k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
7.72k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
7.72k
  entropy->restarts_to_go = cinfo->restart_interval;
132
7.72k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
43.4k
{
146
43.4k
  JHUFF_TBL *htbl;
147
43.4k
  d_derived_tbl *dtbl;
148
43.4k
  int p, i, l, si, numsymbols;
149
43.4k
  int lookbits, ctr;
150
43.4k
  char huffsize[257];
151
43.4k
  unsigned int huffcode[257];
152
43.4k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
43.4k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
37
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
43.4k
  htbl =
162
43.4k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
43.4k
  if (htbl == NULL)
164
17
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
43.4k
  if (*pdtbl == NULL)
168
3.99k
    *pdtbl = (d_derived_tbl *)
169
3.99k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
3.99k
                                  sizeof(d_derived_tbl));
171
43.4k
  dtbl = *pdtbl;
172
43.4k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
43.4k
  p = 0;
177
737k
  for (l = 1; l <= 16; l++) {
178
694k
    i = (int)htbl->bits[l];
179
694k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
2.18M
    while (i--)
182
1.49M
      huffsize[p++] = (char)l;
183
694k
  }
184
43.4k
  huffsize[p] = 0;
185
43.4k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
43.4k
  code = 0;
191
43.4k
  si = huffsize[0];
192
43.4k
  p = 0;
193
419k
  while (huffsize[p]) {
194
1.86M
    while (((int)huffsize[p]) == si) {
195
1.49M
      huffcode[p++] = code;
196
1.49M
      code++;
197
1.49M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
376k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
2
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
376k
    code <<= 1;
204
376k
    si++;
205
376k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
43.4k
  p = 0;
210
737k
  for (l = 1; l <= 16; l++) {
211
694k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
283k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
283k
      p += htbl->bits[l];
217
283k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
410k
    } else {
219
410k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
410k
    }
221
694k
  }
222
43.4k
  dtbl->valoffset[17] = 0;
223
43.4k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
11.1M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
11.1M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
43.4k
  p = 0;
236
390k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
754k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
407k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
10.2M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
9.87M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
9.87M
        lookbits++;
244
9.87M
      }
245
407k
    }
246
347k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
43.4k
  if (isDC) {
255
197k
    for (i = 0; i < numsymbols; i++) {
256
172k
      int sym = htbl->huffval[i];
257
172k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
9
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
172k
    }
260
25.0k
  }
261
43.4k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
3.79M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
5.49M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
5.49M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
5.49M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
5.49M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
5.49M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
555k
    while (bits_left < MIN_GET_BITS) {
303
497k
      register int c;
304
305
      /* Attempt to read a byte */
306
497k
      if (bytes_in_buffer == 0) {
307
1.66k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.66k
        next_input_byte = cinfo->src->next_input_byte;
310
1.66k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.66k
      }
312
497k
      bytes_in_buffer--;
313
497k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
497k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
50.0k
        do {
323
50.0k
          if (bytes_in_buffer == 0) {
324
37
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
37
            next_input_byte = cinfo->src->next_input_byte;
327
37
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
37
          }
329
50.0k
          bytes_in_buffer--;
330
50.0k
          c = *next_input_byte++;
331
50.0k
        } while (c == 0xFF);
332
333
31.5k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
11.8k
          c = 0xFF;
336
19.6k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
19.6k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
19.6k
          goto no_more_bytes;
348
19.6k
        }
349
31.5k
      }
350
351
      /* OK, load c into get_buffer */
352
478k
      get_buffer = (get_buffer << 8) | c;
353
478k
      bits_left += 8;
354
478k
    } /* end while */
355
5.41M
  } else {
356
5.43M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
5.43M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.61M
      if (!cinfo->entropy->insufficient_data) {
368
19.4k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
19.4k
        cinfo->entropy->insufficient_data = TRUE;
370
19.4k
      }
371
      /* Fill the buffer with zero bits */
372
1.61M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.61M
      bits_left = MIN_GET_BITS;
374
1.61M
    }
375
5.43M
  }
376
377
  /* Unload the local registers */
378
5.49M
  state->next_input_byte = next_input_byte;
379
5.49M
  state->bytes_in_buffer = bytes_in_buffer;
380
5.49M
  state->get_buffer = get_buffer;
381
5.49M
  state->bits_left = bits_left;
382
383
5.49M
  return TRUE;
384
5.49M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
919k
#define GET_BYTE { \
392
919k
  register int c0, c1; \
393
919k
  c0 = *buffer++; \
394
919k
  c1 = *buffer; \
395
919k
  /* Pre-execute most common case */ \
396
919k
  get_buffer = (get_buffer << 8) | c0; \
397
919k
  bits_left += 8; \
398
919k
  if (c0 == 0xFF) { \
399
132k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
132k
    buffer++; \
401
132k
    if (c1 != 0) { \
402
93.1k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
93.1k
      cinfo->unread_marker = c1; \
404
93.1k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
93.1k
      buffer -= 2; \
406
93.1k
      get_buffer &= ~0xFF; \
407
93.1k
    } \
408
132k
  } \
409
919k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
2.50M
  if (bits_left <= 16) { \
416
153k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
153k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
3.83M
{
440
3.83M
  register int l = min_bits;
441
3.83M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
3.83M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
3.83M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
4.98M
  while (code > htbl->maxcode[l]) {
453
1.14M
    code <<= 1;
454
1.14M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
1.14M
    code |= GET_BITS(1);
456
1.14M
    l++;
457
1.14M
  }
458
459
  /* Unload the local registers */
460
3.83M
  state->get_buffer = get_buffer;
461
3.83M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
3.83M
  if (l > 16) {
466
19.6k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
19.6k
    return 0;                   /* fake a zero as the safest result */
468
19.6k
  }
469
470
3.81M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
3.83M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.77M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.77M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
22.5k
{
514
22.5k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
22.5k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
22.5k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
22.5k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
22.5k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
45.6k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
23.0k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
22.5k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
22.5k
  if (cinfo->unread_marker == 0)
539
643
    entropy->pub.insufficient_data = FALSE;
540
541
22.5k
  return TRUE;
542
22.5k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
50.1k
{
554
50.1k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
50.1k
  BITREAD_STATE_VARS;
556
50.1k
  int blkn;
557
50.1k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
50.1k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
50.1k
  state = entropy->saved;
563
564
165k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
114k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
114k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
114k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
114k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
114k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
114k
    if (s) {
575
60.8k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
60.8k
      r = GET_BITS(s);
577
60.8k
      s = HUFF_EXTEND(r, s);
578
60.8k
    }
579
580
114k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
114k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
114k
      s += state.last_dc_val[ci];
592
114k
      state.last_dc_val[ci] = s;
593
114k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
114k
        (*block)[0] = (JCOEF)s;
596
114k
      }
597
114k
    }
598
599
114k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
778k
      for (k = 1; k < DCTSIZE2; k++) {
604
766k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
766k
        r = s >> 4;
607
766k
        s &= 15;
608
609
766k
        if (s) {
610
661k
          k += r;
611
661k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
661k
          r = GET_BITS(s);
613
661k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
661k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
661k
        } else {
620
105k
          if (r != 15)
621
103k
            break;
622
2.01k
          k += 15;
623
2.01k
        }
624
766k
      }
625
626
114k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
114k
  }
648
649
  /* Completed MCU, so update state */
650
50.1k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
50.1k
  entropy->saved = state;
652
50.1k
  return TRUE;
653
50.1k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
135k
{
665
135k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
135k
  BITREAD_STATE_VARS;
667
135k
  JOCTET *buffer;
668
135k
  int blkn;
669
135k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
135k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
135k
  buffer = (JOCTET *)br_state.next_input_byte;
675
135k
  state = entropy->saved;
676
677
432k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
297k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
297k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
297k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
297k
    register int s, k, r, l;
682
683
297k
    HUFF_DECODE_FAST(s, l, dctbl);
684
297k
    if (s) {
685
175k
      FILL_BIT_BUFFER_FAST
686
175k
      r = GET_BITS(s);
687
175k
      s = HUFF_EXTEND(r, s);
688
175k
    }
689
690
297k
    if (entropy->dc_needed[blkn]) {
691
297k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
297k
      s += state.last_dc_val[ci];
696
297k
      state.last_dc_val[ci] = s;
697
297k
      if (block)
698
297k
        (*block)[0] = (JCOEF)s;
699
297k
    }
700
701
297k
    if (entropy->ac_needed[blkn] && block) {
702
703
1.17M
      for (k = 1; k < DCTSIZE2; k++) {
704
1.15M
        HUFF_DECODE_FAST(s, l, actbl);
705
1.15M
        r = s >> 4;
706
1.15M
        s &= 15;
707
708
1.15M
        if (s) {
709
877k
          k += r;
710
877k
          FILL_BIT_BUFFER_FAST
711
877k
          r = GET_BITS(s);
712
877k
          s = HUFF_EXTEND(r, s);
713
877k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
877k
        } else {
715
280k
          if (r != 15) break;
716
1.01k
          k += 15;
717
1.01k
        }
718
1.15M
      }
719
720
297k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
297k
  }
738
739
135k
  if (cinfo->unread_marker != 0) {
740
8.99k
    cinfo->unread_marker = 0;
741
8.99k
    return FALSE;
742
8.99k
  }
743
744
126k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
126k
  br_state.next_input_byte = buffer;
746
126k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
126k
  entropy->saved = state;
748
126k
  return TRUE;
749
135k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
9.17M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
9.17M
{
772
9.17M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
9.17M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
9.17M
  if (cinfo->restart_interval) {
777
333k
    if (entropy->restarts_to_go == 0)
778
22.5k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
333k
    usefast = 0;
781
333k
  }
782
783
9.17M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
9.17M
      cinfo->unread_marker != 0)
785
9.03M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
9.17M
  if (!entropy->pub.insufficient_data) {
791
792
176k
    if (usefast) {
793
135k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
135k
    } else {
795
50.1k
use_slow:
796
50.1k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
50.1k
    }
798
799
176k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
9.17M
  if (cinfo->restart_interval)
803
333k
    entropy->restarts_to_go--;
804
805
9.17M
  return TRUE;
806
9.17M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.06k
{
816
1.06k
  huff_entropy_ptr entropy;
817
1.06k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.06k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.06k
  entropy = (huff_entropy_ptr)
826
1.06k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.06k
                                sizeof(huff_entropy_decoder));
828
1.06k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.06k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.06k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
5.34k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
4.27k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
4.27k
  }
836
1.06k
}