/src/libjpeg-turbo.main/jquant1.c
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | /* | 
| 2 |  |  * jquant1.c | 
| 3 |  |  * | 
| 4 |  |  * This file was part of the Independent JPEG Group's software: | 
| 5 |  |  * Copyright (C) 1991-1996, Thomas G. Lane. | 
| 6 |  |  * libjpeg-turbo Modifications: | 
| 7 |  |  * Copyright (C) 2009, 2015, 2022, D. R. Commander. | 
| 8 |  |  * For conditions of distribution and use, see the accompanying README.ijg | 
| 9 |  |  * file. | 
| 10 |  |  * | 
| 11 |  |  * This file contains 1-pass color quantization (color mapping) routines. | 
| 12 |  |  * These routines provide mapping to a fixed color map using equally spaced | 
| 13 |  |  * color values.  Optional Floyd-Steinberg or ordered dithering is available. | 
| 14 |  |  */ | 
| 15 |  |  | 
| 16 |  | #define JPEG_INTERNALS | 
| 17 |  | #include "jinclude.h" | 
| 18 |  | #include "jpeglib.h" | 
| 19 |  | #include "jsamplecomp.h" | 
| 20 |  |  | 
| 21 |  | #if defined(QUANT_1PASS_SUPPORTED) && \ | 
| 22 |  |     (BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)) | 
| 23 |  |  | 
| 24 |  |  | 
| 25 |  | /* | 
| 26 |  |  * The main purpose of 1-pass quantization is to provide a fast, if not very | 
| 27 |  |  * high quality, colormapped output capability.  A 2-pass quantizer usually | 
| 28 |  |  * gives better visual quality; however, for quantized grayscale output this | 
| 29 |  |  * quantizer is perfectly adequate.  Dithering is highly recommended with this | 
| 30 |  |  * quantizer, though you can turn it off if you really want to. | 
| 31 |  |  * | 
| 32 |  |  * In 1-pass quantization the colormap must be chosen in advance of seeing the | 
| 33 |  |  * image.  We use a map consisting of all combinations of Ncolors[i] color | 
| 34 |  |  * values for the i'th component.  The Ncolors[] values are chosen so that | 
| 35 |  |  * their product, the total number of colors, is no more than that requested. | 
| 36 |  |  * (In most cases, the product will be somewhat less.) | 
| 37 |  |  * | 
| 38 |  |  * Since the colormap is orthogonal, the representative value for each color | 
| 39 |  |  * component can be determined without considering the other components; | 
| 40 |  |  * then these indexes can be combined into a colormap index by a standard | 
| 41 |  |  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved | 
| 42 |  |  * can be precalculated and stored in the lookup table colorindex[]. | 
| 43 |  |  * colorindex[i][j] maps pixel value j in component i to the nearest | 
| 44 |  |  * representative value (grid plane) for that component; this index is | 
| 45 |  |  * multiplied by the array stride for component i, so that the | 
| 46 |  |  * index of the colormap entry closest to a given pixel value is just | 
| 47 |  |  *    sum( colorindex[component-number][pixel-component-value] ) | 
| 48 |  |  * Aside from being fast, this scheme allows for variable spacing between | 
| 49 |  |  * representative values with no additional lookup cost. | 
| 50 |  |  * | 
| 51 |  |  * If gamma correction has been applied in color conversion, it might be wise | 
| 52 |  |  * to adjust the color grid spacing so that the representative colors are | 
| 53 |  |  * equidistant in linear space.  At this writing, gamma correction is not | 
| 54 |  |  * implemented by jdcolor, so nothing is done here. | 
| 55 |  |  */ | 
| 56 |  |  | 
| 57 |  |  | 
| 58 |  | /* Declarations for ordered dithering. | 
| 59 |  |  * | 
| 60 |  |  * We use a standard 16x16 ordered dither array.  The basic concept of ordered | 
| 61 |  |  * dithering is described in many references, for instance Dale Schumacher's | 
| 62 |  |  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | 
| 63 |  |  * In place of Schumacher's comparisons against a "threshold" value, we add a | 
| 64 |  |  * "dither" value to the input pixel and then round the result to the nearest | 
| 65 |  |  * output value.  The dither value is equivalent to (0.5 - threshold) times | 
| 66 |  |  * the distance between output values.  For ordered dithering, we assume that | 
| 67 |  |  * the output colors are equally spaced; if not, results will probably be | 
| 68 |  |  * worse, since the dither may be too much or too little at a given point. | 
| 69 |  |  * | 
| 70 |  |  * The normal calculation would be to form pixel value + dither, range-limit | 
| 71 |  |  * this to 0.._MAXJSAMPLE, and then index into the colorindex table as usual. | 
| 72 |  |  * We can skip the separate range-limiting step by extending the colorindex | 
| 73 |  |  * table in both directions. | 
| 74 |  |  */ | 
| 75 |  |  | 
| 76 | 0 | #define ODITHER_SIZE  16        /* dimension of dither matrix */ | 
| 77 |  | /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | 
| 78 | 0 | #define ODITHER_CELLS  (ODITHER_SIZE * ODITHER_SIZE) /* # cells in matrix */ | 
| 79 | 0 | #define ODITHER_MASK  (ODITHER_SIZE - 1) /* mask for wrapping around | 
| 80 |  |                                             counters */ | 
| 81 |  |  | 
| 82 |  | typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; | 
| 83 |  | typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; | 
| 84 |  |  | 
| 85 |  | static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { | 
| 86 |  |   /* Bayer's order-4 dither array.  Generated by the code given in | 
| 87 |  |    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | 
| 88 |  |    * The values in this array must range from 0 to ODITHER_CELLS-1. | 
| 89 |  |    */ | 
| 90 |  |   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 }, | 
| 91 |  |   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | 
| 92 |  |   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | 
| 93 |  |   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | 
| 94 |  |   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 }, | 
| 95 |  |   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | 
| 96 |  |   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | 
| 97 |  |   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | 
| 98 |  |   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 }, | 
| 99 |  |   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | 
| 100 |  |   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | 
| 101 |  |   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | 
| 102 |  |   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 }, | 
| 103 |  |   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | 
| 104 |  |   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | 
| 105 |  |   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | 
| 106 |  | }; | 
| 107 |  |  | 
| 108 |  |  | 
| 109 |  | /* Declarations for Floyd-Steinberg dithering. | 
| 110 |  |  * | 
| 111 |  |  * Errors are accumulated into the array fserrors[], at a resolution of | 
| 112 |  |  * 1/16th of a pixel count.  The error at a given pixel is propagated | 
| 113 |  |  * to its not-yet-processed neighbors using the standard F-S fractions, | 
| 114 |  |  *              ...     (here)  7/16 | 
| 115 |  |  *              3/16    5/16    1/16 | 
| 116 |  |  * We work left-to-right on even rows, right-to-left on odd rows. | 
| 117 |  |  * | 
| 118 |  |  * We can get away with a single array (holding one row's worth of errors) | 
| 119 |  |  * by using it to store the current row's errors at pixel columns not yet | 
| 120 |  |  * processed, but the next row's errors at columns already processed.  We | 
| 121 |  |  * need only a few extra variables to hold the errors immediately around the | 
| 122 |  |  * current column.  (If we are lucky, those variables are in registers, but | 
| 123 |  |  * even if not, they're probably cheaper to access than array elements are.) | 
| 124 |  |  * | 
| 125 |  |  * The fserrors[] array is indexed [component#][position]. | 
| 126 |  |  * We provide (#columns + 2) entries per component; the extra entry at each | 
| 127 |  |  * end saves us from special-casing the first and last pixels. | 
| 128 |  |  */ | 
| 129 |  |  | 
| 130 |  | #if BITS_IN_JSAMPLE == 8 | 
| 131 |  | typedef INT16 FSERROR;          /* 16 bits should be enough */ | 
| 132 |  | typedef int LOCFSERROR;         /* use 'int' for calculation temps */ | 
| 133 |  | #else | 
| 134 |  | typedef JLONG FSERROR;          /* may need more than 16 bits */ | 
| 135 |  | typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */ | 
| 136 |  | #endif | 
| 137 |  |  | 
| 138 |  | typedef FSERROR *FSERRPTR;      /* pointer to error array */ | 
| 139 |  |  | 
| 140 |  |  | 
| 141 |  | /* Private subobject */ | 
| 142 |  |  | 
| 143 | 0 | #define MAX_Q_COMPS  4          /* max components I can handle */ | 
| 144 |  |  | 
| 145 |  | typedef struct { | 
| 146 |  |   struct jpeg_color_quantizer pub; /* public fields */ | 
| 147 |  |  | 
| 148 |  |   /* Initially allocated colormap is saved here */ | 
| 149 |  |   _JSAMPARRAY sv_colormap;      /* The color map as a 2-D pixel array */ | 
| 150 |  |   int sv_actual;                /* number of entries in use */ | 
| 151 |  |  | 
| 152 |  |   _JSAMPARRAY colorindex;       /* Precomputed mapping for speed */ | 
| 153 |  |   /* colorindex[i][j] = index of color closest to pixel value j in component i, | 
| 154 |  |    * premultiplied as described above.  Since colormap indexes must fit into | 
| 155 |  |    * _JSAMPLEs, the entries of this array will too. | 
| 156 |  |    */ | 
| 157 |  |   boolean is_padded;            /* is the colorindex padded for odither? */ | 
| 158 |  |  | 
| 159 |  |   int Ncolors[MAX_Q_COMPS];     /* # of values allocated to each component */ | 
| 160 |  |  | 
| 161 |  |   /* Variables for ordered dithering */ | 
| 162 |  |   int row_index;                /* cur row's vertical index in dither matrix */ | 
| 163 |  |   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ | 
| 164 |  |  | 
| 165 |  |   /* Variables for Floyd-Steinberg dithering */ | 
| 166 |  |   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ | 
| 167 |  |   boolean on_odd_row;           /* flag to remember which row we are on */ | 
| 168 |  | } my_cquantizer; | 
| 169 |  |  | 
| 170 |  | typedef my_cquantizer *my_cquantize_ptr; | 
| 171 |  |  | 
| 172 |  |  | 
| 173 |  | /* | 
| 174 |  |  * Policy-making subroutines for create_colormap and create_colorindex. | 
| 175 |  |  * These routines determine the colormap to be used.  The rest of the module | 
| 176 |  |  * only assumes that the colormap is orthogonal. | 
| 177 |  |  * | 
| 178 |  |  *  * select_ncolors decides how to divvy up the available colors | 
| 179 |  |  *    among the components. | 
| 180 |  |  *  * output_value defines the set of representative values for a component. | 
| 181 |  |  *  * largest_input_value defines the mapping from input values to | 
| 182 |  |  *    representative values for a component. | 
| 183 |  |  * Note that the latter two routines may impose different policies for | 
| 184 |  |  * different components, though this is not currently done. | 
| 185 |  |  */ | 
| 186 |  |  | 
| 187 |  |  | 
| 188 |  | LOCAL(int) | 
| 189 |  | select_ncolors(j_decompress_ptr cinfo, int Ncolors[]) | 
| 190 |  | /* Determine allocation of desired colors to components, */ | 
| 191 |  | /* and fill in Ncolors[] array to indicate choice. */ | 
| 192 |  | /* Return value is total number of colors (product of Ncolors[] values). */ | 
| 193 | 0 | { | 
| 194 | 0 |   int nc = cinfo->out_color_components; /* number of color components */ | 
| 195 | 0 |   int max_colors = cinfo->desired_number_of_colors; | 
| 196 | 0 |   int total_colors, iroot, i, j; | 
| 197 | 0 |   boolean changed; | 
| 198 | 0 |   long temp; | 
| 199 | 0 |   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; | 
| 200 | 0 |   RGB_order[0] = rgb_green[cinfo->out_color_space]; | 
| 201 | 0 |   RGB_order[1] = rgb_red[cinfo->out_color_space]; | 
| 202 | 0 |   RGB_order[2] = rgb_blue[cinfo->out_color_space]; | 
| 203 |  |  | 
| 204 |  |   /* We can allocate at least the nc'th root of max_colors per component. */ | 
| 205 |  |   /* Compute floor(nc'th root of max_colors). */ | 
| 206 | 0 |   iroot = 1; | 
| 207 | 0 |   do { | 
| 208 | 0 |     iroot++; | 
| 209 | 0 |     temp = iroot;               /* set temp = iroot ** nc */ | 
| 210 | 0 |     for (i = 1; i < nc; i++) | 
| 211 | 0 |       temp *= iroot; | 
| 212 | 0 |   } while (temp <= (long)max_colors); /* repeat till iroot exceeds root */ | 
| 213 | 0 |   iroot--;                      /* now iroot = floor(root) */ | 
| 214 |  |  | 
| 215 |  |   /* Must have at least 2 color values per component */ | 
| 216 | 0 |   if (iroot < 2) | 
| 217 | 0 |     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int)temp); | 
| 218 |  |  | 
| 219 |  |   /* Initialize to iroot color values for each component */ | 
| 220 | 0 |   total_colors = 1; | 
| 221 | 0 |   for (i = 0; i < nc; i++) { | 
| 222 | 0 |     Ncolors[i] = iroot; | 
| 223 | 0 |     total_colors *= iroot; | 
| 224 | 0 |   } | 
| 225 |  |   /* We may be able to increment the count for one or more components without | 
| 226 |  |    * exceeding max_colors, though we know not all can be incremented. | 
| 227 |  |    * Sometimes, the first component can be incremented more than once! | 
| 228 |  |    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | 
| 229 |  |    * In RGB colorspace, try to increment G first, then R, then B. | 
| 230 |  |    */ | 
| 231 | 0 |   do { | 
| 232 | 0 |     changed = FALSE; | 
| 233 | 0 |     for (i = 0; i < nc; i++) { | 
| 234 | 0 |       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | 
| 235 |  |       /* calculate new total_colors if Ncolors[j] is incremented */ | 
| 236 | 0 |       temp = total_colors / Ncolors[j]; | 
| 237 | 0 |       temp *= Ncolors[j] + 1;   /* done in long arith to avoid oflo */ | 
| 238 | 0 |       if (temp > (long)max_colors) | 
| 239 | 0 |         break;                  /* won't fit, done with this pass */ | 
| 240 | 0 |       Ncolors[j]++;             /* OK, apply the increment */ | 
| 241 | 0 |       total_colors = (int)temp; | 
| 242 | 0 |       changed = TRUE; | 
| 243 | 0 |     } | 
| 244 | 0 |   } while (changed); | 
| 245 |  | 
 | 
| 246 | 0 |   return total_colors; | 
| 247 | 0 | } | 
| 248 |  |  | 
| 249 |  |  | 
| 250 |  | LOCAL(int) | 
| 251 |  | output_value(j_decompress_ptr cinfo, int ci, int j, int maxj) | 
| 252 |  | /* Return j'th output value, where j will range from 0 to maxj */ | 
| 253 |  | /* The output values must fall in 0.._MAXJSAMPLE in increasing order */ | 
| 254 | 0 | { | 
| 255 |  |   /* We always provide values 0 and _MAXJSAMPLE for each component; | 
| 256 |  |    * any additional values are equally spaced between these limits. | 
| 257 |  |    * (Forcing the upper and lower values to the limits ensures that | 
| 258 |  |    * dithering can't produce a color outside the selected gamut.) | 
| 259 |  |    */ | 
| 260 | 0 |   return (int)(((JLONG)j * _MAXJSAMPLE + maxj / 2) / maxj); | 
| 261 | 0 | } | 
| 262 |  |  | 
| 263 |  |  | 
| 264 |  | LOCAL(int) | 
| 265 |  | largest_input_value(j_decompress_ptr cinfo, int ci, int j, int maxj) | 
| 266 |  | /* Return largest input value that should map to j'th output value */ | 
| 267 |  | /* Must have largest(j=0) >= 0, and largest(j=maxj) >= _MAXJSAMPLE */ | 
| 268 | 0 | { | 
| 269 |  |   /* Breakpoints are halfway between values returned by output_value */ | 
| 270 | 0 |   return (int)(((JLONG)(2 * j + 1) * _MAXJSAMPLE + maxj) / (2 * maxj)); | 
| 271 | 0 | } | 
| 272 |  |  | 
| 273 |  |  | 
| 274 |  | /* | 
| 275 |  |  * Create the colormap. | 
| 276 |  |  */ | 
| 277 |  |  | 
| 278 |  | LOCAL(void) | 
| 279 |  | create_colormap(j_decompress_ptr cinfo) | 
| 280 | 0 | { | 
| 281 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 282 | 0 |   _JSAMPARRAY colormap;         /* Created colormap */ | 
| 283 | 0 |   int total_colors;             /* Number of distinct output colors */ | 
| 284 | 0 |   int i, j, k, nci, blksize, blkdist, ptr, val; | 
| 285 |  |  | 
| 286 |  |   /* Select number of colors for each component */ | 
| 287 | 0 |   total_colors = select_ncolors(cinfo, cquantize->Ncolors); | 
| 288 |  |  | 
| 289 |  |   /* Report selected color counts */ | 
| 290 | 0 |   if (cinfo->out_color_components == 3) | 
| 291 | 0 |     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors, | 
| 292 | 0 |              cquantize->Ncolors[0], cquantize->Ncolors[1], | 
| 293 | 0 |              cquantize->Ncolors[2]); | 
| 294 | 0 |   else | 
| 295 | 0 |     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); | 
| 296 |  |  | 
| 297 |  |   /* Allocate and fill in the colormap. */ | 
| 298 |  |   /* The colors are ordered in the map in standard row-major order, */ | 
| 299 |  |   /* i.e. rightmost (highest-indexed) color changes most rapidly. */ | 
| 300 |  | 
 | 
| 301 | 0 |   colormap = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray) | 
| 302 | 0 |     ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 303 | 0 |      (JDIMENSION)total_colors, (JDIMENSION)cinfo->out_color_components); | 
| 304 |  |  | 
| 305 |  |   /* blksize is number of adjacent repeated entries for a component */ | 
| 306 |  |   /* blkdist is distance between groups of identical entries for a component */ | 
| 307 | 0 |   blkdist = total_colors; | 
| 308 |  | 
 | 
| 309 | 0 |   for (i = 0; i < cinfo->out_color_components; i++) { | 
| 310 |  |     /* fill in colormap entries for i'th color component */ | 
| 311 | 0 |     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
| 312 | 0 |     blksize = blkdist / nci; | 
| 313 | 0 |     for (j = 0; j < nci; j++) { | 
| 314 |  |       /* Compute j'th output value (out of nci) for component */ | 
| 315 | 0 |       val = output_value(cinfo, i, j, nci - 1); | 
| 316 |  |       /* Fill in all colormap entries that have this value of this component */ | 
| 317 | 0 |       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | 
| 318 |  |         /* fill in blksize entries beginning at ptr */ | 
| 319 | 0 |         for (k = 0; k < blksize; k++) | 
| 320 | 0 |           colormap[i][ptr + k] = (_JSAMPLE)val; | 
| 321 | 0 |       } | 
| 322 | 0 |     } | 
| 323 | 0 |     blkdist = blksize;          /* blksize of this color is blkdist of next */ | 
| 324 | 0 |   } | 
| 325 |  |  | 
| 326 |  |   /* Save the colormap in private storage, | 
| 327 |  |    * where it will survive color quantization mode changes. | 
| 328 |  |    */ | 
| 329 | 0 |   cquantize->sv_colormap = colormap; | 
| 330 | 0 |   cquantize->sv_actual = total_colors; | 
| 331 | 0 | } | 
| 332 |  |  | 
| 333 |  |  | 
| 334 |  | /* | 
| 335 |  |  * Create the color index table. | 
| 336 |  |  */ | 
| 337 |  |  | 
| 338 |  | LOCAL(void) | 
| 339 |  | create_colorindex(j_decompress_ptr cinfo) | 
| 340 | 0 | { | 
| 341 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 342 | 0 |   _JSAMPROW indexptr; | 
| 343 | 0 |   int i, j, k, nci, blksize, val, pad; | 
| 344 |  |  | 
| 345 |  |   /* For ordered dither, we pad the color index tables by _MAXJSAMPLE in | 
| 346 |  |    * each direction (input index values can be -_MAXJSAMPLE .. 2*_MAXJSAMPLE). | 
| 347 |  |    * This is not necessary in the other dithering modes.  However, we | 
| 348 |  |    * flag whether it was done in case user changes dithering mode. | 
| 349 |  |    */ | 
| 350 | 0 |   if (cinfo->dither_mode == JDITHER_ORDERED) { | 
| 351 | 0 |     pad = _MAXJSAMPLE * 2; | 
| 352 | 0 |     cquantize->is_padded = TRUE; | 
| 353 | 0 |   } else { | 
| 354 | 0 |     pad = 0; | 
| 355 | 0 |     cquantize->is_padded = FALSE; | 
| 356 | 0 |   } | 
| 357 |  | 
 | 
| 358 | 0 |   cquantize->colorindex = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray) | 
| 359 | 0 |     ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 360 | 0 |      (JDIMENSION)(_MAXJSAMPLE + 1 + pad), | 
| 361 | 0 |      (JDIMENSION)cinfo->out_color_components); | 
| 362 |  |  | 
| 363 |  |   /* blksize is number of adjacent repeated entries for a component */ | 
| 364 | 0 |   blksize = cquantize->sv_actual; | 
| 365 |  | 
 | 
| 366 | 0 |   for (i = 0; i < cinfo->out_color_components; i++) { | 
| 367 |  |     /* fill in colorindex entries for i'th color component */ | 
| 368 | 0 |     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
| 369 | 0 |     blksize = blksize / nci; | 
| 370 |  |  | 
| 371 |  |     /* adjust colorindex pointers to provide padding at negative indexes. */ | 
| 372 | 0 |     if (pad) | 
| 373 | 0 |       cquantize->colorindex[i] += _MAXJSAMPLE; | 
| 374 |  |  | 
| 375 |  |     /* in loop, val = index of current output value, */ | 
| 376 |  |     /* and k = largest j that maps to current val */ | 
| 377 | 0 |     indexptr = cquantize->colorindex[i]; | 
| 378 | 0 |     val = 0; | 
| 379 | 0 |     k = largest_input_value(cinfo, i, 0, nci - 1); | 
| 380 | 0 |     for (j = 0; j <= _MAXJSAMPLE; j++) { | 
| 381 | 0 |       while (j > k)             /* advance val if past boundary */ | 
| 382 | 0 |         k = largest_input_value(cinfo, i, ++val, nci - 1); | 
| 383 |  |       /* premultiply so that no multiplication needed in main processing */ | 
| 384 | 0 |       indexptr[j] = (_JSAMPLE)(val * blksize); | 
| 385 | 0 |     } | 
| 386 |  |     /* Pad at both ends if necessary */ | 
| 387 | 0 |     if (pad) | 
| 388 | 0 |       for (j = 1; j <= _MAXJSAMPLE; j++) { | 
| 389 | 0 |         indexptr[-j] = indexptr[0]; | 
| 390 | 0 |         indexptr[_MAXJSAMPLE + j] = indexptr[_MAXJSAMPLE]; | 
| 391 | 0 |       } | 
| 392 | 0 |   } | 
| 393 | 0 | } | 
| 394 |  |  | 
| 395 |  |  | 
| 396 |  | /* | 
| 397 |  |  * Create an ordered-dither array for a component having ncolors | 
| 398 |  |  * distinct output values. | 
| 399 |  |  */ | 
| 400 |  |  | 
| 401 |  | LOCAL(ODITHER_MATRIX_PTR) | 
| 402 |  | make_odither_array(j_decompress_ptr cinfo, int ncolors) | 
| 403 | 0 | { | 
| 404 | 0 |   ODITHER_MATRIX_PTR odither; | 
| 405 | 0 |   int j, k; | 
| 406 | 0 |   JLONG num, den; | 
| 407 |  | 
 | 
| 408 | 0 |   odither = (ODITHER_MATRIX_PTR) | 
| 409 | 0 |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 410 | 0 |                                 sizeof(ODITHER_MATRIX)); | 
| 411 |  |   /* The inter-value distance for this color is _MAXJSAMPLE/(ncolors-1). | 
| 412 |  |    * Hence the dither value for the matrix cell with fill order f | 
| 413 |  |    * (f=0..N-1) should be (N-1-2*f)/(2*N) * _MAXJSAMPLE/(ncolors-1). | 
| 414 |  |    * On 16-bit-int machine, be careful to avoid overflow. | 
| 415 |  |    */ | 
| 416 | 0 |   den = 2 * ODITHER_CELLS * ((JLONG)(ncolors - 1)); | 
| 417 | 0 |   for (j = 0; j < ODITHER_SIZE; j++) { | 
| 418 | 0 |     for (k = 0; k < ODITHER_SIZE; k++) { | 
| 419 | 0 |       num = ((JLONG)(ODITHER_CELLS - 1 - | 
| 420 | 0 |                      2 * ((int)base_dither_matrix[j][k]))) * _MAXJSAMPLE; | 
| 421 |  |       /* Ensure round towards zero despite C's lack of consistency | 
| 422 |  |        * about rounding negative values in integer division... | 
| 423 |  |        */ | 
| 424 | 0 |       odither[j][k] = (int)(num < 0 ? -((-num) / den) : num / den); | 
| 425 | 0 |     } | 
| 426 | 0 |   } | 
| 427 | 0 |   return odither; | 
| 428 | 0 | } | 
| 429 |  |  | 
| 430 |  |  | 
| 431 |  | /* | 
| 432 |  |  * Create the ordered-dither tables. | 
| 433 |  |  * Components having the same number of representative colors may | 
| 434 |  |  * share a dither table. | 
| 435 |  |  */ | 
| 436 |  |  | 
| 437 |  | LOCAL(void) | 
| 438 |  | create_odither_tables(j_decompress_ptr cinfo) | 
| 439 | 0 | { | 
| 440 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 441 | 0 |   ODITHER_MATRIX_PTR odither; | 
| 442 | 0 |   int i, j, nci; | 
| 443 |  | 
 | 
| 444 | 0 |   for (i = 0; i < cinfo->out_color_components; i++) { | 
| 445 | 0 |     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
| 446 | 0 |     odither = NULL;             /* search for matching prior component */ | 
| 447 | 0 |     for (j = 0; j < i; j++) { | 
| 448 | 0 |       if (nci == cquantize->Ncolors[j]) { | 
| 449 | 0 |         odither = cquantize->odither[j]; | 
| 450 | 0 |         break; | 
| 451 | 0 |       } | 
| 452 | 0 |     } | 
| 453 | 0 |     if (odither == NULL)        /* need a new table? */ | 
| 454 | 0 |       odither = make_odither_array(cinfo, nci); | 
| 455 | 0 |     cquantize->odither[i] = odither; | 
| 456 | 0 |   } | 
| 457 | 0 | } | 
| 458 |  |  | 
| 459 |  |  | 
| 460 |  | /* | 
| 461 |  |  * Map some rows of pixels to the output colormapped representation. | 
| 462 |  |  */ | 
| 463 |  |  | 
| 464 |  | METHODDEF(void) | 
| 465 |  | color_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf, | 
| 466 |  |                _JSAMPARRAY output_buf, int num_rows) | 
| 467 |  | /* General case, no dithering */ | 
| 468 | 0 | { | 
| 469 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 470 | 0 |   _JSAMPARRAY colorindex = cquantize->colorindex; | 
| 471 | 0 |   register int pixcode, ci; | 
| 472 | 0 |   register _JSAMPROW ptrin, ptrout; | 
| 473 | 0 |   int row; | 
| 474 | 0 |   JDIMENSION col; | 
| 475 | 0 |   JDIMENSION width = cinfo->output_width; | 
| 476 | 0 |   register int nc = cinfo->out_color_components; | 
| 477 |  | 
 | 
| 478 | 0 |   for (row = 0; row < num_rows; row++) { | 
| 479 | 0 |     ptrin = input_buf[row]; | 
| 480 | 0 |     ptrout = output_buf[row]; | 
| 481 | 0 |     for (col = width; col > 0; col--) { | 
| 482 | 0 |       pixcode = 0; | 
| 483 | 0 |       for (ci = 0; ci < nc; ci++) { | 
| 484 | 0 |         pixcode += colorindex[ci][*ptrin++]; | 
| 485 | 0 |       } | 
| 486 | 0 |       *ptrout++ = (_JSAMPLE)pixcode; | 
| 487 | 0 |     } | 
| 488 | 0 |   } | 
| 489 | 0 | } | 
| 490 |  |  | 
| 491 |  |  | 
| 492 |  | METHODDEF(void) | 
| 493 |  | color_quantize3(j_decompress_ptr cinfo, _JSAMPARRAY input_buf, | 
| 494 |  |                 _JSAMPARRAY output_buf, int num_rows) | 
| 495 |  | /* Fast path for out_color_components==3, no dithering */ | 
| 496 | 0 | { | 
| 497 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 498 | 0 |   register int pixcode; | 
| 499 | 0 |   register _JSAMPROW ptrin, ptrout; | 
| 500 | 0 |   _JSAMPROW colorindex0 = cquantize->colorindex[0]; | 
| 501 | 0 |   _JSAMPROW colorindex1 = cquantize->colorindex[1]; | 
| 502 | 0 |   _JSAMPROW colorindex2 = cquantize->colorindex[2]; | 
| 503 | 0 |   int row; | 
| 504 | 0 |   JDIMENSION col; | 
| 505 | 0 |   JDIMENSION width = cinfo->output_width; | 
| 506 |  | 
 | 
| 507 | 0 |   for (row = 0; row < num_rows; row++) { | 
| 508 | 0 |     ptrin = input_buf[row]; | 
| 509 | 0 |     ptrout = output_buf[row]; | 
| 510 | 0 |     for (col = width; col > 0; col--) { | 
| 511 | 0 |       pixcode  = colorindex0[*ptrin++]; | 
| 512 | 0 |       pixcode += colorindex1[*ptrin++]; | 
| 513 | 0 |       pixcode += colorindex2[*ptrin++]; | 
| 514 | 0 |       *ptrout++ = (_JSAMPLE)pixcode; | 
| 515 | 0 |     } | 
| 516 | 0 |   } | 
| 517 | 0 | } | 
| 518 |  |  | 
| 519 |  |  | 
| 520 |  | METHODDEF(void) | 
| 521 |  | quantize_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf, | 
| 522 |  |                     _JSAMPARRAY output_buf, int num_rows) | 
| 523 |  | /* General case, with ordered dithering */ | 
| 524 | 0 | { | 
| 525 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 526 | 0 |   register _JSAMPROW input_ptr; | 
| 527 | 0 |   register _JSAMPROW output_ptr; | 
| 528 | 0 |   _JSAMPROW colorindex_ci; | 
| 529 | 0 |   int *dither;                  /* points to active row of dither matrix */ | 
| 530 | 0 |   int row_index, col_index;     /* current indexes into dither matrix */ | 
| 531 | 0 |   int nc = cinfo->out_color_components; | 
| 532 | 0 |   int ci; | 
| 533 | 0 |   int row; | 
| 534 | 0 |   JDIMENSION col; | 
| 535 | 0 |   JDIMENSION width = cinfo->output_width; | 
| 536 |  | 
 | 
| 537 | 0 |   for (row = 0; row < num_rows; row++) { | 
| 538 |  |     /* Initialize output values to 0 so can process components separately */ | 
| 539 | 0 |     jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE))); | 
| 540 | 0 |     row_index = cquantize->row_index; | 
| 541 | 0 |     for (ci = 0; ci < nc; ci++) { | 
| 542 | 0 |       input_ptr = input_buf[row] + ci; | 
| 543 | 0 |       output_ptr = output_buf[row]; | 
| 544 | 0 |       colorindex_ci = cquantize->colorindex[ci]; | 
| 545 | 0 |       dither = cquantize->odither[ci][row_index]; | 
| 546 | 0 |       col_index = 0; | 
| 547 |  | 
 | 
| 548 | 0 |       for (col = width; col > 0; col--) { | 
| 549 |  |         /* Form pixel value + dither, range-limit to 0.._MAXJSAMPLE, | 
| 550 |  |          * select output value, accumulate into output code for this pixel. | 
| 551 |  |          * Range-limiting need not be done explicitly, as we have extended | 
| 552 |  |          * the colorindex table to produce the right answers for out-of-range | 
| 553 |  |          * inputs.  The maximum dither is +- _MAXJSAMPLE; this sets the | 
| 554 |  |          * required amount of padding. | 
| 555 |  |          */ | 
| 556 | 0 |         *output_ptr += | 
| 557 | 0 |           colorindex_ci[*input_ptr + dither[col_index]]; | 
| 558 | 0 |         input_ptr += nc; | 
| 559 | 0 |         output_ptr++; | 
| 560 | 0 |         col_index = (col_index + 1) & ODITHER_MASK; | 
| 561 | 0 |       } | 
| 562 | 0 |     } | 
| 563 |  |     /* Advance row index for next row */ | 
| 564 | 0 |     row_index = (row_index + 1) & ODITHER_MASK; | 
| 565 | 0 |     cquantize->row_index = row_index; | 
| 566 | 0 |   } | 
| 567 | 0 | } | 
| 568 |  |  | 
| 569 |  |  | 
| 570 |  | METHODDEF(void) | 
| 571 |  | quantize3_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf, | 
| 572 |  |                      _JSAMPARRAY output_buf, int num_rows) | 
| 573 |  | /* Fast path for out_color_components==3, with ordered dithering */ | 
| 574 | 0 | { | 
| 575 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 576 | 0 |   register int pixcode; | 
| 577 | 0 |   register _JSAMPROW input_ptr; | 
| 578 | 0 |   register _JSAMPROW output_ptr; | 
| 579 | 0 |   _JSAMPROW colorindex0 = cquantize->colorindex[0]; | 
| 580 | 0 |   _JSAMPROW colorindex1 = cquantize->colorindex[1]; | 
| 581 | 0 |   _JSAMPROW colorindex2 = cquantize->colorindex[2]; | 
| 582 | 0 |   int *dither0;                 /* points to active row of dither matrix */ | 
| 583 | 0 |   int *dither1; | 
| 584 | 0 |   int *dither2; | 
| 585 | 0 |   int row_index, col_index;     /* current indexes into dither matrix */ | 
| 586 | 0 |   int row; | 
| 587 | 0 |   JDIMENSION col; | 
| 588 | 0 |   JDIMENSION width = cinfo->output_width; | 
| 589 |  | 
 | 
| 590 | 0 |   for (row = 0; row < num_rows; row++) { | 
| 591 | 0 |     row_index = cquantize->row_index; | 
| 592 | 0 |     input_ptr = input_buf[row]; | 
| 593 | 0 |     output_ptr = output_buf[row]; | 
| 594 | 0 |     dither0 = cquantize->odither[0][row_index]; | 
| 595 | 0 |     dither1 = cquantize->odither[1][row_index]; | 
| 596 | 0 |     dither2 = cquantize->odither[2][row_index]; | 
| 597 | 0 |     col_index = 0; | 
| 598 |  | 
 | 
| 599 | 0 |     for (col = width; col > 0; col--) { | 
| 600 | 0 |       pixcode  = colorindex0[(*input_ptr++) + dither0[col_index]]; | 
| 601 | 0 |       pixcode += colorindex1[(*input_ptr++) + dither1[col_index]]; | 
| 602 | 0 |       pixcode += colorindex2[(*input_ptr++) + dither2[col_index]]; | 
| 603 | 0 |       *output_ptr++ = (_JSAMPLE)pixcode; | 
| 604 | 0 |       col_index = (col_index + 1) & ODITHER_MASK; | 
| 605 | 0 |     } | 
| 606 | 0 |     row_index = (row_index + 1) & ODITHER_MASK; | 
| 607 | 0 |     cquantize->row_index = row_index; | 
| 608 | 0 |   } | 
| 609 | 0 | } | 
| 610 |  |  | 
| 611 |  |  | 
| 612 |  | METHODDEF(void) | 
| 613 |  | quantize_fs_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf, | 
| 614 |  |                    _JSAMPARRAY output_buf, int num_rows) | 
| 615 |  | /* General case, with Floyd-Steinberg dithering */ | 
| 616 | 0 | { | 
| 617 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 618 | 0 |   register LOCFSERROR cur;      /* current error or pixel value */ | 
| 619 | 0 |   LOCFSERROR belowerr;          /* error for pixel below cur */ | 
| 620 | 0 |   LOCFSERROR bpreverr;          /* error for below/prev col */ | 
| 621 | 0 |   LOCFSERROR bnexterr;          /* error for below/next col */ | 
| 622 | 0 |   LOCFSERROR delta; | 
| 623 | 0 |   register FSERRPTR errorptr;   /* => fserrors[] at column before current */ | 
| 624 | 0 |   register _JSAMPROW input_ptr; | 
| 625 | 0 |   register _JSAMPROW output_ptr; | 
| 626 | 0 |   _JSAMPROW colorindex_ci; | 
| 627 | 0 |   _JSAMPROW colormap_ci; | 
| 628 | 0 |   int pixcode; | 
| 629 | 0 |   int nc = cinfo->out_color_components; | 
| 630 | 0 |   int dir;                      /* 1 for left-to-right, -1 for right-to-left */ | 
| 631 | 0 |   int dirnc;                    /* dir * nc */ | 
| 632 | 0 |   int ci; | 
| 633 | 0 |   int row; | 
| 634 | 0 |   JDIMENSION col; | 
| 635 | 0 |   JDIMENSION width = cinfo->output_width; | 
| 636 | 0 |   _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit; | 
| 637 | 0 |   SHIFT_TEMPS | 
| 638 |  | 
 | 
| 639 | 0 |   for (row = 0; row < num_rows; row++) { | 
| 640 |  |     /* Initialize output values to 0 so can process components separately */ | 
| 641 | 0 |     jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE))); | 
| 642 | 0 |     for (ci = 0; ci < nc; ci++) { | 
| 643 | 0 |       input_ptr = input_buf[row] + ci; | 
| 644 | 0 |       output_ptr = output_buf[row]; | 
| 645 | 0 |       if (cquantize->on_odd_row) { | 
| 646 |  |         /* work right to left in this row */ | 
| 647 | 0 |         input_ptr += (width - 1) * nc; /* so point to rightmost pixel */ | 
| 648 | 0 |         output_ptr += width - 1; | 
| 649 | 0 |         dir = -1; | 
| 650 | 0 |         dirnc = -nc; | 
| 651 | 0 |         errorptr = cquantize->fserrors[ci] + (width + 1); /* => entry after last column */ | 
| 652 | 0 |       } else { | 
| 653 |  |         /* work left to right in this row */ | 
| 654 | 0 |         dir = 1; | 
| 655 | 0 |         dirnc = nc; | 
| 656 | 0 |         errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | 
| 657 | 0 |       } | 
| 658 | 0 |       colorindex_ci = cquantize->colorindex[ci]; | 
| 659 | 0 |       colormap_ci = cquantize->sv_colormap[ci]; | 
| 660 |  |       /* Preset error values: no error propagated to first pixel from left */ | 
| 661 | 0 |       cur = 0; | 
| 662 |  |       /* and no error propagated to row below yet */ | 
| 663 | 0 |       belowerr = bpreverr = 0; | 
| 664 |  | 
 | 
| 665 | 0 |       for (col = width; col > 0; col--) { | 
| 666 |  |         /* cur holds the error propagated from the previous pixel on the | 
| 667 |  |          * current line.  Add the error propagated from the previous line | 
| 668 |  |          * to form the complete error correction term for this pixel, and | 
| 669 |  |          * round the error term (which is expressed * 16) to an integer. | 
| 670 |  |          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | 
| 671 |  |          * for either sign of the error value. | 
| 672 |  |          * Note: errorptr points to *previous* column's array entry. | 
| 673 |  |          */ | 
| 674 | 0 |         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); | 
| 675 |  |         /* Form pixel value + error, and range-limit to 0.._MAXJSAMPLE. | 
| 676 |  |          * The maximum error is +- _MAXJSAMPLE; this sets the required size | 
| 677 |  |          * of the range_limit array. | 
| 678 |  |          */ | 
| 679 | 0 |         cur += *input_ptr; | 
| 680 | 0 |         cur = range_limit[cur]; | 
| 681 |  |         /* Select output value, accumulate into output code for this pixel */ | 
| 682 | 0 |         pixcode = colorindex_ci[cur]; | 
| 683 | 0 |         *output_ptr += (_JSAMPLE)pixcode; | 
| 684 |  |         /* Compute actual representation error at this pixel */ | 
| 685 |  |         /* Note: we can do this even though we don't have the final */ | 
| 686 |  |         /* pixel code, because the colormap is orthogonal. */ | 
| 687 | 0 |         cur -= colormap_ci[pixcode]; | 
| 688 |  |         /* Compute error fractions to be propagated to adjacent pixels. | 
| 689 |  |          * Add these into the running sums, and simultaneously shift the | 
| 690 |  |          * next-line error sums left by 1 column. | 
| 691 |  |          */ | 
| 692 | 0 |         bnexterr = cur; | 
| 693 | 0 |         delta = cur * 2; | 
| 694 | 0 |         cur += delta;           /* form error * 3 */ | 
| 695 | 0 |         errorptr[0] = (FSERROR)(bpreverr + cur); | 
| 696 | 0 |         cur += delta;           /* form error * 5 */ | 
| 697 | 0 |         bpreverr = belowerr + cur; | 
| 698 | 0 |         belowerr = bnexterr; | 
| 699 | 0 |         cur += delta;           /* form error * 7 */ | 
| 700 |  |         /* At this point cur contains the 7/16 error value to be propagated | 
| 701 |  |          * to the next pixel on the current line, and all the errors for the | 
| 702 |  |          * next line have been shifted over. We are therefore ready to move on. | 
| 703 |  |          */ | 
| 704 | 0 |         input_ptr += dirnc;     /* advance input ptr to next column */ | 
| 705 | 0 |         output_ptr += dir;      /* advance output ptr to next column */ | 
| 706 | 0 |         errorptr += dir;        /* advance errorptr to current column */ | 
| 707 | 0 |       } | 
| 708 |  |       /* Post-loop cleanup: we must unload the final error value into the | 
| 709 |  |        * final fserrors[] entry.  Note we need not unload belowerr because | 
| 710 |  |        * it is for the dummy column before or after the actual array. | 
| 711 |  |        */ | 
| 712 | 0 |       errorptr[0] = (FSERROR)bpreverr; /* unload prev err into array */ | 
| 713 | 0 |     } | 
| 714 | 0 |     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); | 
| 715 | 0 |   } | 
| 716 | 0 | } | 
| 717 |  |  | 
| 718 |  |  | 
| 719 |  | /* | 
| 720 |  |  * Allocate workspace for Floyd-Steinberg errors. | 
| 721 |  |  */ | 
| 722 |  |  | 
| 723 |  | LOCAL(void) | 
| 724 |  | alloc_fs_workspace(j_decompress_ptr cinfo) | 
| 725 | 0 | { | 
| 726 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 727 | 0 |   size_t arraysize; | 
| 728 | 0 |   int i; | 
| 729 |  | 
 | 
| 730 | 0 |   arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR)); | 
| 731 | 0 |   for (i = 0; i < cinfo->out_color_components; i++) { | 
| 732 | 0 |     cquantize->fserrors[i] = (FSERRPTR) | 
| 733 | 0 |       (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize); | 
| 734 | 0 |   } | 
| 735 | 0 | } | 
| 736 |  |  | 
| 737 |  |  | 
| 738 |  | /* | 
| 739 |  |  * Initialize for one-pass color quantization. | 
| 740 |  |  */ | 
| 741 |  |  | 
| 742 |  | METHODDEF(void) | 
| 743 |  | start_pass_1_quant(j_decompress_ptr cinfo, boolean is_pre_scan) | 
| 744 | 0 | { | 
| 745 | 0 |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; | 
| 746 | 0 |   size_t arraysize; | 
| 747 | 0 |   int i; | 
| 748 |  |  | 
| 749 |  |   /* Install my colormap. */ | 
| 750 | 0 |   cinfo->colormap = (JSAMPARRAY)cquantize->sv_colormap; | 
| 751 | 0 |   cinfo->actual_number_of_colors = cquantize->sv_actual; | 
| 752 |  |  | 
| 753 |  |   /* Initialize for desired dithering mode. */ | 
| 754 | 0 |   switch (cinfo->dither_mode) { | 
| 755 | 0 |   case JDITHER_NONE: | 
| 756 | 0 |     if (cinfo->out_color_components == 3) | 
| 757 | 0 |       cquantize->pub._color_quantize = color_quantize3; | 
| 758 | 0 |     else | 
| 759 | 0 |       cquantize->pub._color_quantize = color_quantize; | 
| 760 | 0 |     break; | 
| 761 | 0 |   case JDITHER_ORDERED: | 
| 762 | 0 |     if (cinfo->out_color_components == 3) | 
| 763 | 0 |       cquantize->pub._color_quantize = quantize3_ord_dither; | 
| 764 | 0 |     else | 
| 765 | 0 |       cquantize->pub._color_quantize = quantize_ord_dither; | 
| 766 | 0 |     cquantize->row_index = 0;   /* initialize state for ordered dither */ | 
| 767 |  |     /* If user changed to ordered dither from another mode, | 
| 768 |  |      * we must recreate the color index table with padding. | 
| 769 |  |      * This will cost extra space, but probably isn't very likely. | 
| 770 |  |      */ | 
| 771 | 0 |     if (!cquantize->is_padded) | 
| 772 | 0 |       create_colorindex(cinfo); | 
| 773 |  |     /* Create ordered-dither tables if we didn't already. */ | 
| 774 | 0 |     if (cquantize->odither[0] == NULL) | 
| 775 | 0 |       create_odither_tables(cinfo); | 
| 776 | 0 |     break; | 
| 777 | 0 |   case JDITHER_FS: | 
| 778 | 0 |     cquantize->pub._color_quantize = quantize_fs_dither; | 
| 779 | 0 |     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ | 
| 780 |  |     /* Allocate Floyd-Steinberg workspace if didn't already. */ | 
| 781 | 0 |     if (cquantize->fserrors[0] == NULL) | 
| 782 | 0 |       alloc_fs_workspace(cinfo); | 
| 783 |  |     /* Initialize the propagated errors to zero. */ | 
| 784 | 0 |     arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR)); | 
| 785 | 0 |     for (i = 0; i < cinfo->out_color_components; i++) | 
| 786 | 0 |       jzero_far((void *)cquantize->fserrors[i], arraysize); | 
| 787 | 0 |     break; | 
| 788 | 0 |   default: | 
| 789 | 0 |     ERREXIT(cinfo, JERR_NOT_COMPILED); | 
| 790 | 0 |     break; | 
| 791 | 0 |   } | 
| 792 | 0 | } | 
| 793 |  |  | 
| 794 |  |  | 
| 795 |  | /* | 
| 796 |  |  * Finish up at the end of the pass. | 
| 797 |  |  */ | 
| 798 |  |  | 
| 799 |  | METHODDEF(void) | 
| 800 |  | finish_pass_1_quant(j_decompress_ptr cinfo) | 
| 801 | 0 | { | 
| 802 |  |   /* no work in 1-pass case */ | 
| 803 | 0 | } | 
| 804 |  |  | 
| 805 |  |  | 
| 806 |  | /* | 
| 807 |  |  * Switch to a new external colormap between output passes. | 
| 808 |  |  * Shouldn't get to this module! | 
| 809 |  |  */ | 
| 810 |  |  | 
| 811 |  | METHODDEF(void) | 
| 812 |  | new_color_map_1_quant(j_decompress_ptr cinfo) | 
| 813 | 0 | { | 
| 814 | 0 |   ERREXIT(cinfo, JERR_MODE_CHANGE); | 
| 815 | 0 | } | 
| 816 |  |  | 
| 817 |  |  | 
| 818 |  | /* | 
| 819 |  |  * Module initialization routine for 1-pass color quantization. | 
| 820 |  |  */ | 
| 821 |  |  | 
| 822 |  | GLOBAL(void) | 
| 823 |  | _jinit_1pass_quantizer(j_decompress_ptr cinfo) | 
| 824 | 0 | { | 
| 825 | 0 |   my_cquantize_ptr cquantize; | 
| 826 |  | 
 | 
| 827 | 0 |   if (cinfo->data_precision != BITS_IN_JSAMPLE) | 
| 828 | 0 |     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | 
| 829 |  | 
 | 
| 830 | 0 |   cquantize = (my_cquantize_ptr) | 
| 831 | 0 |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 
| 832 | 0 |                                 sizeof(my_cquantizer)); | 
| 833 | 0 |   cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize; | 
| 834 | 0 |   cquantize->pub.start_pass = start_pass_1_quant; | 
| 835 | 0 |   cquantize->pub.finish_pass = finish_pass_1_quant; | 
| 836 | 0 |   cquantize->pub.new_color_map = new_color_map_1_quant; | 
| 837 | 0 |   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ | 
| 838 | 0 |   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ | 
| 839 |  |  | 
| 840 |  |   /* Make sure my internal arrays won't overflow */ | 
| 841 | 0 |   if (cinfo->out_color_components > MAX_Q_COMPS) | 
| 842 | 0 |     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); | 
| 843 |  |   /* Make sure colormap indexes can be represented by _JSAMPLEs */ | 
| 844 | 0 |   if (cinfo->desired_number_of_colors > (_MAXJSAMPLE + 1)) | 
| 845 | 0 |     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, _MAXJSAMPLE + 1); | 
| 846 |  |  | 
| 847 |  |   /* Create the colormap and color index table. */ | 
| 848 | 0 |   create_colormap(cinfo); | 
| 849 | 0 |   create_colorindex(cinfo); | 
| 850 |  |  | 
| 851 |  |   /* Allocate Floyd-Steinberg workspace now if requested. | 
| 852 |  |    * We do this now since it may affect the memory manager's space | 
| 853 |  |    * calculations.  If the user changes to FS dither mode in a later pass, we | 
| 854 |  |    * will allocate the space then, and will possibly overrun the | 
| 855 |  |    * max_memory_to_use setting. | 
| 856 |  |    */ | 
| 857 | 0 |   if (cinfo->dither_mode == JDITHER_FS) | 
| 858 | 0 |     alloc_fs_workspace(cinfo); | 
| 859 | 0 | } Unexecuted instantiation: j12init_1pass_quantizerUnexecuted instantiation: j16init_1pass_quantizerUnexecuted instantiation: jinit_1pass_quantizer | 
| 860 |  |  | 
| 861 |  | #endif /* defined(QUANT_1PASS_SUPPORTED) && | 
| 862 |  |           (BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)) */ |