Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
11.4k
{
81
11.4k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
11.4k
  int ci, blkn, dctbl, actbl;
83
11.4k
  d_derived_tbl **pdtbl;
84
11.4k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
11.4k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
11.4k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
9.78k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
34.2k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
22.8k
    compptr = cinfo->cur_comp_info[ci];
96
22.8k
    dctbl = compptr->dc_tbl_no;
97
22.8k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
22.8k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
22.8k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
22.8k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
22.8k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
22.8k
    entropy->saved.last_dc_val[ci] = 0;
106
22.8k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
56.8k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
45.3k
    ci = cinfo->MCU_membership[blkn];
111
45.3k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
45.3k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
45.3k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
45.3k
    if (compptr->component_needed) {
117
44.8k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
44.8k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
44.8k
    } else {
121
555
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
555
    }
123
45.3k
  }
124
125
  /* Initialize bitread state variables */
126
11.4k
  entropy->bitstate.bits_left = 0;
127
11.4k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
11.4k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
11.4k
  entropy->restarts_to_go = cinfo->restart_interval;
132
11.4k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
58.0k
{
146
58.0k
  JHUFF_TBL *htbl;
147
58.0k
  d_derived_tbl *dtbl;
148
58.0k
  int p, i, l, si, numsymbols;
149
58.0k
  int lookbits, ctr;
150
58.0k
  char huffsize[257];
151
58.0k
  unsigned int huffcode[257];
152
58.0k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
58.0k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
49
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
58.0k
  htbl =
162
58.0k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
58.0k
  if (htbl == NULL)
164
17
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
58.0k
  if (*pdtbl == NULL)
168
5.39k
    *pdtbl = (d_derived_tbl *)
169
5.39k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
5.39k
                                  sizeof(d_derived_tbl));
171
58.0k
  dtbl = *pdtbl;
172
58.0k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
58.0k
  p = 0;
177
985k
  for (l = 1; l <= 16; l++) {
178
927k
    i = (int)htbl->bits[l];
179
927k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
2.82M
    while (i--)
182
1.89M
      huffsize[p++] = (char)l;
183
927k
  }
184
58.0k
  huffsize[p] = 0;
185
58.0k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
58.0k
  code = 0;
191
58.0k
  si = huffsize[0];
192
58.0k
  p = 0;
193
571k
  while (huffsize[p]) {
194
2.40M
    while (((int)huffsize[p]) == si) {
195
1.89M
      huffcode[p++] = code;
196
1.89M
      code++;
197
1.89M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
513k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
2
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
513k
    code <<= 1;
204
513k
    si++;
205
513k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
58.0k
  p = 0;
210
985k
  for (l = 1; l <= 16; l++) {
211
927k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
421k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
421k
      p += htbl->bits[l];
217
421k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
505k
    } else {
219
505k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
505k
    }
221
927k
  }
222
58.0k
  dtbl->valoffset[17] = 0;
223
58.0k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
14.8M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
14.8M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
58.0k
  p = 0;
236
521k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
995k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
532k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
13.8M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
13.2M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
13.2M
        lookbits++;
244
13.2M
      }
245
532k
    }
246
463k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
58.0k
  if (isDC) {
255
305k
    for (i = 0; i < numsymbols; i++) {
256
273k
      int sym = htbl->huffval[i];
257
273k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
11
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
273k
    }
260
31.8k
  }
261
58.0k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
109M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
56.9M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
56.9M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
56.9M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
56.9M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
56.9M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
1.10M
    while (bits_left < MIN_GET_BITS) {
303
973k
      register int c;
304
305
      /* Attempt to read a byte */
306
973k
      if (bytes_in_buffer == 0) {
307
1.86k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.86k
        next_input_byte = cinfo->src->next_input_byte;
310
1.86k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.86k
      }
312
973k
      bytes_in_buffer--;
313
973k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
973k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
86.9k
        do {
323
86.9k
          if (bytes_in_buffer == 0) {
324
31
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
31
            next_input_byte = cinfo->src->next_input_byte;
327
31
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
31
          }
329
86.9k
          bytes_in_buffer--;
330
86.9k
          c = *next_input_byte++;
331
86.9k
        } while (c == 0xFF);
332
333
54.8k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
29.5k
          c = 0xFF;
336
29.5k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
25.3k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
25.3k
          goto no_more_bytes;
348
25.3k
        }
349
54.8k
      }
350
351
      /* OK, load c into get_buffer */
352
948k
      get_buffer = (get_buffer << 8) | c;
353
948k
      bits_left += 8;
354
948k
    } /* end while */
355
56.7M
  } else {
356
56.8M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
56.8M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
54.0M
      if (!cinfo->entropy->insufficient_data) {
368
26.6k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
26.6k
        cinfo->entropy->insufficient_data = TRUE;
370
26.6k
      }
371
      /* Fill the buffer with zero bits */
372
54.0M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
54.0M
      bits_left = MIN_GET_BITS;
374
54.0M
    }
375
56.8M
  }
376
377
  /* Unload the local registers */
378
56.9M
  state->next_input_byte = next_input_byte;
379
56.9M
  state->bytes_in_buffer = bytes_in_buffer;
380
56.9M
  state->get_buffer = get_buffer;
381
56.9M
  state->bits_left = bits_left;
382
383
56.9M
  return TRUE;
384
56.9M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
806k
#define GET_BYTE { \
392
806k
  register int c0, c1; \
393
806k
  c0 = *buffer++; \
394
806k
  c1 = *buffer; \
395
806k
  /* Pre-execute most common case */ \
396
806k
  get_buffer = (get_buffer << 8) | c0; \
397
806k
  bits_left += 8; \
398
806k
  if (c0 == 0xFF) { \
399
215k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
215k
    buffer++; \
401
215k
    if (c1 != 0) { \
402
179k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
179k
      cinfo->unread_marker = c1; \
404
179k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
179k
      buffer -= 2; \
406
179k
      get_buffer &= ~0xFF; \
407
179k
    } \
408
215k
  } \
409
806k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
2.20M
  if (bits_left <= 16) { \
416
134k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
134k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
2.81M
{
440
2.81M
  register int l = min_bits;
441
2.81M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
2.81M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
2.81M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
5.13M
  while (code > htbl->maxcode[l]) {
453
2.31M
    code <<= 1;
454
2.31M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
2.31M
    code |= GET_BITS(1);
456
2.31M
    l++;
457
2.31M
  }
458
459
  /* Unload the local registers */
460
2.81M
  state->get_buffer = get_buffer;
461
2.81M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
2.81M
  if (l > 16) {
466
20.6k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
20.6k
    return 0;                   /* fake a zero as the safest result */
468
20.6k
  }
469
470
2.79M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
2.81M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
2.06M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
2.06M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
183k
{
514
183k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
183k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
183k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
183k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
183k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
661k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
478k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
183k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
183k
  if (cinfo->unread_marker == 0)
539
1.14k
    entropy->pub.insufficient_data = FALSE;
540
541
183k
  return TRUE;
542
183k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
75.4k
{
554
75.4k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
75.4k
  BITREAD_STATE_VARS;
556
75.4k
  int blkn;
557
75.4k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
75.4k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
75.4k
  state = entropy->saved;
563
564
222k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
146k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
146k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
146k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
146k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
146k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
146k
    if (s) {
575
70.9k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
70.9k
      r = GET_BITS(s);
577
70.9k
      s = HUFF_EXTEND(r, s);
578
70.9k
    }
579
580
146k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
140k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
140k
      s += state.last_dc_val[ci];
592
140k
      state.last_dc_val[ci] = s;
593
140k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
140k
        (*block)[0] = (JCOEF)s;
596
140k
      }
597
140k
    }
598
599
146k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
1.31M
      for (k = 1; k < DCTSIZE2; k++) {
604
1.27M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
1.27M
        r = s >> 4;
607
1.27M
        s &= 15;
608
609
1.27M
        if (s) {
610
1.15M
          k += r;
611
1.15M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
1.15M
          r = GET_BITS(s);
613
1.15M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
1.15M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
1.15M
        } else {
620
122k
          if (r != 15)
621
106k
            break;
622
15.6k
          k += 15;
623
15.6k
        }
624
1.27M
      }
625
626
140k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
80.7k
      for (k = 1; k < DCTSIZE2; k++) {
631
78.9k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
78.9k
        r = s >> 4;
634
78.9k
        s &= 15;
635
636
78.9k
        if (s) {
637
73.5k
          k += r;
638
73.5k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
73.5k
          DROP_BITS(s);
640
73.5k
        } else {
641
5.36k
          if (r != 15)
642
4.00k
            break;
643
1.35k
          k += 15;
644
1.35k
        }
645
78.9k
      }
646
5.81k
    }
647
146k
  }
648
649
  /* Completed MCU, so update state */
650
75.4k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
75.4k
  entropy->saved = state;
652
75.4k
  return TRUE;
653
75.4k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
131k
{
665
131k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
131k
  BITREAD_STATE_VARS;
667
131k
  JOCTET *buffer;
668
131k
  int blkn;
669
131k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
131k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
131k
  buffer = (JOCTET *)br_state.next_input_byte;
675
131k
  state = entropy->saved;
676
677
410k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
279k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
279k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
279k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
279k
    register int s, k, r, l;
682
683
279k
    HUFF_DECODE_FAST(s, l, dctbl);
684
279k
    if (s) {
685
161k
      FILL_BIT_BUFFER_FAST
686
161k
      r = GET_BITS(s);
687
161k
      s = HUFF_EXTEND(r, s);
688
161k
    }
689
690
279k
    if (entropy->dc_needed[blkn]) {
691
275k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
275k
      s += state.last_dc_val[ci];
696
275k
      state.last_dc_val[ci] = s;
697
275k
      if (block)
698
275k
        (*block)[0] = (JCOEF)s;
699
275k
    }
700
701
279k
    if (entropy->ac_needed[blkn] && block) {
702
703
954k
      for (k = 1; k < DCTSIZE2; k++) {
704
936k
        HUFF_DECODE_FAST(s, l, actbl);
705
936k
        r = s >> 4;
706
936k
        s &= 15;
707
708
936k
        if (s) {
709
674k
          k += r;
710
674k
          FILL_BIT_BUFFER_FAST
711
674k
          r = GET_BITS(s);
712
674k
          s = HUFF_EXTEND(r, s);
713
674k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
674k
        } else {
715
262k
          if (r != 15) break;
716
4.50k
          k += 15;
717
4.50k
        }
718
936k
      }
719
720
275k
    } else {
721
722
80.9k
      for (k = 1; k < DCTSIZE2; k++) {
723
78.7k
        HUFF_DECODE_FAST(s, l, actbl);
724
78.7k
        r = s >> 4;
725
78.7k
        s &= 15;
726
727
78.7k
        if (s) {
728
77.0k
          k += r;
729
77.0k
          FILL_BIT_BUFFER_FAST
730
77.0k
          DROP_BITS(s);
731
77.0k
        } else {
732
1.73k
          if (r != 15) break;
733
393
          k += 15;
734
393
        }
735
78.7k
      }
736
3.49k
    }
737
279k
  }
738
739
131k
  if (cinfo->unread_marker != 0) {
740
9.67k
    cinfo->unread_marker = 0;
741
9.67k
    return FALSE;
742
9.67k
  }
743
744
121k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
121k
  br_state.next_input_byte = buffer;
746
121k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
121k
  entropy->saved = state;
748
121k
  return TRUE;
749
131k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
14.1M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
14.1M
{
772
14.1M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
14.1M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
14.1M
  if (cinfo->restart_interval) {
777
6.12M
    if (entropy->restarts_to_go == 0)
778
183k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
6.12M
    usefast = 0;
781
6.12M
  }
782
783
14.1M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
14.1M
      cinfo->unread_marker != 0)
785
13.9M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
14.1M
  if (!entropy->pub.insufficient_data) {
791
792
197k
    if (usefast) {
793
131k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
131k
    } else {
795
75.4k
use_slow:
796
75.4k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
75.4k
    }
798
799
197k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
14.1M
  if (cinfo->restart_interval)
803
6.12M
    entropy->restarts_to_go--;
804
805
14.1M
  return TRUE;
806
14.1M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.59k
{
816
1.59k
  huff_entropy_ptr entropy;
817
1.59k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.59k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.59k
  entropy = (huff_entropy_ptr)
826
1.59k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.59k
                                sizeof(huff_entropy_decoder));
828
1.59k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.59k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.59k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
7.97k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
6.37k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
6.37k
  }
836
1.59k
}