/src/libjpeg-turbo.main/jquant2.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jquant2.c  | 
3  |  |  *  | 
4  |  |  * This file was part of the Independent JPEG Group's software:  | 
5  |  |  * Copyright (C) 1991-1996, Thomas G. Lane.  | 
6  |  |  * libjpeg-turbo Modifications:  | 
7  |  |  * Copyright (C) 2009, 2014-2015, 2020, 2022-2023, D. R. Commander.  | 
8  |  |  * For conditions of distribution and use, see the accompanying README.ijg  | 
9  |  |  * file.  | 
10  |  |  *  | 
11  |  |  * This file contains 2-pass color quantization (color mapping) routines.  | 
12  |  |  * These routines provide selection of a custom color map for an image,  | 
13  |  |  * followed by mapping of the image to that color map, with optional  | 
14  |  |  * Floyd-Steinberg dithering.  | 
15  |  |  * It is also possible to use just the second pass to map to an arbitrary  | 
16  |  |  * externally-given color map.  | 
17  |  |  *  | 
18  |  |  * Note: ordered dithering is not supported, since there isn't any fast  | 
19  |  |  * way to compute intercolor distances; it's unclear that ordered dither's  | 
20  |  |  * fundamental assumptions even hold with an irregularly spaced color map.  | 
21  |  |  */  | 
22  |  |  | 
23  |  | #define JPEG_INTERNALS  | 
24  |  | #include "jinclude.h"  | 
25  |  | #include "jpeglib.h"  | 
26  |  | #include "jsamplecomp.h"  | 
27  |  |  | 
28  |  | #if defined(QUANT_2PASS_SUPPORTED) && \  | 
29  |  |     (BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED))  | 
30  |  |  | 
31  |  |  | 
32  |  | /*  | 
33  |  |  * This module implements the well-known Heckbert paradigm for color  | 
34  |  |  * quantization.  Most of the ideas used here can be traced back to  | 
35  |  |  * Heckbert's seminal paper  | 
36  |  |  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",  | 
37  |  |  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.  | 
38  |  |  *  | 
39  |  |  * In the first pass over the image, we accumulate a histogram showing the  | 
40  |  |  * usage count of each possible color.  To keep the histogram to a reasonable  | 
41  |  |  * size, we reduce the precision of the input; typical practice is to retain  | 
42  |  |  * 5 or 6 bits per color, so that 8 or 4 different input values are counted  | 
43  |  |  * in the same histogram cell.  | 
44  |  |  *  | 
45  |  |  * Next, the color-selection step begins with a box representing the whole  | 
46  |  |  * color space, and repeatedly splits the "largest" remaining box until we  | 
47  |  |  * have as many boxes as desired colors.  Then the mean color in each  | 
48  |  |  * remaining box becomes one of the possible output colors.  | 
49  |  |  *  | 
50  |  |  * The second pass over the image maps each input pixel to the closest output  | 
51  |  |  * color (optionally after applying a Floyd-Steinberg dithering correction).  | 
52  |  |  * This mapping is logically trivial, but making it go fast enough requires  | 
53  |  |  * considerable care.  | 
54  |  |  *  | 
55  |  |  * Heckbert-style quantizers vary a good deal in their policies for choosing  | 
56  |  |  * the "largest" box and deciding where to cut it.  The particular policies  | 
57  |  |  * used here have proved out well in experimental comparisons, but better ones  | 
58  |  |  * may yet be found.  | 
59  |  |  *  | 
60  |  |  * In earlier versions of the IJG code, this module quantized in YCbCr color  | 
61  |  |  * space, processing the raw upsampled data without a color conversion step.  | 
62  |  |  * This allowed the color conversion math to be done only once per colormap  | 
63  |  |  * entry, not once per pixel.  However, that optimization precluded other  | 
64  |  |  * useful optimizations (such as merging color conversion with upsampling)  | 
65  |  |  * and it also interfered with desired capabilities such as quantizing to an  | 
66  |  |  * externally-supplied colormap.  We have therefore abandoned that approach.  | 
67  |  |  * The present code works in the post-conversion color space, typically RGB.  | 
68  |  |  *  | 
69  |  |  * To improve the visual quality of the results, we actually work in scaled  | 
70  |  |  * RGB space, giving G distances more weight than R, and R in turn more than  | 
71  |  |  * B.  To do everything in integer math, we must use integer scale factors.  | 
72  |  |  * The 2/3/1 scale factors used here correspond loosely to the relative  | 
73  |  |  * weights of the colors in the NTSC grayscale equation.  | 
74  |  |  * If you want to use this code to quantize a non-RGB color space, you'll  | 
75  |  |  * probably need to change these scale factors.  | 
76  |  |  */  | 
77  |  |  | 
78  |  | #define R_SCALE  2              /* scale R distances by this much */  | 
79  |  | #define G_SCALE  3              /* scale G distances by this much */  | 
80  |  | #define B_SCALE  1              /* and B by this much */  | 
81  |  |  | 
82  |  | static const int c_scales[3] = { R_SCALE, G_SCALE, B_SCALE }; | 
83  | 0  | #define C0_SCALE  c_scales[rgb_red[cinfo->out_color_space]]  | 
84  | 0  | #define C1_SCALE  c_scales[rgb_green[cinfo->out_color_space]]  | 
85  | 0  | #define C2_SCALE  c_scales[rgb_blue[cinfo->out_color_space]]  | 
86  |  |  | 
87  |  | /*  | 
88  |  |  * First we have the histogram data structure and routines for creating it.  | 
89  |  |  *  | 
90  |  |  * The number of bits of precision can be adjusted by changing these symbols.  | 
91  |  |  * We recommend keeping 6 bits for G and 5 each for R and B.  | 
92  |  |  * If you have plenty of memory and cycles, 6 bits all around gives marginally  | 
93  |  |  * better results; if you are short of memory, 5 bits all around will save  | 
94  |  |  * some space but degrade the results.  | 
95  |  |  * To maintain a fully accurate histogram, we'd need to allocate a "long"  | 
96  |  |  * (preferably unsigned long) for each cell.  In practice this is overkill;  | 
97  |  |  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,  | 
98  |  |  * and clamping those that do overflow to the maximum value will give close-  | 
99  |  |  * enough results.  This reduces the recommended histogram size from 256Kb  | 
100  |  |  * to 128Kb, which is a useful savings on PC-class machines.  | 
101  |  |  * (In the second pass the histogram space is re-used for pixel mapping data;  | 
102  |  |  * in that capacity, each cell must be able to store zero to the number of  | 
103  |  |  * desired colors.  16 bits/cell is plenty for that too.)  | 
104  |  |  * Since the JPEG code is intended to run in small memory model on 80x86  | 
105  |  |  * machines, we can't just allocate the histogram in one chunk.  Instead  | 
106  |  |  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each  | 
107  |  |  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and  | 
108  |  |  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  | 
109  |  |  */  | 
110  |  |  | 
111  | 0  | #define MAXNUMCOLORS  (_MAXJSAMPLE + 1) /* maximum size of colormap */  | 
112  |  |  | 
113  |  | /* These will do the right thing for either R,G,B or B,G,R color order,  | 
114  |  |  * but you may not like the results for other color orders.  | 
115  |  |  */  | 
116  | 0  | #define HIST_C0_BITS  5         /* bits of precision in R/B histogram */  | 
117  | 0  | #define HIST_C1_BITS  6         /* bits of precision in G histogram */  | 
118  | 0  | #define HIST_C2_BITS  5         /* bits of precision in B/R histogram */  | 
119  |  |  | 
120  |  | /* Number of elements along histogram axes. */  | 
121  | 0  | #define HIST_C0_ELEMS  (1 << HIST_C0_BITS)  | 
122  | 0  | #define HIST_C1_ELEMS  (1 << HIST_C1_BITS)  | 
123  | 0  | #define HIST_C2_ELEMS  (1 << HIST_C2_BITS)  | 
124  |  |  | 
125  |  | /* These are the amounts to shift an input value to get a histogram index. */  | 
126  | 0  | #define C0_SHIFT  (BITS_IN_JSAMPLE - HIST_C0_BITS)  | 
127  | 0  | #define C1_SHIFT  (BITS_IN_JSAMPLE - HIST_C1_BITS)  | 
128  | 0  | #define C2_SHIFT  (BITS_IN_JSAMPLE - HIST_C2_BITS)  | 
129  |  |  | 
130  |  |  | 
131  |  | typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */  | 
132  |  |  | 
133  |  | typedef histcell *histptr;      /* for pointers to histogram cells */  | 
134  |  |  | 
135  |  | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */  | 
136  |  | typedef hist1d *hist2d;         /* type for the 2nd-level pointers */  | 
137  |  | typedef hist2d *hist3d;         /* type for top-level pointer */  | 
138  |  |  | 
139  |  |  | 
140  |  | /* Declarations for Floyd-Steinberg dithering.  | 
141  |  |  *  | 
142  |  |  * Errors are accumulated into the array fserrors[], at a resolution of  | 
143  |  |  * 1/16th of a pixel count.  The error at a given pixel is propagated  | 
144  |  |  * to its not-yet-processed neighbors using the standard F-S fractions,  | 
145  |  |  *              ...     (here)  7/16  | 
146  |  |  *              3/16    5/16    1/16  | 
147  |  |  * We work left-to-right on even rows, right-to-left on odd rows.  | 
148  |  |  *  | 
149  |  |  * We can get away with a single array (holding one row's worth of errors)  | 
150  |  |  * by using it to store the current row's errors at pixel columns not yet  | 
151  |  |  * processed, but the next row's errors at columns already processed.  We  | 
152  |  |  * need only a few extra variables to hold the errors immediately around the  | 
153  |  |  * current column.  (If we are lucky, those variables are in registers, but  | 
154  |  |  * even if not, they're probably cheaper to access than array elements are.)  | 
155  |  |  *  | 
156  |  |  * The fserrors[] array has (#columns + 2) entries; the extra entry at  | 
157  |  |  * each end saves us from special-casing the first and last pixels.  | 
158  |  |  * Each entry is three values long, one value for each color component.  | 
159  |  |  */  | 
160  |  |  | 
161  |  | #if BITS_IN_JSAMPLE == 8  | 
162  |  | typedef INT16 FSERROR;          /* 16 bits should be enough */  | 
163  |  | typedef int LOCFSERROR;         /* use 'int' for calculation temps */  | 
164  |  | #else  | 
165  |  | typedef JLONG FSERROR;          /* may need more than 16 bits */  | 
166  |  | typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */  | 
167  |  | #endif  | 
168  |  |  | 
169  |  | typedef FSERROR *FSERRPTR;      /* pointer to error array */  | 
170  |  |  | 
171  |  |  | 
172  |  | /* Private subobject */  | 
173  |  |  | 
174  |  | typedef struct { | 
175  |  |   struct jpeg_color_quantizer pub; /* public fields */  | 
176  |  |  | 
177  |  |   /* Space for the eventually created colormap is stashed here */  | 
178  |  |   _JSAMPARRAY sv_colormap;      /* colormap allocated at init time */  | 
179  |  |   int desired;                  /* desired # of colors = size of colormap */  | 
180  |  |  | 
181  |  |   /* Variables for accumulating image statistics */  | 
182  |  |   hist3d histogram;             /* pointer to the histogram */  | 
183  |  |  | 
184  |  |   boolean needs_zeroed;         /* TRUE if next pass must zero histogram */  | 
185  |  |  | 
186  |  |   /* Variables for Floyd-Steinberg dithering */  | 
187  |  |   FSERRPTR fserrors;            /* accumulated errors */  | 
188  |  |   boolean on_odd_row;           /* flag to remember which row we are on */  | 
189  |  |   int *error_limiter;           /* table for clamping the applied error */  | 
190  |  | } my_cquantizer;  | 
191  |  |  | 
192  |  | typedef my_cquantizer *my_cquantize_ptr;  | 
193  |  |  | 
194  |  |  | 
195  |  | /*  | 
196  |  |  * Prescan some rows of pixels.  | 
197  |  |  * In this module the prescan simply updates the histogram, which has been  | 
198  |  |  * initialized to zeroes by start_pass.  | 
199  |  |  * An output_buf parameter is required by the method signature, but no data  | 
200  |  |  * is actually output (in fact the buffer controller is probably passing a  | 
201  |  |  * NULL pointer).  | 
202  |  |  */  | 
203  |  |  | 
204  |  | METHODDEF(void)  | 
205  |  | prescan_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,  | 
206  |  |                  _JSAMPARRAY output_buf, int num_rows)  | 
207  | 0  | { | 
208  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
209  | 0  |   register _JSAMPROW ptr;  | 
210  | 0  |   register histptr histp;  | 
211  | 0  |   register hist3d histogram = cquantize->histogram;  | 
212  | 0  |   int row;  | 
213  | 0  |   JDIMENSION col;  | 
214  | 0  |   JDIMENSION width = cinfo->output_width;  | 
215  |  | 
  | 
216  | 0  |   for (row = 0; row < num_rows; row++) { | 
217  | 0  |     ptr = input_buf[row];  | 
218  | 0  |     for (col = width; col > 0; col--) { | 
219  |  |       /* get pixel value and index into the histogram */  | 
220  | 0  |       histp = &histogram[ptr[0] >> C0_SHIFT]  | 
221  | 0  |                         [ptr[1] >> C1_SHIFT]  | 
222  | 0  |                         [ptr[2] >> C2_SHIFT];  | 
223  |  |       /* increment, check for overflow and undo increment if so. */  | 
224  | 0  |       if (++(*histp) <= 0)  | 
225  | 0  |         (*histp)--;  | 
226  | 0  |       ptr += 3;  | 
227  | 0  |     }  | 
228  | 0  |   }  | 
229  | 0  | }  | 
230  |  |  | 
231  |  |  | 
232  |  | /*  | 
233  |  |  * Next we have the really interesting routines: selection of a colormap  | 
234  |  |  * given the completed histogram.  | 
235  |  |  * These routines work with a list of "boxes", each representing a rectangular  | 
236  |  |  * subset of the input color space (to histogram precision).  | 
237  |  |  */  | 
238  |  |  | 
239  |  | typedef struct { | 
240  |  |   /* The bounds of the box (inclusive); expressed as histogram indexes */  | 
241  |  |   int c0min, c0max;  | 
242  |  |   int c1min, c1max;  | 
243  |  |   int c2min, c2max;  | 
244  |  |   /* The volume (actually 2-norm) of the box */  | 
245  |  |   JLONG volume;  | 
246  |  |   /* The number of nonzero histogram cells within this box */  | 
247  |  |   long colorcount;  | 
248  |  | } box;  | 
249  |  |  | 
250  |  | typedef box *boxptr;  | 
251  |  |  | 
252  |  |  | 
253  |  | LOCAL(boxptr)  | 
254  |  | find_biggest_color_pop(boxptr boxlist, int numboxes)  | 
255  |  | /* Find the splittable box with the largest color population */  | 
256  |  | /* Returns NULL if no splittable boxes remain */  | 
257  | 0  | { | 
258  | 0  |   register boxptr boxp;  | 
259  | 0  |   register int i;  | 
260  | 0  |   register long maxc = 0;  | 
261  | 0  |   boxptr which = NULL;  | 
262  |  | 
  | 
263  | 0  |   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | 
264  | 0  |     if (boxp->colorcount > maxc && boxp->volume > 0) { | 
265  | 0  |       which = boxp;  | 
266  | 0  |       maxc = boxp->colorcount;  | 
267  | 0  |     }  | 
268  | 0  |   }  | 
269  | 0  |   return which;  | 
270  | 0  | }  | 
271  |  |  | 
272  |  |  | 
273  |  | LOCAL(boxptr)  | 
274  |  | find_biggest_volume(boxptr boxlist, int numboxes)  | 
275  |  | /* Find the splittable box with the largest (scaled) volume */  | 
276  |  | /* Returns NULL if no splittable boxes remain */  | 
277  | 0  | { | 
278  | 0  |   register boxptr boxp;  | 
279  | 0  |   register int i;  | 
280  | 0  |   register JLONG maxv = 0;  | 
281  | 0  |   boxptr which = NULL;  | 
282  |  | 
  | 
283  | 0  |   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | 
284  | 0  |     if (boxp->volume > maxv) { | 
285  | 0  |       which = boxp;  | 
286  | 0  |       maxv = boxp->volume;  | 
287  | 0  |     }  | 
288  | 0  |   }  | 
289  | 0  |   return which;  | 
290  | 0  | }  | 
291  |  |  | 
292  |  |  | 
293  |  | LOCAL(void)  | 
294  |  | update_box(j_decompress_ptr cinfo, boxptr boxp)  | 
295  |  | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */  | 
296  |  | /* and recompute its volume and population */  | 
297  | 0  | { | 
298  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
299  | 0  |   hist3d histogram = cquantize->histogram;  | 
300  | 0  |   histptr histp;  | 
301  | 0  |   int c0, c1, c2;  | 
302  | 0  |   int c0min, c0max, c1min, c1max, c2min, c2max;  | 
303  | 0  |   JLONG dist0, dist1, dist2;  | 
304  | 0  |   long ccount;  | 
305  |  | 
  | 
306  | 0  |   c0min = boxp->c0min;  c0max = boxp->c0max;  | 
307  | 0  |   c1min = boxp->c1min;  c1max = boxp->c1max;  | 
308  | 0  |   c2min = boxp->c2min;  c2max = boxp->c2max;  | 
309  |  | 
  | 
310  | 0  |   if (c0max > c0min)  | 
311  | 0  |     for (c0 = c0min; c0 <= c0max; c0++)  | 
312  | 0  |       for (c1 = c1min; c1 <= c1max; c1++) { | 
313  | 0  |         histp = &histogram[c0][c1][c2min];  | 
314  | 0  |         for (c2 = c2min; c2 <= c2max; c2++)  | 
315  | 0  |           if (*histp++ != 0) { | 
316  | 0  |             boxp->c0min = c0min = c0;  | 
317  | 0  |             goto have_c0min;  | 
318  | 0  |           }  | 
319  | 0  |       }  | 
320  | 0  | have_c0min:  | 
321  | 0  |   if (c0max > c0min)  | 
322  | 0  |     for (c0 = c0max; c0 >= c0min; c0--)  | 
323  | 0  |       for (c1 = c1min; c1 <= c1max; c1++) { | 
324  | 0  |         histp = &histogram[c0][c1][c2min];  | 
325  | 0  |         for (c2 = c2min; c2 <= c2max; c2++)  | 
326  | 0  |           if (*histp++ != 0) { | 
327  | 0  |             boxp->c0max = c0max = c0;  | 
328  | 0  |             goto have_c0max;  | 
329  | 0  |           }  | 
330  | 0  |       }  | 
331  | 0  | have_c0max:  | 
332  | 0  |   if (c1max > c1min)  | 
333  | 0  |     for (c1 = c1min; c1 <= c1max; c1++)  | 
334  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
335  | 0  |         histp = &histogram[c0][c1][c2min];  | 
336  | 0  |         for (c2 = c2min; c2 <= c2max; c2++)  | 
337  | 0  |           if (*histp++ != 0) { | 
338  | 0  |             boxp->c1min = c1min = c1;  | 
339  | 0  |             goto have_c1min;  | 
340  | 0  |           }  | 
341  | 0  |       }  | 
342  | 0  | have_c1min:  | 
343  | 0  |   if (c1max > c1min)  | 
344  | 0  |     for (c1 = c1max; c1 >= c1min; c1--)  | 
345  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
346  | 0  |         histp = &histogram[c0][c1][c2min];  | 
347  | 0  |         for (c2 = c2min; c2 <= c2max; c2++)  | 
348  | 0  |           if (*histp++ != 0) { | 
349  | 0  |             boxp->c1max = c1max = c1;  | 
350  | 0  |             goto have_c1max;  | 
351  | 0  |           }  | 
352  | 0  |       }  | 
353  | 0  | have_c1max:  | 
354  | 0  |   if (c2max > c2min)  | 
355  | 0  |     for (c2 = c2min; c2 <= c2max; c2++)  | 
356  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
357  | 0  |         histp = &histogram[c0][c1min][c2];  | 
358  | 0  |         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)  | 
359  | 0  |           if (*histp != 0) { | 
360  | 0  |             boxp->c2min = c2min = c2;  | 
361  | 0  |             goto have_c2min;  | 
362  | 0  |           }  | 
363  | 0  |       }  | 
364  | 0  | have_c2min:  | 
365  | 0  |   if (c2max > c2min)  | 
366  | 0  |     for (c2 = c2max; c2 >= c2min; c2--)  | 
367  | 0  |       for (c0 = c0min; c0 <= c0max; c0++) { | 
368  | 0  |         histp = &histogram[c0][c1min][c2];  | 
369  | 0  |         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)  | 
370  | 0  |           if (*histp != 0) { | 
371  | 0  |             boxp->c2max = c2max = c2;  | 
372  | 0  |             goto have_c2max;  | 
373  | 0  |           }  | 
374  | 0  |       }  | 
375  | 0  | have_c2max:  | 
376  |  |  | 
377  |  |   /* Update box volume.  | 
378  |  |    * We use 2-norm rather than real volume here; this biases the method  | 
379  |  |    * against making long narrow boxes, and it has the side benefit that  | 
380  |  |    * a box is splittable iff norm > 0.  | 
381  |  |    * Since the differences are expressed in histogram-cell units,  | 
382  |  |    * we have to shift back to _JSAMPLE units to get consistent distances;  | 
383  |  |    * after which, we scale according to the selected distance scale factors.  | 
384  |  |    */  | 
385  | 0  |   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;  | 
386  | 0  |   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;  | 
387  | 0  |   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;  | 
388  | 0  |   boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;  | 
389  |  |  | 
390  |  |   /* Now scan remaining volume of box and compute population */  | 
391  | 0  |   ccount = 0;  | 
392  | 0  |   for (c0 = c0min; c0 <= c0max; c0++)  | 
393  | 0  |     for (c1 = c1min; c1 <= c1max; c1++) { | 
394  | 0  |       histp = &histogram[c0][c1][c2min];  | 
395  | 0  |       for (c2 = c2min; c2 <= c2max; c2++, histp++)  | 
396  | 0  |         if (*histp != 0) { | 
397  | 0  |           ccount++;  | 
398  | 0  |         }  | 
399  | 0  |     }  | 
400  | 0  |   boxp->colorcount = ccount;  | 
401  | 0  | }  | 
402  |  |  | 
403  |  |  | 
404  |  | LOCAL(int)  | 
405  |  | median_cut(j_decompress_ptr cinfo, boxptr boxlist, int numboxes,  | 
406  |  |            int desired_colors)  | 
407  |  | /* Repeatedly select and split the largest box until we have enough boxes */  | 
408  | 0  | { | 
409  | 0  |   int n, lb;  | 
410  | 0  |   int c0, c1, c2, cmax;  | 
411  | 0  |   register boxptr b1, b2;  | 
412  |  | 
  | 
413  | 0  |   while (numboxes < desired_colors) { | 
414  |  |     /* Select box to split.  | 
415  |  |      * Current algorithm: by population for first half, then by volume.  | 
416  |  |      */  | 
417  | 0  |     if (numboxes * 2 <= desired_colors) { | 
418  | 0  |       b1 = find_biggest_color_pop(boxlist, numboxes);  | 
419  | 0  |     } else { | 
420  | 0  |       b1 = find_biggest_volume(boxlist, numboxes);  | 
421  | 0  |     }  | 
422  | 0  |     if (b1 == NULL)             /* no splittable boxes left! */  | 
423  | 0  |       break;  | 
424  | 0  |     b2 = &boxlist[numboxes];    /* where new box will go */  | 
425  |  |     /* Copy the color bounds to the new box. */  | 
426  | 0  |     b2->c0max = b1->c0max;  b2->c1max = b1->c1max;  b2->c2max = b1->c2max;  | 
427  | 0  |     b2->c0min = b1->c0min;  b2->c1min = b1->c1min;  b2->c2min = b1->c2min;  | 
428  |  |     /* Choose which axis to split the box on.  | 
429  |  |      * Current algorithm: longest scaled axis.  | 
430  |  |      * See notes in update_box about scaling distances.  | 
431  |  |      */  | 
432  | 0  |     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;  | 
433  | 0  |     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;  | 
434  | 0  |     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;  | 
435  |  |     /* We want to break any ties in favor of green, then red, blue last.  | 
436  |  |      * This code does the right thing for R,G,B or B,G,R color orders only.  | 
437  |  |      */  | 
438  | 0  |     if (rgb_red[cinfo->out_color_space] == 0) { | 
439  | 0  |       cmax = c1;  n = 1;  | 
440  | 0  |       if (c0 > cmax) { cmax = c0;  n = 0; } | 
441  | 0  |       if (c2 > cmax) { n = 2; } | 
442  | 0  |     } else { | 
443  | 0  |       cmax = c1;  n = 1;  | 
444  | 0  |       if (c2 > cmax) { cmax = c2;  n = 2; } | 
445  | 0  |       if (c0 > cmax) { n = 0; } | 
446  | 0  |     }  | 
447  |  |     /* Choose split point along selected axis, and update box bounds.  | 
448  |  |      * Current algorithm: split at halfway point.  | 
449  |  |      * (Since the box has been shrunk to minimum volume,  | 
450  |  |      * any split will produce two nonempty subboxes.)  | 
451  |  |      * Note that lb value is max for lower box, so must be < old max.  | 
452  |  |      */  | 
453  | 0  |     switch (n) { | 
454  | 0  |     case 0:  | 
455  | 0  |       lb = (b1->c0max + b1->c0min) / 2;  | 
456  | 0  |       b1->c0max = lb;  | 
457  | 0  |       b2->c0min = lb + 1;  | 
458  | 0  |       break;  | 
459  | 0  |     case 1:  | 
460  | 0  |       lb = (b1->c1max + b1->c1min) / 2;  | 
461  | 0  |       b1->c1max = lb;  | 
462  | 0  |       b2->c1min = lb + 1;  | 
463  | 0  |       break;  | 
464  | 0  |     case 2:  | 
465  | 0  |       lb = (b1->c2max + b1->c2min) / 2;  | 
466  | 0  |       b1->c2max = lb;  | 
467  | 0  |       b2->c2min = lb + 1;  | 
468  | 0  |       break;  | 
469  | 0  |     }  | 
470  |  |     /* Update stats for boxes */  | 
471  | 0  |     update_box(cinfo, b1);  | 
472  | 0  |     update_box(cinfo, b2);  | 
473  | 0  |     numboxes++;  | 
474  | 0  |   }  | 
475  | 0  |   return numboxes;  | 
476  | 0  | }  | 
477  |  |  | 
478  |  |  | 
479  |  | LOCAL(void)  | 
480  |  | compute_color(j_decompress_ptr cinfo, boxptr boxp, int icolor)  | 
481  |  | /* Compute representative color for a box, put it in colormap[icolor] */  | 
482  | 0  | { | 
483  |  |   /* Current algorithm: mean weighted by pixels (not colors) */  | 
484  |  |   /* Note it is important to get the rounding correct! */  | 
485  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
486  | 0  |   hist3d histogram = cquantize->histogram;  | 
487  | 0  |   histptr histp;  | 
488  | 0  |   int c0, c1, c2;  | 
489  | 0  |   int c0min, c0max, c1min, c1max, c2min, c2max;  | 
490  | 0  |   long count;  | 
491  | 0  |   long total = 0;  | 
492  | 0  |   long c0total = 0;  | 
493  | 0  |   long c1total = 0;  | 
494  | 0  |   long c2total = 0;  | 
495  |  | 
  | 
496  | 0  |   c0min = boxp->c0min;  c0max = boxp->c0max;  | 
497  | 0  |   c1min = boxp->c1min;  c1max = boxp->c1max;  | 
498  | 0  |   c2min = boxp->c2min;  c2max = boxp->c2max;  | 
499  |  | 
  | 
500  | 0  |   for (c0 = c0min; c0 <= c0max; c0++)  | 
501  | 0  |     for (c1 = c1min; c1 <= c1max; c1++) { | 
502  | 0  |       histp = &histogram[c0][c1][c2min];  | 
503  | 0  |       for (c2 = c2min; c2 <= c2max; c2++) { | 
504  | 0  |         if ((count = *histp++) != 0) { | 
505  | 0  |           total += count;  | 
506  | 0  |           c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;  | 
507  | 0  |           c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;  | 
508  | 0  |           c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;  | 
509  | 0  |         }  | 
510  | 0  |       }  | 
511  | 0  |     }  | 
512  |  | 
  | 
513  | 0  |   ((_JSAMPARRAY)cinfo->colormap)[0][icolor] =  | 
514  | 0  |     (_JSAMPLE)((c0total + (total >> 1)) / total);  | 
515  | 0  |   ((_JSAMPARRAY)cinfo->colormap)[1][icolor] =  | 
516  | 0  |     (_JSAMPLE)((c1total + (total >> 1)) / total);  | 
517  | 0  |   ((_JSAMPARRAY)cinfo->colormap)[2][icolor] =  | 
518  | 0  |     (_JSAMPLE)((c2total + (total >> 1)) / total);  | 
519  | 0  | }  | 
520  |  |  | 
521  |  |  | 
522  |  | LOCAL(void)  | 
523  |  | select_colors(j_decompress_ptr cinfo, int desired_colors)  | 
524  |  | /* Master routine for color selection */  | 
525  | 0  | { | 
526  | 0  |   boxptr boxlist;  | 
527  | 0  |   int numboxes;  | 
528  | 0  |   int i;  | 
529  |  |  | 
530  |  |   /* Allocate workspace for box list */  | 
531  | 0  |   boxlist = (boxptr)(*cinfo->mem->alloc_small)  | 
532  | 0  |     ((j_common_ptr)cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));  | 
533  |  |   /* Initialize one box containing whole space */  | 
534  | 0  |   numboxes = 1;  | 
535  | 0  |   boxlist[0].c0min = 0;  | 
536  | 0  |   boxlist[0].c0max = _MAXJSAMPLE >> C0_SHIFT;  | 
537  | 0  |   boxlist[0].c1min = 0;  | 
538  | 0  |   boxlist[0].c1max = _MAXJSAMPLE >> C1_SHIFT;  | 
539  | 0  |   boxlist[0].c2min = 0;  | 
540  | 0  |   boxlist[0].c2max = _MAXJSAMPLE >> C2_SHIFT;  | 
541  |  |   /* Shrink it to actually-used volume and set its statistics */  | 
542  | 0  |   update_box(cinfo, &boxlist[0]);  | 
543  |  |   /* Perform median-cut to produce final box list */  | 
544  | 0  |   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);  | 
545  |  |   /* Compute the representative color for each box, fill colormap */  | 
546  | 0  |   for (i = 0; i < numboxes; i++)  | 
547  | 0  |     compute_color(cinfo, &boxlist[i], i);  | 
548  | 0  |   cinfo->actual_number_of_colors = numboxes;  | 
549  | 0  |   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);  | 
550  | 0  | }  | 
551  |  |  | 
552  |  |  | 
553  |  | /*  | 
554  |  |  * These routines are concerned with the time-critical task of mapping input  | 
555  |  |  * colors to the nearest color in the selected colormap.  | 
556  |  |  *  | 
557  |  |  * We re-use the histogram space as an "inverse color map", essentially a  | 
558  |  |  * cache for the results of nearest-color searches.  All colors within a  | 
559  |  |  * histogram cell will be mapped to the same colormap entry, namely the one  | 
560  |  |  * closest to the cell's center.  This may not be quite the closest entry to  | 
561  |  |  * the actual input color, but it's almost as good.  A zero in the cache  | 
562  |  |  * indicates we haven't found the nearest color for that cell yet; the array  | 
563  |  |  * is cleared to zeroes before starting the mapping pass.  When we find the  | 
564  |  |  * nearest color for a cell, its colormap index plus one is recorded in the  | 
565  |  |  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap  | 
566  |  |  * when they need to use an unfilled entry in the cache.  | 
567  |  |  *  | 
568  |  |  * Our method of efficiently finding nearest colors is based on the "locally  | 
569  |  |  * sorted search" idea described by Heckbert and on the incremental distance  | 
570  |  |  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics  | 
571  |  |  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that  | 
572  |  |  * the distances from a given colormap entry to each cell of the histogram can  | 
573  |  |  * be computed quickly using an incremental method: the differences between  | 
574  |  |  * distances to adjacent cells themselves differ by a constant.  This allows a  | 
575  |  |  * fairly fast implementation of the "brute force" approach of computing the  | 
576  |  |  * distance from every colormap entry to every histogram cell.  Unfortunately,  | 
577  |  |  * it needs a work array to hold the best-distance-so-far for each histogram  | 
578  |  |  * cell (because the inner loop has to be over cells, not colormap entries).  | 
579  |  |  * The work array elements have to be JLONGs, so the work array would need  | 
580  |  |  * 256Kb at our recommended precision.  This is not feasible in DOS machines.  | 
581  |  |  *  | 
582  |  |  * To get around these problems, we apply Thomas' method to compute the  | 
583  |  |  * nearest colors for only the cells within a small subbox of the histogram.  | 
584  |  |  * The work array need be only as big as the subbox, so the memory usage  | 
585  |  |  * problem is solved.  Furthermore, we need not fill subboxes that are never  | 
586  |  |  * referenced in pass2; many images use only part of the color gamut, so a  | 
587  |  |  * fair amount of work is saved.  An additional advantage of this  | 
588  |  |  * approach is that we can apply Heckbert's locality criterion to quickly  | 
589  |  |  * eliminate colormap entries that are far away from the subbox; typically  | 
590  |  |  * three-fourths of the colormap entries are rejected by Heckbert's criterion,  | 
591  |  |  * and we need not compute their distances to individual cells in the subbox.  | 
592  |  |  * The speed of this approach is heavily influenced by the subbox size: too  | 
593  |  |  * small means too much overhead, too big loses because Heckbert's criterion  | 
594  |  |  * can't eliminate as many colormap entries.  Empirically the best subbox  | 
595  |  |  * size seems to be about 1/512th of the histogram (1/8th in each direction).  | 
596  |  |  *  | 
597  |  |  * Thomas' article also describes a refined method which is asymptotically  | 
598  |  |  * faster than the brute-force method, but it is also far more complex and  | 
599  |  |  * cannot efficiently be applied to small subboxes.  It is therefore not  | 
600  |  |  * useful for programs intended to be portable to DOS machines.  On machines  | 
601  |  |  * with plenty of memory, filling the whole histogram in one shot with Thomas'  | 
602  |  |  * refined method might be faster than the present code --- but then again,  | 
603  |  |  * it might not be any faster, and it's certainly more complicated.  | 
604  |  |  */  | 
605  |  |  | 
606  |  |  | 
607  |  | /* log2(histogram cells in update box) for each axis; this can be adjusted */  | 
608  | 0  | #define BOX_C0_LOG  (HIST_C0_BITS - 3)  | 
609  | 0  | #define BOX_C1_LOG  (HIST_C1_BITS - 3)  | 
610  | 0  | #define BOX_C2_LOG  (HIST_C2_BITS - 3)  | 
611  |  |  | 
612  | 0  | #define BOX_C0_ELEMS  (1 << BOX_C0_LOG) /* # of hist cells in update box */  | 
613  | 0  | #define BOX_C1_ELEMS  (1 << BOX_C1_LOG)  | 
614  | 0  | #define BOX_C2_ELEMS  (1 << BOX_C2_LOG)  | 
615  |  |  | 
616  | 0  | #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)  | 
617  | 0  | #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)  | 
618  | 0  | #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)  | 
619  |  |  | 
620  |  |  | 
621  |  | /*  | 
622  |  |  * The next three routines implement inverse colormap filling.  They could  | 
623  |  |  * all be folded into one big routine, but splitting them up this way saves  | 
624  |  |  * some stack space (the mindist[] and bestdist[] arrays need not coexist)  | 
625  |  |  * and may allow some compilers to produce better code by registerizing more  | 
626  |  |  * inner-loop variables.  | 
627  |  |  */  | 
628  |  |  | 
629  |  | LOCAL(int)  | 
630  |  | find_nearby_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,  | 
631  |  |                    _JSAMPLE colorlist[])  | 
632  |  | /* Locate the colormap entries close enough to an update box to be candidates  | 
633  |  |  * for the nearest entry to some cell(s) in the update box.  The update box  | 
634  |  |  * is specified by the center coordinates of its first cell.  The number of  | 
635  |  |  * candidate colormap entries is returned, and their colormap indexes are  | 
636  |  |  * placed in colorlist[].  | 
637  |  |  * This routine uses Heckbert's "locally sorted search" criterion to select  | 
638  |  |  * the colors that need further consideration.  | 
639  |  |  */  | 
640  | 0  | { | 
641  | 0  |   int numcolors = cinfo->actual_number_of_colors;  | 
642  | 0  |   int maxc0, maxc1, maxc2;  | 
643  | 0  |   int centerc0, centerc1, centerc2;  | 
644  | 0  |   int i, x, ncolors;  | 
645  | 0  |   JLONG minmaxdist, min_dist, max_dist, tdist;  | 
646  | 0  |   JLONG mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */  | 
647  |  |  | 
648  |  |   /* Compute true coordinates of update box's upper corner and center.  | 
649  |  |    * Actually we compute the coordinates of the center of the upper-corner  | 
650  |  |    * histogram cell, which are the upper bounds of the volume we care about.  | 
651  |  |    * Note that since ">>" rounds down, the "center" values may be closer to  | 
652  |  |    * min than to max; hence comparisons to them must be "<=", not "<".  | 
653  |  |    */  | 
654  | 0  |   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));  | 
655  | 0  |   centerc0 = (minc0 + maxc0) >> 1;  | 
656  | 0  |   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));  | 
657  | 0  |   centerc1 = (minc1 + maxc1) >> 1;  | 
658  | 0  |   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));  | 
659  | 0  |   centerc2 = (minc2 + maxc2) >> 1;  | 
660  |  |  | 
661  |  |   /* For each color in colormap, find:  | 
662  |  |    *  1. its minimum squared-distance to any point in the update box  | 
663  |  |    *     (zero if color is within update box);  | 
664  |  |    *  2. its maximum squared-distance to any point in the update box.  | 
665  |  |    * Both of these can be found by considering only the corners of the box.  | 
666  |  |    * We save the minimum distance for each color in mindist[];  | 
667  |  |    * only the smallest maximum distance is of interest.  | 
668  |  |    */  | 
669  | 0  |   minmaxdist = 0x7FFFFFFFL;  | 
670  |  | 
  | 
671  | 0  |   for (i = 0; i < numcolors; i++) { | 
672  |  |     /* We compute the squared-c0-distance term, then add in the other two. */  | 
673  | 0  |     x = ((_JSAMPARRAY)cinfo->colormap)[0][i];  | 
674  | 0  |     if (x < minc0) { | 
675  | 0  |       tdist = (x - minc0) * C0_SCALE;  | 
676  | 0  |       min_dist = tdist * tdist;  | 
677  | 0  |       tdist = (x - maxc0) * C0_SCALE;  | 
678  | 0  |       max_dist = tdist * tdist;  | 
679  | 0  |     } else if (x > maxc0) { | 
680  | 0  |       tdist = (x - maxc0) * C0_SCALE;  | 
681  | 0  |       min_dist = tdist * tdist;  | 
682  | 0  |       tdist = (x - minc0) * C0_SCALE;  | 
683  | 0  |       max_dist = tdist * tdist;  | 
684  | 0  |     } else { | 
685  |  |       /* within cell range so no contribution to min_dist */  | 
686  | 0  |       min_dist = 0;  | 
687  | 0  |       if (x <= centerc0) { | 
688  | 0  |         tdist = (x - maxc0) * C0_SCALE;  | 
689  | 0  |         max_dist = tdist * tdist;  | 
690  | 0  |       } else { | 
691  | 0  |         tdist = (x - minc0) * C0_SCALE;  | 
692  | 0  |         max_dist = tdist * tdist;  | 
693  | 0  |       }  | 
694  | 0  |     }  | 
695  |  | 
  | 
696  | 0  |     x = ((_JSAMPARRAY)cinfo->colormap)[1][i];  | 
697  | 0  |     if (x < minc1) { | 
698  | 0  |       tdist = (x - minc1) * C1_SCALE;  | 
699  | 0  |       min_dist += tdist * tdist;  | 
700  | 0  |       tdist = (x - maxc1) * C1_SCALE;  | 
701  | 0  |       max_dist += tdist * tdist;  | 
702  | 0  |     } else if (x > maxc1) { | 
703  | 0  |       tdist = (x - maxc1) * C1_SCALE;  | 
704  | 0  |       min_dist += tdist * tdist;  | 
705  | 0  |       tdist = (x - minc1) * C1_SCALE;  | 
706  | 0  |       max_dist += tdist * tdist;  | 
707  | 0  |     } else { | 
708  |  |       /* within cell range so no contribution to min_dist */  | 
709  | 0  |       if (x <= centerc1) { | 
710  | 0  |         tdist = (x - maxc1) * C1_SCALE;  | 
711  | 0  |         max_dist += tdist * tdist;  | 
712  | 0  |       } else { | 
713  | 0  |         tdist = (x - minc1) * C1_SCALE;  | 
714  | 0  |         max_dist += tdist * tdist;  | 
715  | 0  |       }  | 
716  | 0  |     }  | 
717  |  | 
  | 
718  | 0  |     x = ((_JSAMPARRAY)cinfo->colormap)[2][i];  | 
719  | 0  |     if (x < minc2) { | 
720  | 0  |       tdist = (x - minc2) * C2_SCALE;  | 
721  | 0  |       min_dist += tdist * tdist;  | 
722  | 0  |       tdist = (x - maxc2) * C2_SCALE;  | 
723  | 0  |       max_dist += tdist * tdist;  | 
724  | 0  |     } else if (x > maxc2) { | 
725  | 0  |       tdist = (x - maxc2) * C2_SCALE;  | 
726  | 0  |       min_dist += tdist * tdist;  | 
727  | 0  |       tdist = (x - minc2) * C2_SCALE;  | 
728  | 0  |       max_dist += tdist * tdist;  | 
729  | 0  |     } else { | 
730  |  |       /* within cell range so no contribution to min_dist */  | 
731  | 0  |       if (x <= centerc2) { | 
732  | 0  |         tdist = (x - maxc2) * C2_SCALE;  | 
733  | 0  |         max_dist += tdist * tdist;  | 
734  | 0  |       } else { | 
735  | 0  |         tdist = (x - minc2) * C2_SCALE;  | 
736  | 0  |         max_dist += tdist * tdist;  | 
737  | 0  |       }  | 
738  | 0  |     }  | 
739  |  | 
  | 
740  | 0  |     mindist[i] = min_dist;      /* save away the results */  | 
741  | 0  |     if (max_dist < minmaxdist)  | 
742  | 0  |       minmaxdist = max_dist;  | 
743  | 0  |   }  | 
744  |  |  | 
745  |  |   /* Now we know that no cell in the update box is more than minmaxdist  | 
746  |  |    * away from some colormap entry.  Therefore, only colors that are  | 
747  |  |    * within minmaxdist of some part of the box need be considered.  | 
748  |  |    */  | 
749  | 0  |   ncolors = 0;  | 
750  | 0  |   for (i = 0; i < numcolors; i++) { | 
751  | 0  |     if (mindist[i] <= minmaxdist)  | 
752  | 0  |       colorlist[ncolors++] = (_JSAMPLE)i;  | 
753  | 0  |   }  | 
754  | 0  |   return ncolors;  | 
755  | 0  | }  | 
756  |  |  | 
757  |  |  | 
758  |  | LOCAL(void)  | 
759  |  | find_best_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,  | 
760  |  |                  int numcolors, _JSAMPLE colorlist[], _JSAMPLE bestcolor[])  | 
761  |  | /* Find the closest colormap entry for each cell in the update box,  | 
762  |  |  * given the list of candidate colors prepared by find_nearby_colors.  | 
763  |  |  * Return the indexes of the closest entries in the bestcolor[] array.  | 
764  |  |  * This routine uses Thomas' incremental distance calculation method to  | 
765  |  |  * find the distance from a colormap entry to successive cells in the box.  | 
766  |  |  */  | 
767  | 0  | { | 
768  | 0  |   int ic0, ic1, ic2;  | 
769  | 0  |   int i, icolor;  | 
770  | 0  |   register JLONG *bptr;         /* pointer into bestdist[] array */  | 
771  | 0  |   _JSAMPLE *cptr;               /* pointer into bestcolor[] array */  | 
772  | 0  |   JLONG dist0, dist1;           /* initial distance values */  | 
773  | 0  |   register JLONG dist2;         /* current distance in inner loop */  | 
774  | 0  |   JLONG xx0, xx1;               /* distance increments */  | 
775  | 0  |   register JLONG xx2;  | 
776  | 0  |   JLONG inc0, inc1, inc2;       /* initial values for increments */  | 
777  |  |   /* This array holds the distance to the nearest-so-far color for each cell */  | 
778  | 0  |   JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];  | 
779  |  |  | 
780  |  |   /* Initialize best-distance for each cell of the update box */  | 
781  | 0  |   bptr = bestdist;  | 
782  | 0  |   for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)  | 
783  | 0  |     *bptr++ = 0x7FFFFFFFL;  | 
784  |  |  | 
785  |  |   /* For each color selected by find_nearby_colors,  | 
786  |  |    * compute its distance to the center of each cell in the box.  | 
787  |  |    * If that's less than best-so-far, update best distance and color number.  | 
788  |  |    */  | 
789  |  |  | 
790  |  |   /* Nominal steps between cell centers ("x" in Thomas article) */ | 
791  | 0  | #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)  | 
792  | 0  | #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)  | 
793  | 0  | #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)  | 
794  |  | 
  | 
795  | 0  |   for (i = 0; i < numcolors; i++) { | 
796  | 0  |     icolor = colorlist[i];  | 
797  |  |     /* Compute (square of) distance from minc0/c1/c2 to this color */  | 
798  | 0  |     inc0 = (minc0 - ((_JSAMPARRAY)cinfo->colormap)[0][icolor]) * C0_SCALE;  | 
799  | 0  |     dist0 = inc0 * inc0;  | 
800  | 0  |     inc1 = (minc1 - ((_JSAMPARRAY)cinfo->colormap)[1][icolor]) * C1_SCALE;  | 
801  | 0  |     dist0 += inc1 * inc1;  | 
802  | 0  |     inc2 = (minc2 - ((_JSAMPARRAY)cinfo->colormap)[2][icolor]) * C2_SCALE;  | 
803  | 0  |     dist0 += inc2 * inc2;  | 
804  |  |     /* Form the initial difference increments */  | 
805  | 0  |     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;  | 
806  | 0  |     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;  | 
807  | 0  |     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;  | 
808  |  |     /* Now loop over all cells in box, updating distance per Thomas method */  | 
809  | 0  |     bptr = bestdist;  | 
810  | 0  |     cptr = bestcolor;  | 
811  | 0  |     xx0 = inc0;  | 
812  | 0  |     for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) { | 
813  | 0  |       dist1 = dist0;  | 
814  | 0  |       xx1 = inc1;  | 
815  | 0  |       for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) { | 
816  | 0  |         dist2 = dist1;  | 
817  | 0  |         xx2 = inc2;  | 
818  | 0  |         for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) { | 
819  | 0  |           if (dist2 < *bptr) { | 
820  | 0  |             *bptr = dist2;  | 
821  | 0  |             *cptr = (_JSAMPLE)icolor;  | 
822  | 0  |           }  | 
823  | 0  |           dist2 += xx2;  | 
824  | 0  |           xx2 += 2 * STEP_C2 * STEP_C2;  | 
825  | 0  |           bptr++;  | 
826  | 0  |           cptr++;  | 
827  | 0  |         }  | 
828  | 0  |         dist1 += xx1;  | 
829  | 0  |         xx1 += 2 * STEP_C1 * STEP_C1;  | 
830  | 0  |       }  | 
831  | 0  |       dist0 += xx0;  | 
832  | 0  |       xx0 += 2 * STEP_C0 * STEP_C0;  | 
833  | 0  |     }  | 
834  | 0  |   }  | 
835  | 0  | }  | 
836  |  |  | 
837  |  |  | 
838  |  | LOCAL(void)  | 
839  |  | fill_inverse_cmap(j_decompress_ptr cinfo, int c0, int c1, int c2)  | 
840  |  | /* Fill the inverse-colormap entries in the update box that contains */  | 
841  |  | /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */  | 
842  |  | /* we can fill as many others as we wish.) */  | 
843  | 0  | { | 
844  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
845  | 0  |   hist3d histogram = cquantize->histogram;  | 
846  | 0  |   int minc0, minc1, minc2;      /* lower left corner of update box */  | 
847  | 0  |   int ic0, ic1, ic2;  | 
848  | 0  |   register _JSAMPLE *cptr;      /* pointer into bestcolor[] array */  | 
849  | 0  |   register histptr cachep;      /* pointer into main cache array */  | 
850  |  |   /* This array lists the candidate colormap indexes. */  | 
851  | 0  |   _JSAMPLE colorlist[MAXNUMCOLORS];  | 
852  | 0  |   int numcolors;                /* number of candidate colors */  | 
853  |  |   /* This array holds the actually closest colormap index for each cell. */  | 
854  | 0  |   _JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];  | 
855  |  |  | 
856  |  |   /* Convert cell coordinates to update box ID */  | 
857  | 0  |   c0 >>= BOX_C0_LOG;  | 
858  | 0  |   c1 >>= BOX_C1_LOG;  | 
859  | 0  |   c2 >>= BOX_C2_LOG;  | 
860  |  |  | 
861  |  |   /* Compute true coordinates of update box's origin corner.  | 
862  |  |    * Actually we compute the coordinates of the center of the corner  | 
863  |  |    * histogram cell, which are the lower bounds of the volume we care about.  | 
864  |  |    */  | 
865  | 0  |   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);  | 
866  | 0  |   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);  | 
867  | 0  |   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);  | 
868  |  |  | 
869  |  |   /* Determine which colormap entries are close enough to be candidates  | 
870  |  |    * for the nearest entry to some cell in the update box.  | 
871  |  |    */  | 
872  | 0  |   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);  | 
873  |  |  | 
874  |  |   /* Determine the actually nearest colors. */  | 
875  | 0  |   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,  | 
876  | 0  |                    bestcolor);  | 
877  |  |  | 
878  |  |   /* Save the best color numbers (plus 1) in the main cache array */  | 
879  | 0  |   c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */  | 
880  | 0  |   c1 <<= BOX_C1_LOG;  | 
881  | 0  |   c2 <<= BOX_C2_LOG;  | 
882  | 0  |   cptr = bestcolor;  | 
883  | 0  |   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | 
884  | 0  |     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | 
885  | 0  |       cachep = &histogram[c0 + ic0][c1 + ic1][c2];  | 
886  | 0  |       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | 
887  | 0  |         *cachep++ = (histcell)((*cptr++) + 1);  | 
888  | 0  |       }  | 
889  | 0  |     }  | 
890  | 0  |   }  | 
891  | 0  | }  | 
892  |  |  | 
893  |  |  | 
894  |  | /*  | 
895  |  |  * Map some rows of pixels to the output colormapped representation.  | 
896  |  |  */  | 
897  |  |  | 
898  |  | METHODDEF(void)  | 
899  |  | pass2_no_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,  | 
900  |  |                 _JSAMPARRAY output_buf, int num_rows)  | 
901  |  | /* This version performs no dithering */  | 
902  | 0  | { | 
903  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
904  | 0  |   hist3d histogram = cquantize->histogram;  | 
905  | 0  |   register _JSAMPROW inptr, outptr;  | 
906  | 0  |   register histptr cachep;  | 
907  | 0  |   register int c0, c1, c2;  | 
908  | 0  |   int row;  | 
909  | 0  |   JDIMENSION col;  | 
910  | 0  |   JDIMENSION width = cinfo->output_width;  | 
911  |  | 
  | 
912  | 0  |   for (row = 0; row < num_rows; row++) { | 
913  | 0  |     inptr = input_buf[row];  | 
914  | 0  |     outptr = output_buf[row];  | 
915  | 0  |     for (col = width; col > 0; col--) { | 
916  |  |       /* get pixel value and index into the cache */  | 
917  | 0  |       c0 = (*inptr++) >> C0_SHIFT;  | 
918  | 0  |       c1 = (*inptr++) >> C1_SHIFT;  | 
919  | 0  |       c2 = (*inptr++) >> C2_SHIFT;  | 
920  | 0  |       cachep = &histogram[c0][c1][c2];  | 
921  |  |       /* If we have not seen this color before, find nearest colormap entry */  | 
922  |  |       /* and update the cache */  | 
923  | 0  |       if (*cachep == 0)  | 
924  | 0  |         fill_inverse_cmap(cinfo, c0, c1, c2);  | 
925  |  |       /* Now emit the colormap index for this cell */  | 
926  | 0  |       *outptr++ = (_JSAMPLE)(*cachep - 1);  | 
927  | 0  |     }  | 
928  | 0  |   }  | 
929  | 0  | }  | 
930  |  |  | 
931  |  |  | 
932  |  | METHODDEF(void)  | 
933  |  | pass2_fs_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,  | 
934  |  |                 _JSAMPARRAY output_buf, int num_rows)  | 
935  |  | /* This version performs Floyd-Steinberg dithering */  | 
936  | 0  | { | 
937  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
938  | 0  |   hist3d histogram = cquantize->histogram;  | 
939  | 0  |   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */  | 
940  | 0  |   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */  | 
941  | 0  |   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */  | 
942  | 0  |   register FSERRPTR errorptr;   /* => fserrors[] at column before current */  | 
943  | 0  |   _JSAMPROW inptr;              /* => current input pixel */  | 
944  | 0  |   _JSAMPROW outptr;             /* => current output pixel */  | 
945  | 0  |   histptr cachep;  | 
946  | 0  |   int dir;                      /* +1 or -1 depending on direction */  | 
947  | 0  |   int dir3;                     /* 3*dir, for advancing inptr & errorptr */  | 
948  | 0  |   int row;  | 
949  | 0  |   JDIMENSION col;  | 
950  | 0  |   JDIMENSION width = cinfo->output_width;  | 
951  | 0  |   _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;  | 
952  | 0  |   int *error_limit = cquantize->error_limiter;  | 
953  | 0  |   _JSAMPROW colormap0 = ((_JSAMPARRAY)cinfo->colormap)[0];  | 
954  | 0  |   _JSAMPROW colormap1 = ((_JSAMPARRAY)cinfo->colormap)[1];  | 
955  | 0  |   _JSAMPROW colormap2 = ((_JSAMPARRAY)cinfo->colormap)[2];  | 
956  | 0  |   SHIFT_TEMPS  | 
957  |  | 
  | 
958  | 0  |   for (row = 0; row < num_rows; row++) { | 
959  | 0  |     inptr = input_buf[row];  | 
960  | 0  |     outptr = output_buf[row];  | 
961  | 0  |     if (cquantize->on_odd_row) { | 
962  |  |       /* work right to left in this row */  | 
963  | 0  |       inptr += (width - 1) * 3; /* so point to rightmost pixel */  | 
964  | 0  |       outptr += width - 1;  | 
965  | 0  |       dir = -1;  | 
966  | 0  |       dir3 = -3;  | 
967  | 0  |       errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */  | 
968  | 0  |       cquantize->on_odd_row = FALSE; /* flip for next time */  | 
969  | 0  |     } else { | 
970  |  |       /* work left to right in this row */  | 
971  | 0  |       dir = 1;  | 
972  | 0  |       dir3 = 3;  | 
973  | 0  |       errorptr = cquantize->fserrors; /* => entry before first real column */  | 
974  | 0  |       cquantize->on_odd_row = TRUE; /* flip for next time */  | 
975  | 0  |     }  | 
976  |  |     /* Preset error values: no error propagated to first pixel from left */  | 
977  | 0  |     cur0 = cur1 = cur2 = 0;  | 
978  |  |     /* and no error propagated to row below yet */  | 
979  | 0  |     belowerr0 = belowerr1 = belowerr2 = 0;  | 
980  | 0  |     bpreverr0 = bpreverr1 = bpreverr2 = 0;  | 
981  |  | 
  | 
982  | 0  |     for (col = width; col > 0; col--) { | 
983  |  |       /* curN holds the error propagated from the previous pixel on the  | 
984  |  |        * current line.  Add the error propagated from the previous line  | 
985  |  |        * to form the complete error correction term for this pixel, and  | 
986  |  |        * round the error term (which is expressed * 16) to an integer.  | 
987  |  |        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct  | 
988  |  |        * for either sign of the error value.  | 
989  |  |        * Note: errorptr points to *previous* column's array entry.  | 
990  |  |        */  | 
991  | 0  |       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4);  | 
992  | 0  |       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4);  | 
993  | 0  |       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4);  | 
994  |  |       /* Limit the error using transfer function set by init_error_limit.  | 
995  |  |        * See comments with init_error_limit for rationale.  | 
996  |  |        */  | 
997  | 0  |       cur0 = error_limit[cur0];  | 
998  | 0  |       cur1 = error_limit[cur1];  | 
999  | 0  |       cur2 = error_limit[cur2];  | 
1000  |  |       /* Form pixel value + error, and range-limit to 0.._MAXJSAMPLE.  | 
1001  |  |        * The maximum error is +- _MAXJSAMPLE (or less with error limiting);  | 
1002  |  |        * this sets the required size of the range_limit array.  | 
1003  |  |        */  | 
1004  | 0  |       cur0 += inptr[0];  | 
1005  | 0  |       cur1 += inptr[1];  | 
1006  | 0  |       cur2 += inptr[2];  | 
1007  | 0  |       cur0 = range_limit[cur0];  | 
1008  | 0  |       cur1 = range_limit[cur1];  | 
1009  | 0  |       cur2 = range_limit[cur2];  | 
1010  |  |       /* Index into the cache with adjusted pixel value */  | 
1011  | 0  |       cachep =  | 
1012  | 0  |         &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];  | 
1013  |  |       /* If we have not seen this color before, find nearest colormap */  | 
1014  |  |       /* entry and update the cache */  | 
1015  | 0  |       if (*cachep == 0)  | 
1016  | 0  |         fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT,  | 
1017  | 0  |                           cur2 >> C2_SHIFT);  | 
1018  |  |       /* Now emit the colormap index for this cell */  | 
1019  | 0  |       { | 
1020  | 0  |         register int pixcode = *cachep - 1;  | 
1021  | 0  |         *outptr = (_JSAMPLE)pixcode;  | 
1022  |  |         /* Compute representation error for this pixel */  | 
1023  | 0  |         cur0 -= colormap0[pixcode];  | 
1024  | 0  |         cur1 -= colormap1[pixcode];  | 
1025  | 0  |         cur2 -= colormap2[pixcode];  | 
1026  | 0  |       }  | 
1027  |  |       /* Compute error fractions to be propagated to adjacent pixels.  | 
1028  |  |        * Add these into the running sums, and simultaneously shift the  | 
1029  |  |        * next-line error sums left by 1 column.  | 
1030  |  |        */  | 
1031  | 0  |       { | 
1032  | 0  |         register LOCFSERROR bnexterr;  | 
1033  |  | 
  | 
1034  | 0  |         bnexterr = cur0;        /* Process component 0 */  | 
1035  | 0  |         errorptr[0] = (FSERROR)(bpreverr0 + cur0 * 3);  | 
1036  | 0  |         bpreverr0 = belowerr0 + cur0 * 5;  | 
1037  | 0  |         belowerr0 = bnexterr;  | 
1038  | 0  |         cur0 *= 7;  | 
1039  | 0  |         bnexterr = cur1;        /* Process component 1 */  | 
1040  | 0  |         errorptr[1] = (FSERROR)(bpreverr1 + cur1 * 3);  | 
1041  | 0  |         bpreverr1 = belowerr1 + cur1 * 5;  | 
1042  | 0  |         belowerr1 = bnexterr;  | 
1043  | 0  |         cur1 *= 7;  | 
1044  | 0  |         bnexterr = cur2;        /* Process component 2 */  | 
1045  | 0  |         errorptr[2] = (FSERROR)(bpreverr2 + cur2 * 3);  | 
1046  | 0  |         bpreverr2 = belowerr2 + cur2 * 5;  | 
1047  | 0  |         belowerr2 = bnexterr;  | 
1048  | 0  |         cur2 *= 7;  | 
1049  | 0  |       }  | 
1050  |  |       /* At this point curN contains the 7/16 error value to be propagated  | 
1051  |  |        * to the next pixel on the current line, and all the errors for the  | 
1052  |  |        * next line have been shifted over.  We are therefore ready to move on.  | 
1053  |  |        */  | 
1054  | 0  |       inptr += dir3;            /* Advance pixel pointers to next column */  | 
1055  | 0  |       outptr += dir;  | 
1056  | 0  |       errorptr += dir3;         /* advance errorptr to current column */  | 
1057  | 0  |     }  | 
1058  |  |     /* Post-loop cleanup: we must unload the final error values into the  | 
1059  |  |      * final fserrors[] entry.  Note we need not unload belowerrN because  | 
1060  |  |      * it is for the dummy column before or after the actual array.  | 
1061  |  |      */  | 
1062  | 0  |     errorptr[0] = (FSERROR)bpreverr0; /* unload prev errs into array */  | 
1063  | 0  |     errorptr[1] = (FSERROR)bpreverr1;  | 
1064  | 0  |     errorptr[2] = (FSERROR)bpreverr2;  | 
1065  | 0  |   }  | 
1066  | 0  | }  | 
1067  |  |  | 
1068  |  |  | 
1069  |  | /*  | 
1070  |  |  * Initialize the error-limiting transfer function (lookup table).  | 
1071  |  |  * The raw F-S error computation can potentially compute error values of up to  | 
1072  |  |  * +- _MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be  | 
1073  |  |  * much less, otherwise obviously wrong pixels will be created.  (Typical  | 
1074  |  |  * effects include weird fringes at color-area boundaries, isolated bright  | 
1075  |  |  * pixels in a dark area, etc.)  The standard advice for avoiding this problem  | 
1076  |  |  * is to ensure that the "corners" of the color cube are allocated as output  | 
1077  |  |  * colors; then repeated errors in the same direction cannot cause cascading  | 
1078  |  |  * error buildup.  However, that only prevents the error from getting  | 
1079  |  |  * completely out of hand; Aaron Giles reports that error limiting improves  | 
1080  |  |  * the results even with corner colors allocated.  | 
1081  |  |  * A simple clamping of the error values to about +- _MAXJSAMPLE/8 works pretty  | 
1082  |  |  * well, but the smoother transfer function used below is even better.  Thanks  | 
1083  |  |  * to Aaron Giles for this idea.  | 
1084  |  |  */  | 
1085  |  |  | 
1086  |  | LOCAL(void)  | 
1087  |  | init_error_limit(j_decompress_ptr cinfo)  | 
1088  |  | /* Allocate and fill in the error_limiter table */  | 
1089  | 0  | { | 
1090  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
1091  | 0  |   int *table;  | 
1092  | 0  |   int in, out;  | 
1093  |  | 
  | 
1094  | 0  |   table = (int *)(*cinfo->mem->alloc_small)  | 
1095  | 0  |     ((j_common_ptr)cinfo, JPOOL_IMAGE, (_MAXJSAMPLE * 2 + 1) * sizeof(int));  | 
1096  | 0  |   table += _MAXJSAMPLE;         /* so can index -_MAXJSAMPLE .. +_MAXJSAMPLE */  | 
1097  | 0  |   cquantize->error_limiter = table;  | 
1098  |  | 
  | 
1099  | 0  | #define STEPSIZE  ((_MAXJSAMPLE + 1) / 16)  | 
1100  |  |   /* Map errors 1:1 up to +- _MAXJSAMPLE/16 */  | 
1101  | 0  |   out = 0;  | 
1102  | 0  |   for (in = 0; in < STEPSIZE; in++, out++) { | 
1103  | 0  |     table[in] = out;  table[-in] = -out;  | 
1104  | 0  |   }  | 
1105  |  |   /* Map errors 1:2 up to +- 3*_MAXJSAMPLE/16 */  | 
1106  | 0  |   for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) { | 
1107  | 0  |     table[in] = out;  table[-in] = -out;  | 
1108  | 0  |   }  | 
1109  |  |   /* Clamp the rest to final out value (which is (_MAXJSAMPLE+1)/8) */  | 
1110  | 0  |   for (; in <= _MAXJSAMPLE; in++) { | 
1111  | 0  |     table[in] = out;  table[-in] = -out;  | 
1112  | 0  |   }  | 
1113  | 0  | #undef STEPSIZE  | 
1114  | 0  | }  | 
1115  |  |  | 
1116  |  |  | 
1117  |  | /*  | 
1118  |  |  * Finish up at the end of each pass.  | 
1119  |  |  */  | 
1120  |  |  | 
1121  |  | METHODDEF(void)  | 
1122  |  | finish_pass1(j_decompress_ptr cinfo)  | 
1123  | 0  | { | 
1124  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
1125  |  |  | 
1126  |  |   /* Select the representative colors and fill in cinfo->colormap */  | 
1127  | 0  |   cinfo->colormap = (JSAMPARRAY)cquantize->sv_colormap;  | 
1128  | 0  |   select_colors(cinfo, cquantize->desired);  | 
1129  |  |   /* Force next pass to zero the color index table */  | 
1130  | 0  |   cquantize->needs_zeroed = TRUE;  | 
1131  | 0  | }  | 
1132  |  |  | 
1133  |  |  | 
1134  |  | METHODDEF(void)  | 
1135  |  | finish_pass2(j_decompress_ptr cinfo)  | 
1136  | 0  | { | 
1137  |  |   /* no work */  | 
1138  | 0  | }  | 
1139  |  |  | 
1140  |  |  | 
1141  |  | /*  | 
1142  |  |  * Initialize for each processing pass.  | 
1143  |  |  */  | 
1144  |  |  | 
1145  |  | METHODDEF(void)  | 
1146  |  | start_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan)  | 
1147  | 0  | { | 
1148  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
1149  | 0  |   hist3d histogram = cquantize->histogram;  | 
1150  | 0  |   int i;  | 
1151  |  |  | 
1152  |  |   /* Only F-S dithering or no dithering is supported. */  | 
1153  |  |   /* If user asks for ordered dither, give them F-S. */  | 
1154  | 0  |   if (cinfo->dither_mode != JDITHER_NONE)  | 
1155  | 0  |     cinfo->dither_mode = JDITHER_FS;  | 
1156  |  | 
  | 
1157  | 0  |   if (is_pre_scan) { | 
1158  |  |     /* Set up method pointers */  | 
1159  | 0  |     cquantize->pub._color_quantize = prescan_quantize;  | 
1160  | 0  |     cquantize->pub.finish_pass = finish_pass1;  | 
1161  | 0  |     cquantize->needs_zeroed = TRUE; /* Always zero histogram */  | 
1162  | 0  |   } else { | 
1163  |  |     /* Set up method pointers */  | 
1164  | 0  |     if (cinfo->dither_mode == JDITHER_FS)  | 
1165  | 0  |       cquantize->pub._color_quantize = pass2_fs_dither;  | 
1166  | 0  |     else  | 
1167  | 0  |       cquantize->pub._color_quantize = pass2_no_dither;  | 
1168  | 0  |     cquantize->pub.finish_pass = finish_pass2;  | 
1169  |  |  | 
1170  |  |     /* Make sure color count is acceptable */  | 
1171  | 0  |     i = cinfo->actual_number_of_colors;  | 
1172  | 0  |     if (i < 1)  | 
1173  | 0  |       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);  | 
1174  | 0  |     if (i > MAXNUMCOLORS)  | 
1175  | 0  |       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);  | 
1176  |  | 
  | 
1177  | 0  |     if (cinfo->dither_mode == JDITHER_FS) { | 
1178  | 0  |       size_t arraysize =  | 
1179  | 0  |         (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR)));  | 
1180  |  |       /* Allocate Floyd-Steinberg workspace if we didn't already. */  | 
1181  | 0  |       if (cquantize->fserrors == NULL)  | 
1182  | 0  |         cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)  | 
1183  | 0  |           ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);  | 
1184  |  |       /* Initialize the propagated errors to zero. */  | 
1185  | 0  |       jzero_far((void *)cquantize->fserrors, arraysize);  | 
1186  |  |       /* Make the error-limit table if we didn't already. */  | 
1187  | 0  |       if (cquantize->error_limiter == NULL)  | 
1188  | 0  |         init_error_limit(cinfo);  | 
1189  | 0  |       cquantize->on_odd_row = FALSE;  | 
1190  | 0  |     }  | 
1191  |  | 
  | 
1192  | 0  |   }  | 
1193  |  |   /* Zero the histogram or inverse color map, if necessary */  | 
1194  | 0  |   if (cquantize->needs_zeroed) { | 
1195  | 0  |     for (i = 0; i < HIST_C0_ELEMS; i++) { | 
1196  | 0  |       jzero_far((void *)histogram[i],  | 
1197  | 0  |                 HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));  | 
1198  | 0  |     }  | 
1199  | 0  |     cquantize->needs_zeroed = FALSE;  | 
1200  | 0  |   }  | 
1201  | 0  | }  | 
1202  |  |  | 
1203  |  |  | 
1204  |  | /*  | 
1205  |  |  * Switch to a new external colormap between output passes.  | 
1206  |  |  */  | 
1207  |  |  | 
1208  |  | METHODDEF(void)  | 
1209  |  | new_color_map_2_quant(j_decompress_ptr cinfo)  | 
1210  | 0  | { | 
1211  | 0  |   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;  | 
1212  |  |  | 
1213  |  |   /* Reset the inverse color map */  | 
1214  | 0  |   cquantize->needs_zeroed = TRUE;  | 
1215  | 0  | }  | 
1216  |  |  | 
1217  |  |  | 
1218  |  | /*  | 
1219  |  |  * Module initialization routine for 2-pass color quantization.  | 
1220  |  |  */  | 
1221  |  |  | 
1222  |  | GLOBAL(void)  | 
1223  |  | _jinit_2pass_quantizer(j_decompress_ptr cinfo)  | 
1224  | 0  | { | 
1225  | 0  |   my_cquantize_ptr cquantize;  | 
1226  | 0  |   int i;  | 
1227  |  | 
  | 
1228  | 0  |   if (cinfo->data_precision != BITS_IN_JSAMPLE)  | 
1229  | 0  |     ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);  | 
1230  |  | 
  | 
1231  | 0  |   cquantize = (my_cquantize_ptr)  | 
1232  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
1233  | 0  |                                 sizeof(my_cquantizer));  | 
1234  | 0  |   cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;  | 
1235  | 0  |   cquantize->pub.start_pass = start_pass_2_quant;  | 
1236  | 0  |   cquantize->pub.new_color_map = new_color_map_2_quant;  | 
1237  | 0  |   cquantize->fserrors = NULL;   /* flag optional arrays not allocated */  | 
1238  | 0  |   cquantize->error_limiter = NULL;  | 
1239  |  |  | 
1240  |  |   /* Make sure jdmaster didn't give me a case I can't handle */  | 
1241  | 0  |   if (cinfo->out_color_components != 3 ||  | 
1242  | 0  |       cinfo->out_color_space == JCS_RGB565)  | 
1243  | 0  |     ERREXIT(cinfo, JERR_NOTIMPL);  | 
1244  |  |  | 
1245  |  |   /* Allocate the histogram/inverse colormap storage */  | 
1246  | 0  |   cquantize->histogram = (hist3d)(*cinfo->mem->alloc_small)  | 
1247  | 0  |     ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));  | 
1248  | 0  |   for (i = 0; i < HIST_C0_ELEMS; i++) { | 
1249  | 0  |     cquantize->histogram[i] = (hist2d)(*cinfo->mem->alloc_large)  | 
1250  | 0  |       ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
1251  | 0  |        HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));  | 
1252  | 0  |   }  | 
1253  | 0  |   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */  | 
1254  |  |  | 
1255  |  |   /* Allocate storage for the completed colormap, if required.  | 
1256  |  |    * We do this now since it may affect the memory manager's space  | 
1257  |  |    * calculations.  | 
1258  |  |    */  | 
1259  | 0  |   if (cinfo->enable_2pass_quant) { | 
1260  |  |     /* Make sure color count is acceptable */  | 
1261  | 0  |     int desired = cinfo->desired_number_of_colors;  | 
1262  |  |     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */  | 
1263  | 0  |     if (desired < 8)  | 
1264  | 0  |       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);  | 
1265  |  |     /* Make sure colormap indexes can be represented by _JSAMPLEs */  | 
1266  | 0  |     if (desired > MAXNUMCOLORS)  | 
1267  | 0  |       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);  | 
1268  | 0  |     cquantize->sv_colormap = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)  | 
1269  | 0  |       ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)desired, (JDIMENSION)3);  | 
1270  | 0  |     cquantize->desired = desired;  | 
1271  | 0  |   } else  | 
1272  | 0  |     cquantize->sv_colormap = NULL;  | 
1273  |  |  | 
1274  |  |   /* Only F-S dithering or no dithering is supported. */  | 
1275  |  |   /* If user asks for ordered dither, give them F-S. */  | 
1276  | 0  |   if (cinfo->dither_mode != JDITHER_NONE)  | 
1277  | 0  |     cinfo->dither_mode = JDITHER_FS;  | 
1278  |  |  | 
1279  |  |   /* Allocate Floyd-Steinberg workspace if necessary.  | 
1280  |  |    * This isn't really needed until pass 2, but again it may affect the memory  | 
1281  |  |    * manager's space calculations.  Although we will cope with a later change  | 
1282  |  |    * in dither_mode, we do not promise to honor max_memory_to_use if  | 
1283  |  |    * dither_mode changes.  | 
1284  |  |    */  | 
1285  | 0  |   if (cinfo->dither_mode == JDITHER_FS) { | 
1286  | 0  |     cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)  | 
1287  | 0  |       ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
1288  | 0  |        (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));  | 
1289  |  |     /* Might as well create the error-limiting table too. */  | 
1290  | 0  |     init_error_limit(cinfo);  | 
1291  | 0  |   }  | 
1292  | 0  | } Unexecuted instantiation: j12init_2pass_quantizer Unexecuted instantiation: j16init_2pass_quantizer Unexecuted instantiation: jinit_2pass_quantizer  | 
1293  |  |  | 
1294  |  | #endif /* defined(QUANT_2PASS_SUPPORTED) &&  | 
1295  |  |           (BITS_IN_JSAMPLE != 16 || defined(D_LOSSLESS_SUPPORTED)) */  |