/src/libjpeg-turbo.main/jcarith.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * jcarith.c  | 
3  |  |  *  | 
4  |  |  * This file was part of the Independent JPEG Group's software:  | 
5  |  |  * Developed 1997-2009 by Guido Vollbeding.  | 
6  |  |  * libjpeg-turbo Modifications:  | 
7  |  |  * Copyright (C) 2015, 2018, 2021-2022, D. R. Commander.  | 
8  |  |  * For conditions of distribution and use, see the accompanying README.ijg  | 
9  |  |  * file.  | 
10  |  |  *  | 
11  |  |  * This file contains portable arithmetic entropy encoding routines for JPEG  | 
12  |  |  * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).  | 
13  |  |  *  | 
14  |  |  * Both sequential and progressive modes are supported in this single module.  | 
15  |  |  *  | 
16  |  |  * Suspension is not currently supported in this module.  | 
17  |  |  *  | 
18  |  |  * NOTE: All referenced figures are from  | 
19  |  |  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.  | 
20  |  |  */  | 
21  |  |  | 
22  |  | #define JPEG_INTERNALS  | 
23  |  | #include "jinclude.h"  | 
24  |  | #include "jpeglib.h"  | 
25  |  |  | 
26  |  |  | 
27  |  | /* Expanded entropy encoder object for arithmetic encoding. */  | 
28  |  |  | 
29  |  | typedef struct { | 
30  |  |   struct jpeg_entropy_encoder pub; /* public fields */  | 
31  |  |  | 
32  |  |   JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */  | 
33  |  |   JLONG a;               /* A register, normalized size of coding interval */  | 
34  |  |   JLONG sc;        /* counter for stacked 0xFF values which might overflow */  | 
35  |  |   JLONG zc;          /* counter for pending 0x00 output values which might *  | 
36  |  |                           * be discarded at the end ("Pacman" termination) */ | 
37  |  |   int ct;  /* bit shift counter, determines when next byte will be written */  | 
38  |  |   int buffer;                /* buffer for most recent output byte != 0xFF */  | 
39  |  |  | 
40  |  |   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */  | 
41  |  |   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */  | 
42  |  |  | 
43  |  |   unsigned int restarts_to_go;  /* MCUs left in this restart interval */  | 
44  |  |   int next_restart_num;         /* next restart number to write (0-7) */  | 
45  |  |  | 
46  |  |   /* Pointers to statistics areas (these workspaces have image lifespan) */  | 
47  |  |   unsigned char *dc_stats[NUM_ARITH_TBLS];  | 
48  |  |   unsigned char *ac_stats[NUM_ARITH_TBLS];  | 
49  |  |  | 
50  |  |   /* Statistics bin for coding with fixed probability 0.5 */  | 
51  |  |   unsigned char fixed_bin[4];  | 
52  |  | } arith_entropy_encoder;  | 
53  |  |  | 
54  |  | typedef arith_entropy_encoder *arith_entropy_ptr;  | 
55  |  |  | 
56  |  | /* The following two definitions specify the allocation chunk size  | 
57  |  |  * for the statistics area.  | 
58  |  |  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least  | 
59  |  |  * 49 statistics bins for DC, and 245 statistics bins for AC coding.  | 
60  |  |  *  | 
61  |  |  * We use a compact representation with 1 byte per statistics bin,  | 
62  |  |  * thus the numbers directly represent byte sizes.  | 
63  |  |  * This 1 byte per statistics bin contains the meaning of the MPS  | 
64  |  |  * (more probable symbol) in the highest bit (mask 0x80), and the  | 
65  |  |  * index into the probability estimation state machine table  | 
66  |  |  * in the lower bits (mask 0x7F).  | 
67  |  |  */  | 
68  |  |  | 
69  | 8.94k  | #define DC_STAT_BINS  64  | 
70  | 17.7k  | #define AC_STAT_BINS  256  | 
71  |  |  | 
72  |  | /* NOTE: Uncomment the following #define if you want to use the  | 
73  |  |  * given formula for calculating the AC conditioning parameter Kx  | 
74  |  |  * for spectral selection progressive coding in section G.1.3.2  | 
75  |  |  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).  | 
76  |  |  * Although the spec and P&M authors claim that this "has proven  | 
77  |  |  * to give good results for 8 bit precision samples", I'm not  | 
78  |  |  * convinced yet that this is really beneficial.  | 
79  |  |  * Early tests gave only very marginal compression enhancements  | 
80  |  |  * (a few - around 5 or so - bytes even for very large files),  | 
81  |  |  * which would turn out rather negative if we'd suppress the  | 
82  |  |  * DAC (Define Arithmetic Conditioning) marker segments for  | 
83  |  |  * the default parameters in the future.  | 
84  |  |  * Note that currently the marker writing module emits 12-byte  | 
85  |  |  * DAC segments for a full-component scan in a color image.  | 
86  |  |  * This is not worth worrying about IMHO. However, since the  | 
87  |  |  * spec defines the default values to be used if the tables  | 
88  |  |  * are omitted (unlike Huffman tables, which are required  | 
89  |  |  * anyway), one might optimize this behaviour in the future,  | 
90  |  |  * and then it would be disadvantageous to use custom tables if  | 
91  |  |  * they don't provide sufficient gain to exceed the DAC size.  | 
92  |  |  *  | 
93  |  |  * On the other hand, I'd consider it as a reasonable result  | 
94  |  |  * that the conditioning has no significant influence on the  | 
95  |  |  * compression performance. This means that the basic  | 
96  |  |  * statistical model is already rather stable.  | 
97  |  |  *  | 
98  |  |  * Thus, at the moment, we use the default conditioning values  | 
99  |  |  * anyway, and do not use the custom formula.  | 
100  |  |  *  | 
101  |  | #define CALCULATE_SPECTRAL_CONDITIONING  | 
102  |  |  */  | 
103  |  |  | 
104  |  | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.  | 
105  |  |  * We assume that int right shift is unsigned if JLONG right shift is,  | 
106  |  |  * which should be safe.  | 
107  |  |  */  | 
108  |  |  | 
109  |  | #ifdef RIGHT_SHIFT_IS_UNSIGNED  | 
110  |  | #define ISHIFT_TEMPS    int ishift_temp;  | 
111  |  | #define IRIGHT_SHIFT(x, shft) \  | 
112  |  |   ((ishift_temp = (x)) < 0 ? \  | 
113  |  |    (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \  | 
114  |  |    (ishift_temp >> (shft)))  | 
115  |  | #else  | 
116  |  | #define ISHIFT_TEMPS  | 
117  | 20.1M  | #define IRIGHT_SHIFT(x, shft)   ((x) >> (shft))  | 
118  |  | #endif  | 
119  |  |  | 
120  |  |  | 
121  |  | LOCAL(void)  | 
122  |  | emit_byte(int val, j_compress_ptr cinfo)  | 
123  |  | /* Write next output byte; we do not support suspension in this module. */  | 
124  | 12.6M  | { | 
125  | 12.6M  |   struct jpeg_destination_mgr *dest = cinfo->dest;  | 
126  |  |  | 
127  | 12.6M  |   *dest->next_output_byte++ = (JOCTET)val;  | 
128  | 12.6M  |   if (--dest->free_in_buffer == 0)  | 
129  | 403  |     if (!(*dest->empty_output_buffer) (cinfo))  | 
130  | 0  |       ERREXIT(cinfo, JERR_CANT_SUSPEND);  | 
131  | 12.6M  | }  | 
132  |  |  | 
133  |  |  | 
134  |  | /*  | 
135  |  |  * Finish up at the end of an arithmetic-compressed scan.  | 
136  |  |  */  | 
137  |  |  | 
138  |  | METHODDEF(void)  | 
139  |  | finish_pass(j_compress_ptr cinfo)  | 
140  | 18.4k  | { | 
141  | 18.4k  |   arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;  | 
142  | 18.4k  |   JLONG temp;  | 
143  |  |  | 
144  |  |   /* Section D.1.8: Termination of encoding */  | 
145  |  |  | 
146  |  |   /* Find the e->c in the coding interval with the largest  | 
147  |  |    * number of trailing zero bits */  | 
148  | 18.4k  |   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c)  | 
149  | 5.54k  |     e->c = temp + 0x8000L;  | 
150  | 12.9k  |   else  | 
151  | 12.9k  |     e->c = temp;  | 
152  |  |   /* Send remaining bytes to output */  | 
153  | 18.4k  |   e->c <<= e->ct;  | 
154  | 18.4k  |   if (e->c & 0xF8000000UL) { | 
155  |  |     /* One final overflow has to be handled */  | 
156  | 527  |     if (e->buffer >= 0) { | 
157  | 527  |       if (e->zc)  | 
158  | 9.22k  |         do emit_byte(0x00, cinfo);  | 
159  | 9.22k  |         while (--e->zc);  | 
160  | 527  |       emit_byte(e->buffer + 1, cinfo);  | 
161  | 527  |       if (e->buffer + 1 == 0xFF)  | 
162  | 22  |         emit_byte(0x00, cinfo);  | 
163  | 527  |     }  | 
164  | 527  |     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */  | 
165  | 527  |     e->sc = 0;  | 
166  | 17.9k  |   } else { | 
167  | 17.9k  |     if (e->buffer == 0)  | 
168  | 2.63k  |       ++e->zc;  | 
169  | 15.2k  |     else if (e->buffer >= 0) { | 
170  | 9.51k  |       if (e->zc)  | 
171  | 2.09k  |         do emit_byte(0x00, cinfo);  | 
172  | 2.09k  |         while (--e->zc);  | 
173  | 9.51k  |       emit_byte(e->buffer, cinfo);  | 
174  | 9.51k  |     }  | 
175  | 17.9k  |     if (e->sc) { | 
176  | 186  |       if (e->zc)  | 
177  | 121  |         do emit_byte(0x00, cinfo);  | 
178  | 121  |         while (--e->zc);  | 
179  | 165k  |       do { | 
180  | 165k  |         emit_byte(0xFF, cinfo);  | 
181  | 165k  |         emit_byte(0x00, cinfo);  | 
182  | 165k  |       } while (--e->sc);  | 
183  | 186  |     }  | 
184  | 17.9k  |   }  | 
185  |  |   /* Output final bytes only if they are not 0x00 */  | 
186  | 18.4k  |   if (e->c & 0x7FFF800L) { | 
187  | 15.0k  |     if (e->zc)  /* output final pending zero bytes */  | 
188  | 1.35k  |       do emit_byte(0x00, cinfo);  | 
189  | 1.35k  |       while (--e->zc);  | 
190  | 15.0k  |     emit_byte((e->c >> 19) & 0xFF, cinfo);  | 
191  | 15.0k  |     if (((e->c >> 19) & 0xFF) == 0xFF)  | 
192  | 123  |       emit_byte(0x00, cinfo);  | 
193  | 15.0k  |     if (e->c & 0x7F800L) { | 
194  | 1.37k  |       emit_byte((e->c >> 11) & 0xFF, cinfo);  | 
195  | 1.37k  |       if (((e->c >> 11) & 0xFF) == 0xFF)  | 
196  | 0  |         emit_byte(0x00, cinfo);  | 
197  | 1.37k  |     }  | 
198  | 15.0k  |   }  | 
199  | 18.4k  | }  | 
200  |  |  | 
201  |  |  | 
202  |  | /*  | 
203  |  |  * The core arithmetic encoding routine (common in JPEG and JBIG).  | 
204  |  |  * This needs to go as fast as possible.  | 
205  |  |  * Machine-dependent optimization facilities  | 
206  |  |  * are not utilized in this portable implementation.  | 
207  |  |  * However, this code should be fairly efficient and  | 
208  |  |  * may be a good base for further optimizations anyway.  | 
209  |  |  *  | 
210  |  |  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).  | 
211  |  |  *  | 
212  |  |  * Note: I've added full "Pacman" termination support to the  | 
213  |  |  * byte output routines, which is equivalent to the optional  | 
214  |  |  * Discard_final_zeros procedure (Figure D.15) in the spec.  | 
215  |  |  * Thus, we always produce the shortest possible output  | 
216  |  |  * stream compliant to the spec (no trailing zero bytes,  | 
217  |  |  * except for FF stuffing).  | 
218  |  |  *  | 
219  |  |  * I've also introduced a new scheme for accessing  | 
220  |  |  * the probability estimation state machine table,  | 
221  |  |  * derived from Markus Kuhn's JBIG implementation.  | 
222  |  |  */  | 
223  |  |  | 
224  |  | LOCAL(void)  | 
225  |  | arith_encode(j_compress_ptr cinfo, unsigned char *st, int val)  | 
226  | 474M  | { | 
227  | 474M  |   register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;  | 
228  | 474M  |   register unsigned char nl, nm;  | 
229  | 474M  |   register JLONG qe, temp;  | 
230  | 474M  |   register int sv;  | 
231  |  |  | 
232  |  |   /* Fetch values from our compact representation of Table D.2:  | 
233  |  |    * Qe values and probability estimation state machine  | 
234  |  |    */  | 
235  | 474M  |   sv = *st;  | 
236  | 474M  |   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */  | 
237  | 474M  |   nl = qe & 0xFF;  qe >>= 8;    /* Next_Index_LPS + Switch_MPS */  | 
238  | 474M  |   nm = qe & 0xFF;  qe >>= 8;    /* Next_Index_MPS */  | 
239  |  |  | 
240  |  |   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */  | 
241  | 474M  |   e->a -= qe;  | 
242  | 474M  |   if (val != (sv >> 7)) { | 
243  |  |     /* Encode the less probable symbol */  | 
244  | 39.9M  |     if (e->a >= qe) { | 
245  |  |       /* If the interval size (qe) for the less probable symbol (LPS)  | 
246  |  |        * is larger than the interval size for the MPS, then exchange  | 
247  |  |        * the two symbols for coding efficiency, otherwise code the LPS  | 
248  |  |        * as usual: */  | 
249  | 26.6M  |       e->c += e->a;  | 
250  | 26.6M  |       e->a = qe;  | 
251  | 26.6M  |     }  | 
252  | 39.9M  |     *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */  | 
253  | 434M  |   } else { | 
254  |  |     /* Encode the more probable symbol */  | 
255  | 434M  |     if (e->a >= 0x8000L)  | 
256  | 388M  |       return;  /* A >= 0x8000 -> ready, no renormalization required */  | 
257  | 46.1M  |     if (e->a < qe) { | 
258  |  |       /* If the interval size (qe) for the less probable symbol (LPS)  | 
259  |  |        * is larger than the interval size for the MPS, then exchange  | 
260  |  |        * the two symbols for coding efficiency: */  | 
261  | 12.3M  |       e->c += e->a;  | 
262  | 12.3M  |       e->a = qe;  | 
263  | 12.3M  |     }  | 
264  | 46.1M  |     *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */  | 
265  | 46.1M  |   }  | 
266  |  |  | 
267  |  |   /* Renormalization & data output per section D.1.6 */  | 
268  | 107M  |   do { | 
269  | 107M  |     e->a <<= 1;  | 
270  | 107M  |     e->c <<= 1;  | 
271  | 107M  |     if (--e->ct == 0) { | 
272  |  |       /* Another byte is ready for output */  | 
273  | 13.4M  |       temp = e->c >> 19;  | 
274  | 13.4M  |       if (temp > 0xFF) { | 
275  |  |         /* Handle overflow over all stacked 0xFF bytes */  | 
276  | 524k  |         if (e->buffer >= 0) { | 
277  | 524k  |           if (e->zc)  | 
278  | 40.6k  |             do emit_byte(0x00, cinfo);  | 
279  | 40.6k  |             while (--e->zc);  | 
280  | 524k  |           emit_byte(e->buffer + 1, cinfo);  | 
281  | 524k  |           if (e->buffer + 1 == 0xFF)  | 
282  | 11.1k  |             emit_byte(0x00, cinfo);  | 
283  | 524k  |         }  | 
284  | 524k  |         e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */  | 
285  | 524k  |         e->sc = 0;  | 
286  |  |         /* Note: The 3 spacer bits in the C register guarantee  | 
287  |  |          * that the new buffer byte can't be 0xFF here  | 
288  |  |          * (see page 160 in the P&M JPEG book). */  | 
289  | 524k  |         e->buffer = temp & 0xFF;  /* new output byte, might overflow later */  | 
290  | 12.9M  |       } else if (temp == 0xFF) { | 
291  | 421k  |         ++e->sc;  /* stack 0xFF byte (which might overflow later) */  | 
292  | 12.5M  |       } else { | 
293  |  |         /* Output all stacked 0xFF bytes, they will not overflow any more */  | 
294  | 12.5M  |         if (e->buffer == 0)  | 
295  | 1.27M  |           ++e->zc;  | 
296  | 11.2M  |         else if (e->buffer >= 0) { | 
297  | 11.2M  |           if (e->zc)  | 
298  | 152k  |             do emit_byte(0x00, cinfo);  | 
299  | 152k  |             while (--e->zc);  | 
300  | 11.2M  |           emit_byte(e->buffer, cinfo);  | 
301  | 11.2M  |         }  | 
302  | 12.5M  |         if (e->sc) { | 
303  | 101k  |           if (e->zc)  | 
304  | 1.50k  |             do emit_byte(0x00, cinfo);  | 
305  | 1.50k  |             while (--e->zc);  | 
306  | 178k  |           do { | 
307  | 178k  |             emit_byte(0xFF, cinfo);  | 
308  | 178k  |             emit_byte(0x00, cinfo);  | 
309  | 178k  |           } while (--e->sc);  | 
310  | 101k  |         }  | 
311  | 12.5M  |         e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */  | 
312  | 12.5M  |       }  | 
313  | 13.4M  |       e->c &= 0x7FFFFL;  | 
314  | 13.4M  |       e->ct += 8;  | 
315  | 13.4M  |     }  | 
316  | 107M  |   } while (e->a < 0x8000L);  | 
317  | 86.0M  | }  | 
318  |  |  | 
319  |  |  | 
320  |  | /*  | 
321  |  |  * Emit a restart marker & resynchronize predictions.  | 
322  |  |  */  | 
323  |  |  | 
324  |  | LOCAL(void)  | 
325  |  | emit_restart(j_compress_ptr cinfo, int restart_num)  | 
326  | 0  | { | 
327  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;  | 
328  | 0  |   int ci;  | 
329  | 0  |   jpeg_component_info *compptr;  | 
330  |  | 
  | 
331  | 0  |   finish_pass(cinfo);  | 
332  |  | 
  | 
333  | 0  |   emit_byte(0xFF, cinfo);  | 
334  | 0  |   emit_byte(JPEG_RST0 + restart_num, cinfo);  | 
335  |  |  | 
336  |  |   /* Re-initialize statistics areas */  | 
337  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
338  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
339  |  |     /* DC needs no table for refinement scan */  | 
340  | 0  |     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
341  | 0  |       memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS);  | 
342  |  |       /* Reset DC predictions to 0 */  | 
343  | 0  |       entropy->last_dc_val[ci] = 0;  | 
344  | 0  |       entropy->dc_context[ci] = 0;  | 
345  | 0  |     }  | 
346  |  |     /* AC needs no table when not present */  | 
347  | 0  |     if (cinfo->progressive_mode == 0 || cinfo->Se) { | 
348  | 0  |       memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS);  | 
349  | 0  |     }  | 
350  | 0  |   }  | 
351  |  |  | 
352  |  |   /* Reset arithmetic encoding variables */  | 
353  | 0  |   entropy->c = 0;  | 
354  | 0  |   entropy->a = 0x10000L;  | 
355  | 0  |   entropy->sc = 0;  | 
356  | 0  |   entropy->zc = 0;  | 
357  | 0  |   entropy->ct = 11;  | 
358  | 0  |   entropy->buffer = -1;  /* empty */  | 
359  | 0  | }  | 
360  |  |  | 
361  |  |  | 
362  |  | /*  | 
363  |  |  * MCU encoding for DC initial scan (either spectral selection,  | 
364  |  |  * or first pass of successive approximation).  | 
365  |  |  */  | 
366  |  |  | 
367  |  | METHODDEF(boolean)  | 
368  |  | encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)  | 
369  | 12.9M  | { | 
370  | 12.9M  |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;  | 
371  | 12.9M  |   JBLOCKROW block;  | 
372  | 12.9M  |   unsigned char *st;  | 
373  | 12.9M  |   int blkn, ci, tbl;  | 
374  | 12.9M  |   int v, v2, m;  | 
375  | 12.9M  |   ISHIFT_TEMPS  | 
376  |  |  | 
377  |  |   /* Emit restart marker if needed */  | 
378  | 12.9M  |   if (cinfo->restart_interval) { | 
379  | 0  |     if (entropy->restarts_to_go == 0) { | 
380  | 0  |       emit_restart(cinfo, entropy->next_restart_num);  | 
381  | 0  |       entropy->restarts_to_go = cinfo->restart_interval;  | 
382  | 0  |       entropy->next_restart_num++;  | 
383  | 0  |       entropy->next_restart_num &= 7;  | 
384  | 0  |     }  | 
385  | 0  |     entropy->restarts_to_go--;  | 
386  | 0  |   }  | 
387  |  |  | 
388  |  |   /* Encode the MCU data blocks */  | 
389  | 33.0M  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
390  | 20.1M  |     block = MCU_data[blkn];  | 
391  | 20.1M  |     ci = cinfo->MCU_membership[blkn];  | 
392  | 20.1M  |     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;  | 
393  |  |  | 
394  |  |     /* Compute the DC value after the required point transform by Al.  | 
395  |  |      * This is simply an arithmetic right shift.  | 
396  |  |      */  | 
397  | 20.1M  |     m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al);  | 
398  |  |  | 
399  |  |     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */  | 
400  |  |  | 
401  |  |     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */  | 
402  | 20.1M  |     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];  | 
403  |  |  | 
404  |  |     /* Figure F.4: Encode_DC_DIFF */  | 
405  | 20.1M  |     if ((v = m - entropy->last_dc_val[ci]) == 0) { | 
406  | 13.8M  |       arith_encode(cinfo, st, 0);  | 
407  | 13.8M  |       entropy->dc_context[ci] = 0;      /* zero diff category */  | 
408  | 13.8M  |     } else { | 
409  | 6.32M  |       entropy->last_dc_val[ci] = m;  | 
410  | 6.32M  |       arith_encode(cinfo, st, 1);  | 
411  |  |       /* Figure F.6: Encoding nonzero value v */  | 
412  |  |       /* Figure F.7: Encoding the sign of v */  | 
413  | 6.32M  |       if (v > 0) { | 
414  | 2.64M  |         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */  | 
415  | 2.64M  |         st += 2;                        /* Table F.4: SP = S0 + 2 */  | 
416  | 2.64M  |         entropy->dc_context[ci] = 4;    /* small positive diff category */  | 
417  | 3.67M  |       } else { | 
418  | 3.67M  |         v = -v;  | 
419  | 3.67M  |         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */  | 
420  | 3.67M  |         st += 3;                        /* Table F.4: SN = S0 + 3 */  | 
421  | 3.67M  |         entropy->dc_context[ci] = 8;    /* small negative diff category */  | 
422  | 3.67M  |       }  | 
423  |  |       /* Figure F.8: Encoding the magnitude category of v */  | 
424  | 6.32M  |       m = 0;  | 
425  | 6.32M  |       if (v -= 1) { | 
426  | 4.49M  |         arith_encode(cinfo, st, 1);  | 
427  | 4.49M  |         m = 1;  | 
428  | 4.49M  |         v2 = v;  | 
429  | 4.49M  |         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */  | 
430  | 18.9M  |         while (v2 >>= 1) { | 
431  | 14.4M  |           arith_encode(cinfo, st, 1);  | 
432  | 14.4M  |           m <<= 1;  | 
433  | 14.4M  |           st += 1;  | 
434  | 14.4M  |         }  | 
435  | 4.49M  |       }  | 
436  | 6.32M  |       arith_encode(cinfo, st, 0);  | 
437  |  |       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */  | 
438  | 6.32M  |       if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))  | 
439  | 0  |         entropy->dc_context[ci] = 0;    /* zero diff category */  | 
440  | 6.32M  |       else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))  | 
441  | 3.65M  |         entropy->dc_context[ci] += 8;   /* large diff category */  | 
442  |  |       /* Figure F.9: Encoding the magnitude bit pattern of v */  | 
443  | 6.32M  |       st += 14;  | 
444  | 20.8M  |       while (m >>= 1)  | 
445  | 14.4M  |         arith_encode(cinfo, st, (m & v) ? 1 : 0);  | 
446  | 6.32M  |     }  | 
447  | 20.1M  |   }  | 
448  |  |  | 
449  | 12.9M  |   return TRUE;  | 
450  | 12.9M  | }  | 
451  |  |  | 
452  |  |  | 
453  |  | /*  | 
454  |  |  * MCU encoding for AC initial scan (either spectral selection,  | 
455  |  |  * or first pass of successive approximation).  | 
456  |  |  */  | 
457  |  |  | 
458  |  | METHODDEF(boolean)  | 
459  |  | encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)  | 
460  | 35.6M  | { | 
461  | 35.6M  |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;  | 
462  | 35.6M  |   JBLOCKROW block;  | 
463  | 35.6M  |   unsigned char *st;  | 
464  | 35.6M  |   int tbl, k, ke;  | 
465  | 35.6M  |   int v, v2, m;  | 
466  |  |  | 
467  |  |   /* Emit restart marker if needed */  | 
468  | 35.6M  |   if (cinfo->restart_interval) { | 
469  | 0  |     if (entropy->restarts_to_go == 0) { | 
470  | 0  |       emit_restart(cinfo, entropy->next_restart_num);  | 
471  | 0  |       entropy->restarts_to_go = cinfo->restart_interval;  | 
472  | 0  |       entropy->next_restart_num++;  | 
473  | 0  |       entropy->next_restart_num &= 7;  | 
474  | 0  |     }  | 
475  | 0  |     entropy->restarts_to_go--;  | 
476  | 0  |   }  | 
477  |  |  | 
478  |  |   /* Encode the MCU data block */  | 
479  | 35.6M  |   block = MCU_data[0];  | 
480  | 35.6M  |   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;  | 
481  |  |  | 
482  |  |   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */  | 
483  |  |  | 
484  |  |   /* Establish EOB (end-of-block) index */  | 
485  | 1.32G  |   for (ke = cinfo->Se; ke > 0; ke--)  | 
486  |  |     /* We must apply the point transform by Al.  For AC coefficients this  | 
487  |  |      * is an integer division with rounding towards 0.  To do this portably  | 
488  |  |      * in C, we shift after obtaining the absolute value.  | 
489  |  |      */  | 
490  | 1.29G  |     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { | 
491  | 1.28G  |       if (v >>= cinfo->Al) break;  | 
492  | 1.28G  |     } else { | 
493  | 3.97M  |       v = -v;  | 
494  | 3.97M  |       if (v >>= cinfo->Al) break;  | 
495  | 3.97M  |     }  | 
496  |  |  | 
497  |  |   /* Figure F.5: Encode_AC_Coefficients */  | 
498  | 46.1M  |   for (k = cinfo->Ss; k <= ke; k++) { | 
499  | 10.4M  |     st = entropy->ac_stats[tbl] + 3 * (k - 1);  | 
500  | 10.4M  |     arith_encode(cinfo, st, 0);         /* EOB decision */  | 
501  | 39.9M  |     for (;;) { | 
502  | 39.9M  |       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { | 
503  | 33.1M  |         if (v >>= cinfo->Al) { | 
504  | 4.87M  |           arith_encode(cinfo, st + 1, 1);  | 
505  | 4.87M  |           arith_encode(cinfo, entropy->fixed_bin, 0);  | 
506  | 4.87M  |           break;  | 
507  | 4.87M  |         }  | 
508  | 33.1M  |       } else { | 
509  | 6.81M  |         v = -v;  | 
510  | 6.81M  |         if (v >>= cinfo->Al) { | 
511  | 5.58M  |           arith_encode(cinfo, st + 1, 1);  | 
512  | 5.58M  |           arith_encode(cinfo, entropy->fixed_bin, 1);  | 
513  | 5.58M  |           break;  | 
514  | 5.58M  |         }  | 
515  | 6.81M  |       }  | 
516  | 29.5M  |       arith_encode(cinfo, st + 1, 0);  st += 3;  k++;  | 
517  | 29.5M  |     }  | 
518  | 10.4M  |     st += 2;  | 
519  |  |     /* Figure F.8: Encoding the magnitude category of v */  | 
520  | 10.4M  |     m = 0;  | 
521  | 10.4M  |     if (v -= 1) { | 
522  | 8.46M  |       arith_encode(cinfo, st, 1);  | 
523  | 8.46M  |       m = 1;  | 
524  | 8.46M  |       v2 = v;  | 
525  | 8.46M  |       if (v2 >>= 1) { | 
526  | 7.00M  |         arith_encode(cinfo, st, 1);  | 
527  | 7.00M  |         m <<= 1;  | 
528  | 7.00M  |         st = entropy->ac_stats[tbl] +  | 
529  | 7.00M  |              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);  | 
530  | 25.2M  |         while (v2 >>= 1) { | 
531  | 18.2M  |           arith_encode(cinfo, st, 1);  | 
532  | 18.2M  |           m <<= 1;  | 
533  | 18.2M  |           st += 1;  | 
534  | 18.2M  |         }  | 
535  | 7.00M  |       }  | 
536  | 8.46M  |     }  | 
537  | 10.4M  |     arith_encode(cinfo, st, 0);  | 
538  |  |     /* Figure F.9: Encoding the magnitude bit pattern of v */  | 
539  | 10.4M  |     st += 14;  | 
540  | 35.7M  |     while (m >>= 1)  | 
541  | 25.2M  |       arith_encode(cinfo, st, (m & v) ? 1 : 0);  | 
542  | 10.4M  |   }  | 
543  |  |   /* Encode EOB decision only if k <= cinfo->Se */  | 
544  | 35.6M  |   if (k <= cinfo->Se) { | 
545  | 35.3M  |     st = entropy->ac_stats[tbl] + 3 * (k - 1);  | 
546  | 35.3M  |     arith_encode(cinfo, st, 1);  | 
547  | 35.3M  |   }  | 
548  |  |  | 
549  | 35.6M  |   return TRUE;  | 
550  | 35.6M  | }  | 
551  |  |  | 
552  |  |  | 
553  |  | /*  | 
554  |  |  * MCU encoding for DC successive approximation refinement scan.  | 
555  |  |  */  | 
556  |  |  | 
557  |  | METHODDEF(boolean)  | 
558  |  | encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)  | 
559  | 12.9M  | { | 
560  | 12.9M  |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;  | 
561  | 12.9M  |   unsigned char *st;  | 
562  | 12.9M  |   int Al, blkn;  | 
563  |  |  | 
564  |  |   /* Emit restart marker if needed */  | 
565  | 12.9M  |   if (cinfo->restart_interval) { | 
566  | 0  |     if (entropy->restarts_to_go == 0) { | 
567  | 0  |       emit_restart(cinfo, entropy->next_restart_num);  | 
568  | 0  |       entropy->restarts_to_go = cinfo->restart_interval;  | 
569  | 0  |       entropy->next_restart_num++;  | 
570  | 0  |       entropy->next_restart_num &= 7;  | 
571  | 0  |     }  | 
572  | 0  |     entropy->restarts_to_go--;  | 
573  | 0  |   }  | 
574  |  |  | 
575  | 12.9M  |   st = entropy->fixed_bin;      /* use fixed probability estimation */  | 
576  | 12.9M  |   Al = cinfo->Al;  | 
577  |  |  | 
578  |  |   /* Encode the MCU data blocks */  | 
579  | 33.0M  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
580  |  |     /* We simply emit the Al'th bit of the DC coefficient value. */  | 
581  | 20.1M  |     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);  | 
582  | 20.1M  |   }  | 
583  |  |  | 
584  | 12.9M  |   return TRUE;  | 
585  | 12.9M  | }  | 
586  |  |  | 
587  |  |  | 
588  |  | /*  | 
589  |  |  * MCU encoding for AC successive approximation refinement scan.  | 
590  |  |  */  | 
591  |  |  | 
592  |  | METHODDEF(boolean)  | 
593  |  | encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)  | 
594  | 35.6M  | { | 
595  | 35.6M  |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;  | 
596  | 35.6M  |   JBLOCKROW block;  | 
597  | 35.6M  |   unsigned char *st;  | 
598  | 35.6M  |   int tbl, k, ke, kex;  | 
599  | 35.6M  |   int v;  | 
600  |  |  | 
601  |  |   /* Emit restart marker if needed */  | 
602  | 35.6M  |   if (cinfo->restart_interval) { | 
603  | 0  |     if (entropy->restarts_to_go == 0) { | 
604  | 0  |       emit_restart(cinfo, entropy->next_restart_num);  | 
605  | 0  |       entropy->restarts_to_go = cinfo->restart_interval;  | 
606  | 0  |       entropy->next_restart_num++;  | 
607  | 0  |       entropy->next_restart_num &= 7;  | 
608  | 0  |     }  | 
609  | 0  |     entropy->restarts_to_go--;  | 
610  | 0  |   }  | 
611  |  |  | 
612  |  |   /* Encode the MCU data block */  | 
613  | 35.6M  |   block = MCU_data[0];  | 
614  | 35.6M  |   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;  | 
615  |  |  | 
616  |  |   /* Section G.1.3.3: Encoding of AC coefficients */  | 
617  |  |  | 
618  |  |   /* Establish EOB (end-of-block) index */  | 
619  | 2.16G  |   for (ke = cinfo->Se; ke > 0; ke--)  | 
620  |  |     /* We must apply the point transform by Al.  For AC coefficients this  | 
621  |  |      * is an integer division with rounding towards 0.  To do this portably  | 
622  |  |      * in C, we shift after obtaining the absolute value.  | 
623  |  |      */  | 
624  | 2.13G  |     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { | 
625  | 2.13G  |       if (v >>= cinfo->Al) break;  | 
626  | 2.13G  |     } else { | 
627  | 3.79M  |       v = -v;  | 
628  | 3.79M  |       if (v >>= cinfo->Al) break;  | 
629  | 3.79M  |     }  | 
630  |  |  | 
631  |  |   /* Establish EOBx (previous stage end-of-block) index */  | 
632  | 54.7M  |   for (kex = ke; kex > 0; kex--)  | 
633  | 23.8M  |     if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { | 
634  | 19.8M  |       if (v >>= cinfo->Ah) break;  | 
635  | 19.8M  |     } else { | 
636  | 4.01M  |       v = -v;  | 
637  | 4.01M  |       if (v >>= cinfo->Ah) break;  | 
638  | 4.01M  |     }  | 
639  |  |  | 
640  |  |   /* Figure G.10: Encode_AC_Coefficients_SA */  | 
641  | 63.5M  |   for (k = cinfo->Ss; k <= ke; k++) { | 
642  | 27.8M  |     st = entropy->ac_stats[tbl] + 3 * (k - 1);  | 
643  | 27.8M  |     if (k > kex)  | 
644  | 2.68M  |       arith_encode(cinfo, st, 0);       /* EOB decision */  | 
645  | 116M  |     for (;;) { | 
646  | 116M  |       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { | 
647  | 100M  |         if (v >>= cinfo->Al) { | 
648  | 13.1M  |           if (v >> 1)                   /* previously nonzero coef */  | 
649  | 10.4M  |             arith_encode(cinfo, st + 2, (v & 1));  | 
650  | 2.68M  |           else {                        /* newly nonzero coef */ | 
651  | 2.68M  |             arith_encode(cinfo, st + 1, 1);  | 
652  | 2.68M  |             arith_encode(cinfo, entropy->fixed_bin, 0);  | 
653  | 2.68M  |           }  | 
654  | 13.1M  |           break;  | 
655  | 13.1M  |         }  | 
656  | 100M  |       } else { | 
657  | 15.9M  |         v = -v;  | 
658  | 15.9M  |         if (v >>= cinfo->Al) { | 
659  | 14.7M  |           if (v >> 1)                   /* previously nonzero coef */  | 
660  | 11.7M  |             arith_encode(cinfo, st + 2, (v & 1));  | 
661  | 3.01M  |           else {                        /* newly nonzero coef */ | 
662  | 3.01M  |             arith_encode(cinfo, st + 1, 1);  | 
663  | 3.01M  |             arith_encode(cinfo, entropy->fixed_bin, 1);  | 
664  | 3.01M  |           }  | 
665  | 14.7M  |           break;  | 
666  | 14.7M  |         }  | 
667  | 15.9M  |       }  | 
668  | 88.6M  |       arith_encode(cinfo, st + 1, 0);  st += 3;  k++;  | 
669  | 88.6M  |     }  | 
670  | 27.8M  |   }  | 
671  |  |   /* Encode EOB decision only if k <= cinfo->Se */  | 
672  | 35.6M  |   if (k <= cinfo->Se) { | 
673  | 35.6M  |     st = entropy->ac_stats[tbl] + 3 * (k - 1);  | 
674  | 35.6M  |     arith_encode(cinfo, st, 1);  | 
675  | 35.6M  |   }  | 
676  |  |  | 
677  | 35.6M  |   return TRUE;  | 
678  | 35.6M  | }  | 
679  |  |  | 
680  |  |  | 
681  |  | /*  | 
682  |  |  * Encode and output one MCU's worth of arithmetic-compressed coefficients.  | 
683  |  |  */  | 
684  |  |  | 
685  |  | METHODDEF(boolean)  | 
686  |  | encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data)  | 
687  | 3.45M  | { | 
688  | 3.45M  |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;  | 
689  | 3.45M  |   jpeg_component_info *compptr;  | 
690  | 3.45M  |   JBLOCKROW block;  | 
691  | 3.45M  |   unsigned char *st;  | 
692  | 3.45M  |   int blkn, ci, tbl, k, ke;  | 
693  | 3.45M  |   int v, v2, m;  | 
694  |  |  | 
695  |  |   /* Emit restart marker if needed */  | 
696  | 3.45M  |   if (cinfo->restart_interval) { | 
697  | 0  |     if (entropy->restarts_to_go == 0) { | 
698  | 0  |       emit_restart(cinfo, entropy->next_restart_num);  | 
699  | 0  |       entropy->restarts_to_go = cinfo->restart_interval;  | 
700  | 0  |       entropy->next_restart_num++;  | 
701  | 0  |       entropy->next_restart_num &= 7;  | 
702  | 0  |     }  | 
703  | 0  |     entropy->restarts_to_go--;  | 
704  | 0  |   }  | 
705  |  |  | 
706  |  |   /* Encode the MCU data blocks */  | 
707  | 7.01M  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
708  | 3.56M  |     block = MCU_data[blkn];  | 
709  | 3.56M  |     ci = cinfo->MCU_membership[blkn];  | 
710  | 3.56M  |     compptr = cinfo->cur_comp_info[ci];  | 
711  |  |  | 
712  |  |     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */  | 
713  |  |  | 
714  | 3.56M  |     tbl = compptr->dc_tbl_no;  | 
715  |  |  | 
716  |  |     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */  | 
717  | 3.56M  |     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];  | 
718  |  |  | 
719  |  |     /* Figure F.4: Encode_DC_DIFF */  | 
720  | 3.56M  |     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { | 
721  | 2.68M  |       arith_encode(cinfo, st, 0);  | 
722  | 2.68M  |       entropy->dc_context[ci] = 0;      /* zero diff category */  | 
723  | 2.68M  |     } else { | 
724  | 875k  |       entropy->last_dc_val[ci] = (*block)[0];  | 
725  | 875k  |       arith_encode(cinfo, st, 1);  | 
726  |  |       /* Figure F.6: Encoding nonzero value v */  | 
727  |  |       /* Figure F.7: Encoding the sign of v */  | 
728  | 875k  |       if (v > 0) { | 
729  | 493k  |         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */  | 
730  | 493k  |         st += 2;                        /* Table F.4: SP = S0 + 2 */  | 
731  | 493k  |         entropy->dc_context[ci] = 4;    /* small positive diff category */  | 
732  | 493k  |       } else { | 
733  | 381k  |         v = -v;  | 
734  | 381k  |         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */  | 
735  | 381k  |         st += 3;                        /* Table F.4: SN = S0 + 3 */  | 
736  | 381k  |         entropy->dc_context[ci] = 8;    /* small negative diff category */  | 
737  | 381k  |       }  | 
738  |  |       /* Figure F.8: Encoding the magnitude category of v */  | 
739  | 875k  |       m = 0;  | 
740  | 875k  |       if (v -= 1) { | 
741  | 854k  |         arith_encode(cinfo, st, 1);  | 
742  | 854k  |         m = 1;  | 
743  | 854k  |         v2 = v;  | 
744  | 854k  |         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */  | 
745  | 7.24M  |         while (v2 >>= 1) { | 
746  | 6.38M  |           arith_encode(cinfo, st, 1);  | 
747  | 6.38M  |           m <<= 1;  | 
748  | 6.38M  |           st += 1;  | 
749  | 6.38M  |         }  | 
750  | 854k  |       }  | 
751  | 875k  |       arith_encode(cinfo, st, 0);  | 
752  |  |       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */  | 
753  | 875k  |       if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))  | 
754  | 0  |         entropy->dc_context[ci] = 0;    /* zero diff category */  | 
755  | 875k  |       else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))  | 
756  | 839k  |         entropy->dc_context[ci] += 8;   /* large diff category */  | 
757  |  |       /* Figure F.9: Encoding the magnitude bit pattern of v */  | 
758  | 875k  |       st += 14;  | 
759  | 7.26M  |       while (m >>= 1)  | 
760  | 6.38M  |         arith_encode(cinfo, st, (m & v) ? 1 : 0);  | 
761  | 875k  |     }  | 
762  |  |  | 
763  |  |     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */  | 
764  |  |  | 
765  | 3.56M  |     tbl = compptr->ac_tbl_no;  | 
766  |  |  | 
767  |  |     /* Establish EOB (end-of-block) index */  | 
768  | 217M  |     for (ke = DCTSIZE2 - 1; ke > 0; ke--)  | 
769  | 214M  |       if ((*block)[jpeg_natural_order[ke]]) break;  | 
770  |  |  | 
771  |  |     /* Figure F.5: Encode_AC_Coefficients */  | 
772  | 10.3M  |     for (k = 1; k <= ke; k++) { | 
773  | 6.83M  |       st = entropy->ac_stats[tbl] + 3 * (k - 1);  | 
774  | 6.83M  |       arith_encode(cinfo, st, 0);       /* EOB decision */  | 
775  | 10.8M  |       while ((v = (*block)[jpeg_natural_order[k]]) == 0) { | 
776  | 4.01M  |         arith_encode(cinfo, st + 1, 0);  st += 3;  k++;  | 
777  | 4.01M  |       }  | 
778  | 6.83M  |       arith_encode(cinfo, st + 1, 1);  | 
779  |  |       /* Figure F.6: Encoding nonzero value v */  | 
780  |  |       /* Figure F.7: Encoding the sign of v */  | 
781  | 6.83M  |       if (v > 0) { | 
782  | 3.50M  |         arith_encode(cinfo, entropy->fixed_bin, 0);  | 
783  | 3.50M  |       } else { | 
784  | 3.33M  |         v = -v;  | 
785  | 3.33M  |         arith_encode(cinfo, entropy->fixed_bin, 1);  | 
786  | 3.33M  |       }  | 
787  | 6.83M  |       st += 2;  | 
788  |  |       /* Figure F.8: Encoding the magnitude category of v */  | 
789  | 6.83M  |       m = 0;  | 
790  | 6.83M  |       if (v -= 1) { | 
791  | 1.73M  |         arith_encode(cinfo, st, 1);  | 
792  | 1.73M  |         m = 1;  | 
793  | 1.73M  |         v2 = v;  | 
794  | 1.73M  |         if (v2 >>= 1) { | 
795  | 1.53M  |           arith_encode(cinfo, st, 1);  | 
796  | 1.53M  |           m <<= 1;  | 
797  | 1.53M  |           st = entropy->ac_stats[tbl] +  | 
798  | 1.53M  |                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);  | 
799  | 3.18M  |           while (v2 >>= 1) { | 
800  | 1.65M  |             arith_encode(cinfo, st, 1);  | 
801  | 1.65M  |             m <<= 1;  | 
802  | 1.65M  |             st += 1;  | 
803  | 1.65M  |           }  | 
804  | 1.53M  |         }  | 
805  | 1.73M  |       }  | 
806  | 6.83M  |       arith_encode(cinfo, st, 0);  | 
807  |  |       /* Figure F.9: Encoding the magnitude bit pattern of v */  | 
808  | 6.83M  |       st += 14;  | 
809  | 10.0M  |       while (m >>= 1)  | 
810  | 3.18M  |         arith_encode(cinfo, st, (m & v) ? 1 : 0);  | 
811  | 6.83M  |     }  | 
812  |  |     /* Encode EOB decision only if k <= DCTSIZE2 - 1 */  | 
813  | 3.56M  |     if (k <= DCTSIZE2 - 1) { | 
814  | 3.47M  |       st = entropy->ac_stats[tbl] + 3 * (k - 1);  | 
815  | 3.47M  |       arith_encode(cinfo, st, 1);  | 
816  | 3.47M  |     }  | 
817  | 3.56M  |   }  | 
818  |  |  | 
819  | 3.45M  |   return TRUE;  | 
820  | 3.45M  | }  | 
821  |  |  | 
822  |  |  | 
823  |  | /*  | 
824  |  |  * Initialize for an arithmetic-compressed scan.  | 
825  |  |  */  | 
826  |  |  | 
827  |  | METHODDEF(void)  | 
828  |  | start_pass(j_compress_ptr cinfo, boolean gather_statistics)  | 
829  | 18.4k  | { | 
830  | 18.4k  |   arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;  | 
831  | 18.4k  |   int ci, tbl;  | 
832  | 18.4k  |   jpeg_component_info *compptr;  | 
833  |  |  | 
834  | 18.4k  |   if (gather_statistics)  | 
835  |  |     /* Make sure to avoid that in the master control logic!  | 
836  |  |      * We are fully adaptive here and need no extra  | 
837  |  |      * statistics gathering pass!  | 
838  |  |      */  | 
839  | 0  |     ERREXIT(cinfo, JERR_NOTIMPL);  | 
840  |  |  | 
841  |  |   /* We assume jcmaster.c already validated the progressive scan parameters. */  | 
842  |  |  | 
843  |  |   /* Select execution routines */  | 
844  | 18.4k  |   if (cinfo->progressive_mode) { | 
845  | 17.4k  |     if (cinfo->Ah == 0) { | 
846  | 8.72k  |       if (cinfo->Ss == 0)  | 
847  | 2.52k  |         entropy->pub.encode_mcu = encode_mcu_DC_first;  | 
848  | 6.20k  |       else  | 
849  | 6.20k  |         entropy->pub.encode_mcu = encode_mcu_AC_first;  | 
850  | 8.72k  |     } else { | 
851  | 8.72k  |       if (cinfo->Ss == 0)  | 
852  | 2.52k  |         entropy->pub.encode_mcu = encode_mcu_DC_refine;  | 
853  | 6.20k  |       else  | 
854  | 6.20k  |         entropy->pub.encode_mcu = encode_mcu_AC_refine;  | 
855  | 8.72k  |     }  | 
856  | 17.4k  |   } else  | 
857  | 1.00k  |     entropy->pub.encode_mcu = encode_mcu;  | 
858  |  |  | 
859  |  |   /* Allocate & initialize requested statistics areas */  | 
860  | 39.2k  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
861  | 20.8k  |     compptr = cinfo->cur_comp_info[ci];  | 
862  |  |     /* DC needs no table for refinement scan */  | 
863  | 20.8k  |     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
864  | 4.81k  |       tbl = compptr->dc_tbl_no;  | 
865  | 4.81k  |       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)  | 
866  | 0  |         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);  | 
867  | 4.81k  |       if (entropy->dc_stats[tbl] == NULL)  | 
868  | 4.12k  |         entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)  | 
869  | 4.12k  |           ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS);  | 
870  | 4.81k  |       memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS);  | 
871  |  |       /* Initialize DC predictions to 0 */  | 
872  | 4.81k  |       entropy->last_dc_val[ci] = 0;  | 
873  | 4.81k  |       entropy->dc_context[ci] = 0;  | 
874  | 4.81k  |     }  | 
875  |  |     /* AC needs no table when not present */  | 
876  | 20.8k  |     if (cinfo->progressive_mode == 0 || cinfo->Se) { | 
877  | 13.6k  |       tbl = compptr->ac_tbl_no;  | 
878  | 13.6k  |       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)  | 
879  | 0  |         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);  | 
880  | 13.6k  |       if (entropy->ac_stats[tbl] == NULL)  | 
881  | 4.12k  |         entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)  | 
882  | 4.12k  |           ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS);  | 
883  | 13.6k  |       memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS);  | 
884  |  | #ifdef CALCULATE_SPECTRAL_CONDITIONING  | 
885  |  |       if (cinfo->progressive_mode)  | 
886  |  |         /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */  | 
887  |  |         cinfo->arith_ac_K[tbl] = cinfo->Ss +  | 
888  |  |                                  ((8 + cinfo->Se - cinfo->Ss) >> 4);  | 
889  |  | #endif  | 
890  | 13.6k  |     }  | 
891  | 20.8k  |   }  | 
892  |  |  | 
893  |  |   /* Initialize arithmetic encoding variables */  | 
894  | 18.4k  |   entropy->c = 0;  | 
895  | 18.4k  |   entropy->a = 0x10000L;  | 
896  | 18.4k  |   entropy->sc = 0;  | 
897  | 18.4k  |   entropy->zc = 0;  | 
898  | 18.4k  |   entropy->ct = 11;  | 
899  | 18.4k  |   entropy->buffer = -1;  /* empty */  | 
900  |  |  | 
901  |  |   /* Initialize restart stuff */  | 
902  | 18.4k  |   entropy->restarts_to_go = cinfo->restart_interval;  | 
903  | 18.4k  |   entropy->next_restart_num = 0;  | 
904  | 18.4k  | }  | 
905  |  |  | 
906  |  |  | 
907  |  | /*  | 
908  |  |  * Module initialization routine for arithmetic entropy encoding.  | 
909  |  |  */  | 
910  |  |  | 
911  |  | GLOBAL(void)  | 
912  |  | jinit_arith_encoder(j_compress_ptr cinfo)  | 
913  | 3.55k  | { | 
914  | 3.55k  |   arith_entropy_ptr entropy;  | 
915  | 3.55k  |   int i;  | 
916  |  |  | 
917  | 3.55k  |   entropy = (arith_entropy_ptr)  | 
918  | 3.55k  |     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,  | 
919  | 3.55k  |                                 sizeof(arith_entropy_encoder));  | 
920  | 3.55k  |   cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;  | 
921  | 3.55k  |   entropy->pub.start_pass = start_pass;  | 
922  | 3.55k  |   entropy->pub.finish_pass = finish_pass;  | 
923  |  |  | 
924  |  |   /* Mark tables unallocated */  | 
925  | 60.4k  |   for (i = 0; i < NUM_ARITH_TBLS; i++) { | 
926  | 56.9k  |     entropy->dc_stats[i] = NULL;  | 
927  | 56.9k  |     entropy->ac_stats[i] = NULL;  | 
928  | 56.9k  |   }  | 
929  |  |  | 
930  |  |   /* Initialize index for fixed probability estimation */  | 
931  | 3.55k  |   entropy->fixed_bin[0] = 113;  | 
932  | 3.55k  | }  |