Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.main/jcarith.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcarith.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Developed 1997-2009 by Guido Vollbeding.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, 2018, 2021-2022, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains portable arithmetic entropy encoding routines for JPEG
12
 * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
13
 *
14
 * Both sequential and progressive modes are supported in this single module.
15
 *
16
 * Suspension is not currently supported in this module.
17
 *
18
 * NOTE: All referenced figures are from
19
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
20
 */
21
22
#define JPEG_INTERNALS
23
#include "jinclude.h"
24
#include "jpeglib.h"
25
26
27
/* Expanded entropy encoder object for arithmetic encoding. */
28
29
typedef struct {
30
  struct jpeg_entropy_encoder pub; /* public fields */
31
32
  JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */
33
  JLONG a;               /* A register, normalized size of coding interval */
34
  JLONG sc;        /* counter for stacked 0xFF values which might overflow */
35
  JLONG zc;          /* counter for pending 0x00 output values which might *
36
                          * be discarded at the end ("Pacman" termination) */
37
  int ct;  /* bit shift counter, determines when next byte will be written */
38
  int buffer;                /* buffer for most recent output byte != 0xFF */
39
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
42
43
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
44
  int next_restart_num;         /* next restart number to write (0-7) */
45
46
  /* Pointers to statistics areas (these workspaces have image lifespan) */
47
  unsigned char *dc_stats[NUM_ARITH_TBLS];
48
  unsigned char *ac_stats[NUM_ARITH_TBLS];
49
50
  /* Statistics bin for coding with fixed probability 0.5 */
51
  unsigned char fixed_bin[4];
52
} arith_entropy_encoder;
53
54
typedef arith_entropy_encoder *arith_entropy_ptr;
55
56
/* The following two definitions specify the allocation chunk size
57
 * for the statistics area.
58
 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
59
 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
60
 *
61
 * We use a compact representation with 1 byte per statistics bin,
62
 * thus the numbers directly represent byte sizes.
63
 * This 1 byte per statistics bin contains the meaning of the MPS
64
 * (more probable symbol) in the highest bit (mask 0x80), and the
65
 * index into the probability estimation state machine table
66
 * in the lower bits (mask 0x7F).
67
 */
68
69
8.94k
#define DC_STAT_BINS  64
70
17.7k
#define AC_STAT_BINS  256
71
72
/* NOTE: Uncomment the following #define if you want to use the
73
 * given formula for calculating the AC conditioning parameter Kx
74
 * for spectral selection progressive coding in section G.1.3.2
75
 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
76
 * Although the spec and P&M authors claim that this "has proven
77
 * to give good results for 8 bit precision samples", I'm not
78
 * convinced yet that this is really beneficial.
79
 * Early tests gave only very marginal compression enhancements
80
 * (a few - around 5 or so - bytes even for very large files),
81
 * which would turn out rather negative if we'd suppress the
82
 * DAC (Define Arithmetic Conditioning) marker segments for
83
 * the default parameters in the future.
84
 * Note that currently the marker writing module emits 12-byte
85
 * DAC segments for a full-component scan in a color image.
86
 * This is not worth worrying about IMHO. However, since the
87
 * spec defines the default values to be used if the tables
88
 * are omitted (unlike Huffman tables, which are required
89
 * anyway), one might optimize this behaviour in the future,
90
 * and then it would be disadvantageous to use custom tables if
91
 * they don't provide sufficient gain to exceed the DAC size.
92
 *
93
 * On the other hand, I'd consider it as a reasonable result
94
 * that the conditioning has no significant influence on the
95
 * compression performance. This means that the basic
96
 * statistical model is already rather stable.
97
 *
98
 * Thus, at the moment, we use the default conditioning values
99
 * anyway, and do not use the custom formula.
100
 *
101
#define CALCULATE_SPECTRAL_CONDITIONING
102
 */
103
104
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
105
 * We assume that int right shift is unsigned if JLONG right shift is,
106
 * which should be safe.
107
 */
108
109
#ifdef RIGHT_SHIFT_IS_UNSIGNED
110
#define ISHIFT_TEMPS    int ishift_temp;
111
#define IRIGHT_SHIFT(x, shft) \
112
  ((ishift_temp = (x)) < 0 ? \
113
   (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \
114
   (ishift_temp >> (shft)))
115
#else
116
#define ISHIFT_TEMPS
117
20.1M
#define IRIGHT_SHIFT(x, shft)   ((x) >> (shft))
118
#endif
119
120
121
LOCAL(void)
122
emit_byte(int val, j_compress_ptr cinfo)
123
/* Write next output byte; we do not support suspension in this module. */
124
12.6M
{
125
12.6M
  struct jpeg_destination_mgr *dest = cinfo->dest;
126
127
12.6M
  *dest->next_output_byte++ = (JOCTET)val;
128
12.6M
  if (--dest->free_in_buffer == 0)
129
403
    if (!(*dest->empty_output_buffer) (cinfo))
130
0
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
131
12.6M
}
132
133
134
/*
135
 * Finish up at the end of an arithmetic-compressed scan.
136
 */
137
138
METHODDEF(void)
139
finish_pass(j_compress_ptr cinfo)
140
18.4k
{
141
18.4k
  arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
142
18.4k
  JLONG temp;
143
144
  /* Section D.1.8: Termination of encoding */
145
146
  /* Find the e->c in the coding interval with the largest
147
   * number of trailing zero bits */
148
18.4k
  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c)
149
5.54k
    e->c = temp + 0x8000L;
150
12.9k
  else
151
12.9k
    e->c = temp;
152
  /* Send remaining bytes to output */
153
18.4k
  e->c <<= e->ct;
154
18.4k
  if (e->c & 0xF8000000UL) {
155
    /* One final overflow has to be handled */
156
527
    if (e->buffer >= 0) {
157
527
      if (e->zc)
158
9.22k
        do emit_byte(0x00, cinfo);
159
9.22k
        while (--e->zc);
160
527
      emit_byte(e->buffer + 1, cinfo);
161
527
      if (e->buffer + 1 == 0xFF)
162
22
        emit_byte(0x00, cinfo);
163
527
    }
164
527
    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
165
527
    e->sc = 0;
166
17.9k
  } else {
167
17.9k
    if (e->buffer == 0)
168
2.63k
      ++e->zc;
169
15.2k
    else if (e->buffer >= 0) {
170
9.51k
      if (e->zc)
171
2.09k
        do emit_byte(0x00, cinfo);
172
2.09k
        while (--e->zc);
173
9.51k
      emit_byte(e->buffer, cinfo);
174
9.51k
    }
175
17.9k
    if (e->sc) {
176
186
      if (e->zc)
177
121
        do emit_byte(0x00, cinfo);
178
121
        while (--e->zc);
179
165k
      do {
180
165k
        emit_byte(0xFF, cinfo);
181
165k
        emit_byte(0x00, cinfo);
182
165k
      } while (--e->sc);
183
186
    }
184
17.9k
  }
185
  /* Output final bytes only if they are not 0x00 */
186
18.4k
  if (e->c & 0x7FFF800L) {
187
15.0k
    if (e->zc)  /* output final pending zero bytes */
188
1.35k
      do emit_byte(0x00, cinfo);
189
1.35k
      while (--e->zc);
190
15.0k
    emit_byte((e->c >> 19) & 0xFF, cinfo);
191
15.0k
    if (((e->c >> 19) & 0xFF) == 0xFF)
192
123
      emit_byte(0x00, cinfo);
193
15.0k
    if (e->c & 0x7F800L) {
194
1.37k
      emit_byte((e->c >> 11) & 0xFF, cinfo);
195
1.37k
      if (((e->c >> 11) & 0xFF) == 0xFF)
196
0
        emit_byte(0x00, cinfo);
197
1.37k
    }
198
15.0k
  }
199
18.4k
}
200
201
202
/*
203
 * The core arithmetic encoding routine (common in JPEG and JBIG).
204
 * This needs to go as fast as possible.
205
 * Machine-dependent optimization facilities
206
 * are not utilized in this portable implementation.
207
 * However, this code should be fairly efficient and
208
 * may be a good base for further optimizations anyway.
209
 *
210
 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
211
 *
212
 * Note: I've added full "Pacman" termination support to the
213
 * byte output routines, which is equivalent to the optional
214
 * Discard_final_zeros procedure (Figure D.15) in the spec.
215
 * Thus, we always produce the shortest possible output
216
 * stream compliant to the spec (no trailing zero bytes,
217
 * except for FF stuffing).
218
 *
219
 * I've also introduced a new scheme for accessing
220
 * the probability estimation state machine table,
221
 * derived from Markus Kuhn's JBIG implementation.
222
 */
223
224
LOCAL(void)
225
arith_encode(j_compress_ptr cinfo, unsigned char *st, int val)
226
474M
{
227
474M
  register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
228
474M
  register unsigned char nl, nm;
229
474M
  register JLONG qe, temp;
230
474M
  register int sv;
231
232
  /* Fetch values from our compact representation of Table D.2:
233
   * Qe values and probability estimation state machine
234
   */
235
474M
  sv = *st;
236
474M
  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
237
474M
  nl = qe & 0xFF;  qe >>= 8;    /* Next_Index_LPS + Switch_MPS */
238
474M
  nm = qe & 0xFF;  qe >>= 8;    /* Next_Index_MPS */
239
240
  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
241
474M
  e->a -= qe;
242
474M
  if (val != (sv >> 7)) {
243
    /* Encode the less probable symbol */
244
39.9M
    if (e->a >= qe) {
245
      /* If the interval size (qe) for the less probable symbol (LPS)
246
       * is larger than the interval size for the MPS, then exchange
247
       * the two symbols for coding efficiency, otherwise code the LPS
248
       * as usual: */
249
26.6M
      e->c += e->a;
250
26.6M
      e->a = qe;
251
26.6M
    }
252
39.9M
    *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */
253
434M
  } else {
254
    /* Encode the more probable symbol */
255
434M
    if (e->a >= 0x8000L)
256
388M
      return;  /* A >= 0x8000 -> ready, no renormalization required */
257
46.1M
    if (e->a < qe) {
258
      /* If the interval size (qe) for the less probable symbol (LPS)
259
       * is larger than the interval size for the MPS, then exchange
260
       * the two symbols for coding efficiency: */
261
12.3M
      e->c += e->a;
262
12.3M
      e->a = qe;
263
12.3M
    }
264
46.1M
    *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */
265
46.1M
  }
266
267
  /* Renormalization & data output per section D.1.6 */
268
107M
  do {
269
107M
    e->a <<= 1;
270
107M
    e->c <<= 1;
271
107M
    if (--e->ct == 0) {
272
      /* Another byte is ready for output */
273
13.4M
      temp = e->c >> 19;
274
13.4M
      if (temp > 0xFF) {
275
        /* Handle overflow over all stacked 0xFF bytes */
276
524k
        if (e->buffer >= 0) {
277
524k
          if (e->zc)
278
40.6k
            do emit_byte(0x00, cinfo);
279
40.6k
            while (--e->zc);
280
524k
          emit_byte(e->buffer + 1, cinfo);
281
524k
          if (e->buffer + 1 == 0xFF)
282
11.1k
            emit_byte(0x00, cinfo);
283
524k
        }
284
524k
        e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
285
524k
        e->sc = 0;
286
        /* Note: The 3 spacer bits in the C register guarantee
287
         * that the new buffer byte can't be 0xFF here
288
         * (see page 160 in the P&M JPEG book). */
289
524k
        e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
290
12.9M
      } else if (temp == 0xFF) {
291
421k
        ++e->sc;  /* stack 0xFF byte (which might overflow later) */
292
12.5M
      } else {
293
        /* Output all stacked 0xFF bytes, they will not overflow any more */
294
12.5M
        if (e->buffer == 0)
295
1.27M
          ++e->zc;
296
11.2M
        else if (e->buffer >= 0) {
297
11.2M
          if (e->zc)
298
152k
            do emit_byte(0x00, cinfo);
299
152k
            while (--e->zc);
300
11.2M
          emit_byte(e->buffer, cinfo);
301
11.2M
        }
302
12.5M
        if (e->sc) {
303
101k
          if (e->zc)
304
1.50k
            do emit_byte(0x00, cinfo);
305
1.50k
            while (--e->zc);
306
178k
          do {
307
178k
            emit_byte(0xFF, cinfo);
308
178k
            emit_byte(0x00, cinfo);
309
178k
          } while (--e->sc);
310
101k
        }
311
12.5M
        e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
312
12.5M
      }
313
13.4M
      e->c &= 0x7FFFFL;
314
13.4M
      e->ct += 8;
315
13.4M
    }
316
107M
  } while (e->a < 0x8000L);
317
86.0M
}
318
319
320
/*
321
 * Emit a restart marker & resynchronize predictions.
322
 */
323
324
LOCAL(void)
325
emit_restart(j_compress_ptr cinfo, int restart_num)
326
0
{
327
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
328
0
  int ci;
329
0
  jpeg_component_info *compptr;
330
331
0
  finish_pass(cinfo);
332
333
0
  emit_byte(0xFF, cinfo);
334
0
  emit_byte(JPEG_RST0 + restart_num, cinfo);
335
336
  /* Re-initialize statistics areas */
337
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
338
0
    compptr = cinfo->cur_comp_info[ci];
339
    /* DC needs no table for refinement scan */
340
0
    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
341
0
      memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS);
342
      /* Reset DC predictions to 0 */
343
0
      entropy->last_dc_val[ci] = 0;
344
0
      entropy->dc_context[ci] = 0;
345
0
    }
346
    /* AC needs no table when not present */
347
0
    if (cinfo->progressive_mode == 0 || cinfo->Se) {
348
0
      memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS);
349
0
    }
350
0
  }
351
352
  /* Reset arithmetic encoding variables */
353
0
  entropy->c = 0;
354
0
  entropy->a = 0x10000L;
355
0
  entropy->sc = 0;
356
0
  entropy->zc = 0;
357
0
  entropy->ct = 11;
358
0
  entropy->buffer = -1;  /* empty */
359
0
}
360
361
362
/*
363
 * MCU encoding for DC initial scan (either spectral selection,
364
 * or first pass of successive approximation).
365
 */
366
367
METHODDEF(boolean)
368
encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
369
12.9M
{
370
12.9M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
371
12.9M
  JBLOCKROW block;
372
12.9M
  unsigned char *st;
373
12.9M
  int blkn, ci, tbl;
374
12.9M
  int v, v2, m;
375
12.9M
  ISHIFT_TEMPS
376
377
  /* Emit restart marker if needed */
378
12.9M
  if (cinfo->restart_interval) {
379
0
    if (entropy->restarts_to_go == 0) {
380
0
      emit_restart(cinfo, entropy->next_restart_num);
381
0
      entropy->restarts_to_go = cinfo->restart_interval;
382
0
      entropy->next_restart_num++;
383
0
      entropy->next_restart_num &= 7;
384
0
    }
385
0
    entropy->restarts_to_go--;
386
0
  }
387
388
  /* Encode the MCU data blocks */
389
33.0M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
390
20.1M
    block = MCU_data[blkn];
391
20.1M
    ci = cinfo->MCU_membership[blkn];
392
20.1M
    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
393
394
    /* Compute the DC value after the required point transform by Al.
395
     * This is simply an arithmetic right shift.
396
     */
397
20.1M
    m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al);
398
399
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
400
401
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
402
20.1M
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
403
404
    /* Figure F.4: Encode_DC_DIFF */
405
20.1M
    if ((v = m - entropy->last_dc_val[ci]) == 0) {
406
13.8M
      arith_encode(cinfo, st, 0);
407
13.8M
      entropy->dc_context[ci] = 0;      /* zero diff category */
408
13.8M
    } else {
409
6.32M
      entropy->last_dc_val[ci] = m;
410
6.32M
      arith_encode(cinfo, st, 1);
411
      /* Figure F.6: Encoding nonzero value v */
412
      /* Figure F.7: Encoding the sign of v */
413
6.32M
      if (v > 0) {
414
2.64M
        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
415
2.64M
        st += 2;                        /* Table F.4: SP = S0 + 2 */
416
2.64M
        entropy->dc_context[ci] = 4;    /* small positive diff category */
417
3.67M
      } else {
418
3.67M
        v = -v;
419
3.67M
        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
420
3.67M
        st += 3;                        /* Table F.4: SN = S0 + 3 */
421
3.67M
        entropy->dc_context[ci] = 8;    /* small negative diff category */
422
3.67M
      }
423
      /* Figure F.8: Encoding the magnitude category of v */
424
6.32M
      m = 0;
425
6.32M
      if (v -= 1) {
426
4.49M
        arith_encode(cinfo, st, 1);
427
4.49M
        m = 1;
428
4.49M
        v2 = v;
429
4.49M
        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
430
18.9M
        while (v2 >>= 1) {
431
14.4M
          arith_encode(cinfo, st, 1);
432
14.4M
          m <<= 1;
433
14.4M
          st += 1;
434
14.4M
        }
435
4.49M
      }
436
6.32M
      arith_encode(cinfo, st, 0);
437
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
438
6.32M
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
439
0
        entropy->dc_context[ci] = 0;    /* zero diff category */
440
6.32M
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
441
3.65M
        entropy->dc_context[ci] += 8;   /* large diff category */
442
      /* Figure F.9: Encoding the magnitude bit pattern of v */
443
6.32M
      st += 14;
444
20.8M
      while (m >>= 1)
445
14.4M
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
446
6.32M
    }
447
20.1M
  }
448
449
12.9M
  return TRUE;
450
12.9M
}
451
452
453
/*
454
 * MCU encoding for AC initial scan (either spectral selection,
455
 * or first pass of successive approximation).
456
 */
457
458
METHODDEF(boolean)
459
encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
460
35.6M
{
461
35.6M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
462
35.6M
  JBLOCKROW block;
463
35.6M
  unsigned char *st;
464
35.6M
  int tbl, k, ke;
465
35.6M
  int v, v2, m;
466
467
  /* Emit restart marker if needed */
468
35.6M
  if (cinfo->restart_interval) {
469
0
    if (entropy->restarts_to_go == 0) {
470
0
      emit_restart(cinfo, entropy->next_restart_num);
471
0
      entropy->restarts_to_go = cinfo->restart_interval;
472
0
      entropy->next_restart_num++;
473
0
      entropy->next_restart_num &= 7;
474
0
    }
475
0
    entropy->restarts_to_go--;
476
0
  }
477
478
  /* Encode the MCU data block */
479
35.6M
  block = MCU_data[0];
480
35.6M
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
481
482
  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
483
484
  /* Establish EOB (end-of-block) index */
485
1.32G
  for (ke = cinfo->Se; ke > 0; ke--)
486
    /* We must apply the point transform by Al.  For AC coefficients this
487
     * is an integer division with rounding towards 0.  To do this portably
488
     * in C, we shift after obtaining the absolute value.
489
     */
490
1.29G
    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
491
1.28G
      if (v >>= cinfo->Al) break;
492
1.28G
    } else {
493
3.97M
      v = -v;
494
3.97M
      if (v >>= cinfo->Al) break;
495
3.97M
    }
496
497
  /* Figure F.5: Encode_AC_Coefficients */
498
46.1M
  for (k = cinfo->Ss; k <= ke; k++) {
499
10.4M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
500
10.4M
    arith_encode(cinfo, st, 0);         /* EOB decision */
501
39.9M
    for (;;) {
502
39.9M
      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
503
33.1M
        if (v >>= cinfo->Al) {
504
4.87M
          arith_encode(cinfo, st + 1, 1);
505
4.87M
          arith_encode(cinfo, entropy->fixed_bin, 0);
506
4.87M
          break;
507
4.87M
        }
508
33.1M
      } else {
509
6.81M
        v = -v;
510
6.81M
        if (v >>= cinfo->Al) {
511
5.58M
          arith_encode(cinfo, st + 1, 1);
512
5.58M
          arith_encode(cinfo, entropy->fixed_bin, 1);
513
5.58M
          break;
514
5.58M
        }
515
6.81M
      }
516
29.5M
      arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
517
29.5M
    }
518
10.4M
    st += 2;
519
    /* Figure F.8: Encoding the magnitude category of v */
520
10.4M
    m = 0;
521
10.4M
    if (v -= 1) {
522
8.46M
      arith_encode(cinfo, st, 1);
523
8.46M
      m = 1;
524
8.46M
      v2 = v;
525
8.46M
      if (v2 >>= 1) {
526
7.00M
        arith_encode(cinfo, st, 1);
527
7.00M
        m <<= 1;
528
7.00M
        st = entropy->ac_stats[tbl] +
529
7.00M
             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530
25.2M
        while (v2 >>= 1) {
531
18.2M
          arith_encode(cinfo, st, 1);
532
18.2M
          m <<= 1;
533
18.2M
          st += 1;
534
18.2M
        }
535
7.00M
      }
536
8.46M
    }
537
10.4M
    arith_encode(cinfo, st, 0);
538
    /* Figure F.9: Encoding the magnitude bit pattern of v */
539
10.4M
    st += 14;
540
35.7M
    while (m >>= 1)
541
25.2M
      arith_encode(cinfo, st, (m & v) ? 1 : 0);
542
10.4M
  }
543
  /* Encode EOB decision only if k <= cinfo->Se */
544
35.6M
  if (k <= cinfo->Se) {
545
35.3M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
546
35.3M
    arith_encode(cinfo, st, 1);
547
35.3M
  }
548
549
35.6M
  return TRUE;
550
35.6M
}
551
552
553
/*
554
 * MCU encoding for DC successive approximation refinement scan.
555
 */
556
557
METHODDEF(boolean)
558
encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
559
12.9M
{
560
12.9M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
561
12.9M
  unsigned char *st;
562
12.9M
  int Al, blkn;
563
564
  /* Emit restart marker if needed */
565
12.9M
  if (cinfo->restart_interval) {
566
0
    if (entropy->restarts_to_go == 0) {
567
0
      emit_restart(cinfo, entropy->next_restart_num);
568
0
      entropy->restarts_to_go = cinfo->restart_interval;
569
0
      entropy->next_restart_num++;
570
0
      entropy->next_restart_num &= 7;
571
0
    }
572
0
    entropy->restarts_to_go--;
573
0
  }
574
575
12.9M
  st = entropy->fixed_bin;      /* use fixed probability estimation */
576
12.9M
  Al = cinfo->Al;
577
578
  /* Encode the MCU data blocks */
579
33.0M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
580
    /* We simply emit the Al'th bit of the DC coefficient value. */
581
20.1M
    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
582
20.1M
  }
583
584
12.9M
  return TRUE;
585
12.9M
}
586
587
588
/*
589
 * MCU encoding for AC successive approximation refinement scan.
590
 */
591
592
METHODDEF(boolean)
593
encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
594
35.6M
{
595
35.6M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
596
35.6M
  JBLOCKROW block;
597
35.6M
  unsigned char *st;
598
35.6M
  int tbl, k, ke, kex;
599
35.6M
  int v;
600
601
  /* Emit restart marker if needed */
602
35.6M
  if (cinfo->restart_interval) {
603
0
    if (entropy->restarts_to_go == 0) {
604
0
      emit_restart(cinfo, entropy->next_restart_num);
605
0
      entropy->restarts_to_go = cinfo->restart_interval;
606
0
      entropy->next_restart_num++;
607
0
      entropy->next_restart_num &= 7;
608
0
    }
609
0
    entropy->restarts_to_go--;
610
0
  }
611
612
  /* Encode the MCU data block */
613
35.6M
  block = MCU_data[0];
614
35.6M
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
615
616
  /* Section G.1.3.3: Encoding of AC coefficients */
617
618
  /* Establish EOB (end-of-block) index */
619
2.16G
  for (ke = cinfo->Se; ke > 0; ke--)
620
    /* We must apply the point transform by Al.  For AC coefficients this
621
     * is an integer division with rounding towards 0.  To do this portably
622
     * in C, we shift after obtaining the absolute value.
623
     */
624
2.13G
    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
625
2.13G
      if (v >>= cinfo->Al) break;
626
2.13G
    } else {
627
3.79M
      v = -v;
628
3.79M
      if (v >>= cinfo->Al) break;
629
3.79M
    }
630
631
  /* Establish EOBx (previous stage end-of-block) index */
632
54.7M
  for (kex = ke; kex > 0; kex--)
633
23.8M
    if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
634
19.8M
      if (v >>= cinfo->Ah) break;
635
19.8M
    } else {
636
4.01M
      v = -v;
637
4.01M
      if (v >>= cinfo->Ah) break;
638
4.01M
    }
639
640
  /* Figure G.10: Encode_AC_Coefficients_SA */
641
63.5M
  for (k = cinfo->Ss; k <= ke; k++) {
642
27.8M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
643
27.8M
    if (k > kex)
644
2.68M
      arith_encode(cinfo, st, 0);       /* EOB decision */
645
116M
    for (;;) {
646
116M
      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
647
100M
        if (v >>= cinfo->Al) {
648
13.1M
          if (v >> 1)                   /* previously nonzero coef */
649
10.4M
            arith_encode(cinfo, st + 2, (v & 1));
650
2.68M
          else {                        /* newly nonzero coef */
651
2.68M
            arith_encode(cinfo, st + 1, 1);
652
2.68M
            arith_encode(cinfo, entropy->fixed_bin, 0);
653
2.68M
          }
654
13.1M
          break;
655
13.1M
        }
656
100M
      } else {
657
15.9M
        v = -v;
658
15.9M
        if (v >>= cinfo->Al) {
659
14.7M
          if (v >> 1)                   /* previously nonzero coef */
660
11.7M
            arith_encode(cinfo, st + 2, (v & 1));
661
3.01M
          else {                        /* newly nonzero coef */
662
3.01M
            arith_encode(cinfo, st + 1, 1);
663
3.01M
            arith_encode(cinfo, entropy->fixed_bin, 1);
664
3.01M
          }
665
14.7M
          break;
666
14.7M
        }
667
15.9M
      }
668
88.6M
      arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
669
88.6M
    }
670
27.8M
  }
671
  /* Encode EOB decision only if k <= cinfo->Se */
672
35.6M
  if (k <= cinfo->Se) {
673
35.6M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
674
35.6M
    arith_encode(cinfo, st, 1);
675
35.6M
  }
676
677
35.6M
  return TRUE;
678
35.6M
}
679
680
681
/*
682
 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
683
 */
684
685
METHODDEF(boolean)
686
encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
687
3.45M
{
688
3.45M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
689
3.45M
  jpeg_component_info *compptr;
690
3.45M
  JBLOCKROW block;
691
3.45M
  unsigned char *st;
692
3.45M
  int blkn, ci, tbl, k, ke;
693
3.45M
  int v, v2, m;
694
695
  /* Emit restart marker if needed */
696
3.45M
  if (cinfo->restart_interval) {
697
0
    if (entropy->restarts_to_go == 0) {
698
0
      emit_restart(cinfo, entropy->next_restart_num);
699
0
      entropy->restarts_to_go = cinfo->restart_interval;
700
0
      entropy->next_restart_num++;
701
0
      entropy->next_restart_num &= 7;
702
0
    }
703
0
    entropy->restarts_to_go--;
704
0
  }
705
706
  /* Encode the MCU data blocks */
707
7.01M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
708
3.56M
    block = MCU_data[blkn];
709
3.56M
    ci = cinfo->MCU_membership[blkn];
710
3.56M
    compptr = cinfo->cur_comp_info[ci];
711
712
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
713
714
3.56M
    tbl = compptr->dc_tbl_no;
715
716
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
717
3.56M
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
718
719
    /* Figure F.4: Encode_DC_DIFF */
720
3.56M
    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
721
2.68M
      arith_encode(cinfo, st, 0);
722
2.68M
      entropy->dc_context[ci] = 0;      /* zero diff category */
723
2.68M
    } else {
724
875k
      entropy->last_dc_val[ci] = (*block)[0];
725
875k
      arith_encode(cinfo, st, 1);
726
      /* Figure F.6: Encoding nonzero value v */
727
      /* Figure F.7: Encoding the sign of v */
728
875k
      if (v > 0) {
729
493k
        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
730
493k
        st += 2;                        /* Table F.4: SP = S0 + 2 */
731
493k
        entropy->dc_context[ci] = 4;    /* small positive diff category */
732
493k
      } else {
733
381k
        v = -v;
734
381k
        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
735
381k
        st += 3;                        /* Table F.4: SN = S0 + 3 */
736
381k
        entropy->dc_context[ci] = 8;    /* small negative diff category */
737
381k
      }
738
      /* Figure F.8: Encoding the magnitude category of v */
739
875k
      m = 0;
740
875k
      if (v -= 1) {
741
854k
        arith_encode(cinfo, st, 1);
742
854k
        m = 1;
743
854k
        v2 = v;
744
854k
        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
745
7.24M
        while (v2 >>= 1) {
746
6.38M
          arith_encode(cinfo, st, 1);
747
6.38M
          m <<= 1;
748
6.38M
          st += 1;
749
6.38M
        }
750
854k
      }
751
875k
      arith_encode(cinfo, st, 0);
752
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
753
875k
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
754
0
        entropy->dc_context[ci] = 0;    /* zero diff category */
755
875k
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
756
839k
        entropy->dc_context[ci] += 8;   /* large diff category */
757
      /* Figure F.9: Encoding the magnitude bit pattern of v */
758
875k
      st += 14;
759
7.26M
      while (m >>= 1)
760
6.38M
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
761
875k
    }
762
763
    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
764
765
3.56M
    tbl = compptr->ac_tbl_no;
766
767
    /* Establish EOB (end-of-block) index */
768
217M
    for (ke = DCTSIZE2 - 1; ke > 0; ke--)
769
214M
      if ((*block)[jpeg_natural_order[ke]]) break;
770
771
    /* Figure F.5: Encode_AC_Coefficients */
772
10.3M
    for (k = 1; k <= ke; k++) {
773
6.83M
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
774
6.83M
      arith_encode(cinfo, st, 0);       /* EOB decision */
775
10.8M
      while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
776
4.01M
        arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
777
4.01M
      }
778
6.83M
      arith_encode(cinfo, st + 1, 1);
779
      /* Figure F.6: Encoding nonzero value v */
780
      /* Figure F.7: Encoding the sign of v */
781
6.83M
      if (v > 0) {
782
3.50M
        arith_encode(cinfo, entropy->fixed_bin, 0);
783
3.50M
      } else {
784
3.33M
        v = -v;
785
3.33M
        arith_encode(cinfo, entropy->fixed_bin, 1);
786
3.33M
      }
787
6.83M
      st += 2;
788
      /* Figure F.8: Encoding the magnitude category of v */
789
6.83M
      m = 0;
790
6.83M
      if (v -= 1) {
791
1.73M
        arith_encode(cinfo, st, 1);
792
1.73M
        m = 1;
793
1.73M
        v2 = v;
794
1.73M
        if (v2 >>= 1) {
795
1.53M
          arith_encode(cinfo, st, 1);
796
1.53M
          m <<= 1;
797
1.53M
          st = entropy->ac_stats[tbl] +
798
1.53M
               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
799
3.18M
          while (v2 >>= 1) {
800
1.65M
            arith_encode(cinfo, st, 1);
801
1.65M
            m <<= 1;
802
1.65M
            st += 1;
803
1.65M
          }
804
1.53M
        }
805
1.73M
      }
806
6.83M
      arith_encode(cinfo, st, 0);
807
      /* Figure F.9: Encoding the magnitude bit pattern of v */
808
6.83M
      st += 14;
809
10.0M
      while (m >>= 1)
810
3.18M
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
811
6.83M
    }
812
    /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
813
3.56M
    if (k <= DCTSIZE2 - 1) {
814
3.47M
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
815
3.47M
      arith_encode(cinfo, st, 1);
816
3.47M
    }
817
3.56M
  }
818
819
3.45M
  return TRUE;
820
3.45M
}
821
822
823
/*
824
 * Initialize for an arithmetic-compressed scan.
825
 */
826
827
METHODDEF(void)
828
start_pass(j_compress_ptr cinfo, boolean gather_statistics)
829
18.4k
{
830
18.4k
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
831
18.4k
  int ci, tbl;
832
18.4k
  jpeg_component_info *compptr;
833
834
18.4k
  if (gather_statistics)
835
    /* Make sure to avoid that in the master control logic!
836
     * We are fully adaptive here and need no extra
837
     * statistics gathering pass!
838
     */
839
0
    ERREXIT(cinfo, JERR_NOTIMPL);
840
841
  /* We assume jcmaster.c already validated the progressive scan parameters. */
842
843
  /* Select execution routines */
844
18.4k
  if (cinfo->progressive_mode) {
845
17.4k
    if (cinfo->Ah == 0) {
846
8.72k
      if (cinfo->Ss == 0)
847
2.52k
        entropy->pub.encode_mcu = encode_mcu_DC_first;
848
6.20k
      else
849
6.20k
        entropy->pub.encode_mcu = encode_mcu_AC_first;
850
8.72k
    } else {
851
8.72k
      if (cinfo->Ss == 0)
852
2.52k
        entropy->pub.encode_mcu = encode_mcu_DC_refine;
853
6.20k
      else
854
6.20k
        entropy->pub.encode_mcu = encode_mcu_AC_refine;
855
8.72k
    }
856
17.4k
  } else
857
1.00k
    entropy->pub.encode_mcu = encode_mcu;
858
859
  /* Allocate & initialize requested statistics areas */
860
39.2k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
861
20.8k
    compptr = cinfo->cur_comp_info[ci];
862
    /* DC needs no table for refinement scan */
863
20.8k
    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
864
4.81k
      tbl = compptr->dc_tbl_no;
865
4.81k
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
866
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
867
4.81k
      if (entropy->dc_stats[tbl] == NULL)
868
4.12k
        entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
869
4.12k
          ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS);
870
4.81k
      memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS);
871
      /* Initialize DC predictions to 0 */
872
4.81k
      entropy->last_dc_val[ci] = 0;
873
4.81k
      entropy->dc_context[ci] = 0;
874
4.81k
    }
875
    /* AC needs no table when not present */
876
20.8k
    if (cinfo->progressive_mode == 0 || cinfo->Se) {
877
13.6k
      tbl = compptr->ac_tbl_no;
878
13.6k
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
879
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
880
13.6k
      if (entropy->ac_stats[tbl] == NULL)
881
4.12k
        entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
882
4.12k
          ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS);
883
13.6k
      memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS);
884
#ifdef CALCULATE_SPECTRAL_CONDITIONING
885
      if (cinfo->progressive_mode)
886
        /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
887
        cinfo->arith_ac_K[tbl] = cinfo->Ss +
888
                                 ((8 + cinfo->Se - cinfo->Ss) >> 4);
889
#endif
890
13.6k
    }
891
20.8k
  }
892
893
  /* Initialize arithmetic encoding variables */
894
18.4k
  entropy->c = 0;
895
18.4k
  entropy->a = 0x10000L;
896
18.4k
  entropy->sc = 0;
897
18.4k
  entropy->zc = 0;
898
18.4k
  entropy->ct = 11;
899
18.4k
  entropy->buffer = -1;  /* empty */
900
901
  /* Initialize restart stuff */
902
18.4k
  entropy->restarts_to_go = cinfo->restart_interval;
903
18.4k
  entropy->next_restart_num = 0;
904
18.4k
}
905
906
907
/*
908
 * Module initialization routine for arithmetic entropy encoding.
909
 */
910
911
GLOBAL(void)
912
jinit_arith_encoder(j_compress_ptr cinfo)
913
3.55k
{
914
3.55k
  arith_entropy_ptr entropy;
915
3.55k
  int i;
916
917
3.55k
  entropy = (arith_entropy_ptr)
918
3.55k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
919
3.55k
                                sizeof(arith_entropy_encoder));
920
3.55k
  cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
921
3.55k
  entropy->pub.start_pass = start_pass;
922
3.55k
  entropy->pub.finish_pass = finish_pass;
923
924
  /* Mark tables unallocated */
925
60.4k
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
926
56.9k
    entropy->dc_stats[i] = NULL;
927
56.9k
    entropy->ac_stats[i] = NULL;
928
56.9k
  }
929
930
  /* Initialize index for fixed probability estimation */
931
3.55k
  entropy->fixed_bin[0] = 113;
932
3.55k
}