Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
7.02k
{
81
7.02k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
7.02k
  int ci, blkn, dctbl, actbl;
83
7.02k
  d_derived_tbl **pdtbl;
84
7.02k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
7.02k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
7.02k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
6.52k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
15.3k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
8.30k
    compptr = cinfo->cur_comp_info[ci];
96
8.30k
    dctbl = compptr->dc_tbl_no;
97
8.30k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
8.30k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
8.30k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
8.30k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
8.30k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
8.30k
    entropy->saved.last_dc_val[ci] = 0;
106
8.30k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
16.9k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
9.89k
    ci = cinfo->MCU_membership[blkn];
111
9.89k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
9.89k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
9.89k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
9.89k
    if (compptr->component_needed) {
117
9.89k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
9.89k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
9.89k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
9.89k
  }
124
125
  /* Initialize bitread state variables */
126
7.02k
  entropy->bitstate.bits_left = 0;
127
7.02k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
7.02k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
7.02k
  entropy->restarts_to_go = cinfo->restart_interval;
132
7.02k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
21.1k
{
146
21.1k
  JHUFF_TBL *htbl;
147
21.1k
  d_derived_tbl *dtbl;
148
21.1k
  int p, i, l, si, numsymbols;
149
21.1k
  int lookbits, ctr;
150
21.1k
  char huffsize[257];
151
21.1k
  unsigned int huffcode[257];
152
21.1k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
21.1k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
70
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
21.1k
  htbl =
162
21.1k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
21.1k
  if (htbl == NULL)
164
33
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
21.1k
  if (*pdtbl == NULL)
168
6.67k
    *pdtbl = (d_derived_tbl *)
169
6.67k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
6.67k
                                  sizeof(d_derived_tbl));
171
21.1k
  dtbl = *pdtbl;
172
21.1k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
21.1k
  p = 0;
177
358k
  for (l = 1; l <= 16; l++) {
178
337k
    i = (int)htbl->bits[l];
179
337k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
1.63M
    while (i--)
182
1.29M
      huffsize[p++] = (char)l;
183
337k
  }
184
21.1k
  huffsize[p] = 0;
185
21.1k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
21.1k
  code = 0;
191
21.1k
  si = huffsize[0];
192
21.1k
  p = 0;
193
237k
  while (huffsize[p]) {
194
1.51M
    while (((int)huffsize[p]) == si) {
195
1.29M
      huffcode[p++] = code;
196
1.29M
      code++;
197
1.29M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
216k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
9
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
216k
    code <<= 1;
204
216k
    si++;
205
216k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
21.1k
  p = 0;
210
358k
  for (l = 1; l <= 16; l++) {
211
337k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
184k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
184k
      p += htbl->bits[l];
217
184k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
184k
    } else {
219
152k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
152k
    }
221
337k
  }
222
21.1k
  dtbl->valoffset[17] = 0;
223
21.1k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
5.41M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
5.39M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
21.1k
  p = 0;
236
189k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
423k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
254k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
5.23M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
4.98M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
4.98M
        lookbits++;
244
4.98M
      }
245
254k
    }
246
168k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
21.1k
  if (isDC) {
255
115k
    for (i = 0; i < numsymbols; i++) {
256
104k
      int sym = htbl->huffval[i];
257
104k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
24
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
104k
    }
260
10.5k
  }
261
21.1k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
1.64M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
426k
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
426k
  register const JOCTET *next_input_byte = state->next_input_byte;
294
426k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
426k
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
426k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
1.39M
    while (bits_left < MIN_GET_BITS) {
303
1.22M
      register int c;
304
305
      /* Attempt to read a byte */
306
1.22M
      if (bytes_in_buffer == 0) {
307
2.23k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
2.23k
        next_input_byte = cinfo->src->next_input_byte;
310
2.23k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
2.23k
      }
312
1.22M
      bytes_in_buffer--;
313
1.22M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
1.22M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
196k
        do {
323
196k
          if (bytes_in_buffer == 0) {
324
44
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
44
            next_input_byte = cinfo->src->next_input_byte;
327
44
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
44
          }
329
196k
          bytes_in_buffer--;
330
196k
          c = *next_input_byte++;
331
196k
        } while (c == 0xFF);
332
333
113k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
93.1k
          c = 0xFF;
336
93.1k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
20.3k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
20.3k
          goto no_more_bytes;
348
20.3k
        }
349
113k
      }
350
351
      /* OK, load c into get_buffer */
352
1.20M
      get_buffer = (get_buffer << 8) | c;
353
1.20M
      bits_left += 8;
354
1.20M
    } /* end while */
355
237k
  } else {
356
258k
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
258k
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
125k
      if (!cinfo->entropy->insufficient_data) {
368
20.5k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
20.5k
        cinfo->entropy->insufficient_data = TRUE;
370
20.5k
      }
371
      /* Fill the buffer with zero bits */
372
125k
      get_buffer <<= MIN_GET_BITS - bits_left;
373
125k
      bits_left = MIN_GET_BITS;
374
125k
    }
375
258k
  }
376
377
  /* Unload the local registers */
378
426k
  state->next_input_byte = next_input_byte;
379
426k
  state->bytes_in_buffer = bytes_in_buffer;
380
426k
  state->get_buffer = get_buffer;
381
426k
  state->bits_left = bits_left;
382
383
426k
  return TRUE;
384
426k
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
9.45M
#define GET_BYTE { \
392
9.45M
  register int c0, c1; \
393
9.45M
  c0 = *buffer++; \
394
9.45M
  c1 = *buffer; \
395
9.45M
  /* Pre-execute most common case */ \
396
9.45M
  get_buffer = (get_buffer << 8) | c0; \
397
9.45M
  bits_left += 8; \
398
9.45M
  if (c0 == 0xFF) { \
399
853k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
853k
    buffer++; \
401
853k
    if (c1 != 0) { \
402
492k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
492k
      cinfo->unread_marker = c1; \
404
492k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
492k
      buffer -= 2; \
406
492k
      get_buffer &= ~0xFF; \
407
492k
    } \
408
853k
  } \
409
9.45M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
33.1M
  if (bits_left <= 16) { \
416
1.57M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
1.57M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
206k
{
440
206k
  register int l = min_bits;
441
206k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
206k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
206k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
606k
  while (code > htbl->maxcode[l]) {
453
400k
    code <<= 1;
454
400k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
400k
    code |= GET_BITS(1);
456
400k
    l++;
457
400k
  }
458
459
  /* Unload the local registers */
460
206k
  state->get_buffer = get_buffer;
461
206k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
206k
  if (l > 16) {
466
10.4k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
10.4k
    return 0;                   /* fake a zero as the safest result */
468
10.4k
  }
469
470
195k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
206k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
18.5M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
18.5M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
155k
{
514
155k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
155k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
155k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
155k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
155k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
321k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
165k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
155k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
155k
  if (cinfo->unread_marker == 0)
539
6.61k
    entropy->pub.insufficient_data = FALSE;
540
541
155k
  return TRUE;
542
155k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
85.9k
{
554
85.9k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
85.9k
  BITREAD_STATE_VARS;
556
85.9k
  int blkn;
557
85.9k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
85.9k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
85.9k
  state = entropy->saved;
563
564
179k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
93.8k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
93.8k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
93.8k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
93.8k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
93.8k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
93.8k
    if (s) {
575
28.1k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
28.1k
      r = GET_BITS(s);
577
28.1k
      s = HUFF_EXTEND(r, s);
578
28.1k
    }
579
580
93.8k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
93.8k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
93.8k
      s += state.last_dc_val[ci];
592
93.8k
      state.last_dc_val[ci] = s;
593
93.8k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
93.8k
        (*block)[0] = (JCOEF)s;
596
93.8k
      }
597
93.8k
    }
598
599
93.8k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
2.24M
      for (k = 1; k < DCTSIZE2; k++) {
604
2.19M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
2.19M
        r = s >> 4;
607
2.19M
        s &= 15;
608
609
2.19M
        if (s) {
610
2.13M
          k += r;
611
2.13M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
2.13M
          r = GET_BITS(s);
613
2.13M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
2.13M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
2.13M
        } else {
620
62.8k
          if (r != 15)
621
44.5k
            break;
622
18.3k
          k += 15;
623
18.3k
        }
624
2.19M
      }
625
626
93.8k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
93.8k
  }
648
649
  /* Completed MCU, so update state */
650
85.9k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
85.9k
  entropy->saved = state;
652
85.9k
  return TRUE;
653
85.9k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
418k
{
665
418k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
418k
  BITREAD_STATE_VARS;
667
418k
  JOCTET *buffer;
668
418k
  int blkn;
669
418k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
418k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
418k
  buffer = (JOCTET *)br_state.next_input_byte;
675
418k
  state = entropy->saved;
676
677
841k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
423k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
423k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
423k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
423k
    register int s, k, r, l;
682
683
423k
    HUFF_DECODE_FAST(s, l, dctbl);
684
423k
    if (s) {
685
180k
      FILL_BIT_BUFFER_FAST
686
180k
      r = GET_BITS(s);
687
180k
      s = HUFF_EXTEND(r, s);
688
180k
    }
689
690
423k
    if (entropy->dc_needed[blkn]) {
691
423k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
423k
      s += state.last_dc_val[ci];
696
423k
      state.last_dc_val[ci] = s;
697
423k
      if (block)
698
423k
        (*block)[0] = (JCOEF)s;
699
423k
    }
700
701
423k
    if (entropy->ac_needed[blkn] && block) {
702
703
16.6M
      for (k = 1; k < DCTSIZE2; k++) {
704
16.3M
        HUFF_DECODE_FAST(s, l, actbl);
705
16.3M
        r = s >> 4;
706
16.3M
        s &= 15;
707
708
16.3M
        if (s) {
709
16.1M
          k += r;
710
16.1M
          FILL_BIT_BUFFER_FAST
711
16.1M
          r = GET_BITS(s);
712
16.1M
          s = HUFF_EXTEND(r, s);
713
16.1M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
16.1M
        } else {
715
163k
          if (r != 15) break;
716
20.6k
          k += 15;
717
20.6k
        }
718
16.3M
      }
719
720
423k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
423k
  }
738
739
418k
  if (cinfo->unread_marker != 0) {
740
38.8k
    cinfo->unread_marker = 0;
741
38.8k
    return FALSE;
742
38.8k
  }
743
744
379k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
379k
  br_state.next_input_byte = buffer;
746
379k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
379k
  entropy->saved = state;
748
379k
  return TRUE;
749
418k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
12.1M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
12.1M
{
772
12.1M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
12.1M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
12.1M
  if (cinfo->restart_interval) {
777
2.43M
    if (entropy->restarts_to_go == 0)
778
155k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
2.43M
    usefast = 0;
781
2.43M
  }
782
783
12.1M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
12.1M
      cinfo->unread_marker != 0)
785
11.6M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
12.1M
  if (!entropy->pub.insufficient_data) {
791
792
465k
    if (usefast) {
793
418k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
418k
    } else {
795
85.9k
use_slow:
796
85.9k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
85.9k
    }
798
799
465k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
12.1M
  if (cinfo->restart_interval)
803
2.43M
    entropy->restarts_to_go--;
804
805
12.1M
  return TRUE;
806
12.1M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
2.70k
{
816
2.70k
  huff_entropy_ptr entropy;
817
2.70k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
2.70k
  std_huff_tables((j_common_ptr)cinfo);
824
825
2.70k
  entropy = (huff_entropy_ptr)
826
2.70k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
2.70k
                                sizeof(huff_entropy_decoder));
828
2.70k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
2.70k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
2.70k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
13.5k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
10.8k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
10.8k
  }
836
2.70k
}