Coverage Report

Created: 2025-07-01 06:26

/src/libjpeg-turbo.3.0.x/jcdctmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcdctmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 1999-2006, MIYASAKA Masaru.
8
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
9
 * Copyright (C) 2011, 2014-2015, 2022, 2024, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains the forward-DCT management logic.
14
 * This code selects a particular DCT implementation to be used,
15
 * and it performs related housekeeping chores including coefficient
16
 * quantization.
17
 */
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jdct.h"               /* Private declarations for DCT subsystem */
23
#include "jsimddct.h"
24
25
26
/* Private subobject for this module */
27
28
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
29
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
30
31
typedef void (*convsamp_method_ptr) (_JSAMPARRAY sample_data,
32
                                     JDIMENSION start_col,
33
                                     DCTELEM *workspace);
34
typedef void (*float_convsamp_method_ptr) (_JSAMPARRAY sample_data,
35
                                           JDIMENSION start_col,
36
                                           FAST_FLOAT *workspace);
37
38
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
39
                                     DCTELEM *workspace);
40
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
41
                                           FAST_FLOAT *divisors,
42
                                           FAST_FLOAT *workspace);
43
44
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
45
46
typedef struct {
47
  struct jpeg_forward_dct pub;  /* public fields */
48
49
  /* Pointer to the DCT routine actually in use */
50
  forward_DCT_method_ptr dct;
51
  convsamp_method_ptr convsamp;
52
  quantize_method_ptr quantize;
53
54
  /* The actual post-DCT divisors --- not identical to the quant table
55
   * entries, because of scaling (especially for an unnormalized DCT).
56
   * Each table is given in normal array order.
57
   */
58
  DCTELEM *divisors[NUM_QUANT_TBLS];
59
60
  /* work area for FDCT subroutine */
61
  DCTELEM *workspace;
62
63
#ifdef DCT_FLOAT_SUPPORTED
64
  /* Same as above for the floating-point case. */
65
  float_DCT_method_ptr float_dct;
66
  float_convsamp_method_ptr float_convsamp;
67
  float_quantize_method_ptr float_quantize;
68
  FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
69
  FAST_FLOAT *float_workspace;
70
#endif
71
} my_fdct_controller;
72
73
typedef my_fdct_controller *my_fdct_ptr;
74
75
76
#if BITS_IN_JSAMPLE == 8
77
78
/*
79
 * Find the highest bit in an integer through binary search.
80
 */
81
82
LOCAL(int)
83
flss(UINT16 val)
84
0
{
85
0
  int bit;
86
87
0
  bit = 16;
88
89
0
  if (!val)
90
0
    return 0;
91
92
0
  if (!(val & 0xff00)) {
93
0
    bit -= 8;
94
0
    val <<= 8;
95
0
  }
96
0
  if (!(val & 0xf000)) {
97
0
    bit -= 4;
98
0
    val <<= 4;
99
0
  }
100
0
  if (!(val & 0xc000)) {
101
0
    bit -= 2;
102
0
    val <<= 2;
103
0
  }
104
0
  if (!(val & 0x8000)) {
105
0
    bit -= 1;
106
0
    val <<= 1;
107
0
  }
108
109
0
  return bit;
110
0
}
111
112
113
/*
114
 * Compute values to do a division using reciprocal.
115
 *
116
 * This implementation is based on an algorithm described in
117
 *   "Optimizing subroutines in assembly language:
118
 *   An optimization guide for x86 platforms" (https://agner.org/optimize).
119
 * More information about the basic algorithm can be found in
120
 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
121
 *
122
 * The basic idea is to replace x/d by x * d^-1. In order to store
123
 * d^-1 with enough precision we shift it left a few places. It turns
124
 * out that this algoright gives just enough precision, and also fits
125
 * into DCTELEM:
126
 *
127
 *   b = (the number of significant bits in divisor) - 1
128
 *   r = (word size) + b
129
 *   f = 2^r / divisor
130
 *
131
 * f will not be an integer for most cases, so we need to compensate
132
 * for the rounding error introduced:
133
 *
134
 *   no fractional part:
135
 *
136
 *       result = input >> r
137
 *
138
 *   fractional part of f < 0.5:
139
 *
140
 *       round f down to nearest integer
141
 *       result = ((input + 1) * f) >> r
142
 *
143
 *   fractional part of f > 0.5:
144
 *
145
 *       round f up to nearest integer
146
 *       result = (input * f) >> r
147
 *
148
 * This is the original algorithm that gives truncated results. But we
149
 * want properly rounded results, so we replace "input" with
150
 * "input + divisor/2".
151
 *
152
 * In order to allow SIMD implementations we also tweak the values to
153
 * allow the same calculation to be made at all times:
154
 *
155
 *   dctbl[0] = f rounded to nearest integer
156
 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
157
 *   dctbl[2] = 1 << ((word size) * 2 - r)
158
 *   dctbl[3] = r - (word size)
159
 *
160
 * dctbl[2] is for stupid instruction sets where the shift operation
161
 * isn't member wise (e.g. MMX).
162
 *
163
 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
164
 * is that most SIMD implementations have a "multiply and store top
165
 * half" operation.
166
 *
167
 * Lastly, we store each of the values in their own table instead
168
 * of in a consecutive manner, yet again in order to allow SIMD
169
 * routines.
170
 */
171
172
LOCAL(int)
173
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
174
0
{
175
0
  UDCTELEM2 fq, fr;
176
0
  UDCTELEM c;
177
0
  int b, r;
178
179
0
  if (divisor == 1) {
180
    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
181
     * values will cause the C quantization algorithm to act like the
182
     * identity function.  Since only the C quantization algorithm is used in
183
     * these cases, the scale value is irrelevant.
184
     */
185
0
    dtbl[DCTSIZE2 * 0] = (DCTELEM)1;                        /* reciprocal */
186
0
    dtbl[DCTSIZE2 * 1] = (DCTELEM)0;                        /* correction */
187
0
    dtbl[DCTSIZE2 * 2] = (DCTELEM)1;                        /* scale */
188
0
    dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8);   /* shift */
189
0
    return 0;
190
0
  }
191
192
0
  b = flss(divisor) - 1;
193
0
  r  = sizeof(DCTELEM) * 8 + b;
194
195
0
  fq = ((UDCTELEM2)1 << r) / divisor;
196
0
  fr = ((UDCTELEM2)1 << r) % divisor;
197
198
0
  c = divisor / 2;                      /* for rounding */
199
200
0
  if (fr == 0) {                        /* divisor is power of two */
201
    /* fq will be one bit too large to fit in DCTELEM, so adjust */
202
0
    fq >>= 1;
203
0
    r--;
204
0
  } else if (fr <= (divisor / 2U)) {    /* fractional part is < 0.5 */
205
0
    c++;
206
0
  } else {                              /* fractional part is > 0.5 */
207
0
    fq++;
208
0
  }
209
210
0
  dtbl[DCTSIZE2 * 0] = (DCTELEM)fq;     /* reciprocal */
211
0
  dtbl[DCTSIZE2 * 1] = (DCTELEM)c;      /* correction + roundfactor */
212
0
#ifdef WITH_SIMD
213
0
  dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
214
#else
215
  dtbl[DCTSIZE2 * 2] = 1;
216
#endif
217
0
  dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
218
219
0
  if (r <= 16) return 0;
220
0
  else return 1;
221
0
}
222
223
#endif
224
225
226
/*
227
 * Initialize for a processing pass.
228
 * Verify that all referenced Q-tables are present, and set up
229
 * the divisor table for each one.
230
 * In the current implementation, DCT of all components is done during
231
 * the first pass, even if only some components will be output in the
232
 * first scan.  Hence all components should be examined here.
233
 */
234
235
METHODDEF(void)
236
start_pass_fdctmgr(j_compress_ptr cinfo)
237
13.3k
{
238
13.3k
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
239
13.3k
  int ci, qtblno, i;
240
13.3k
  jpeg_component_info *compptr;
241
13.3k
  JQUANT_TBL *qtbl;
242
13.3k
  DCTELEM *dtbl;
243
244
48.1k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245
34.8k
       ci++, compptr++) {
246
34.8k
    qtblno = compptr->quant_tbl_no;
247
    /* Make sure specified quantization table is present */
248
34.8k
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249
34.8k
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
250
0
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251
34.8k
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
252
    /* Compute divisors for this quant table */
253
    /* We may do this more than once for same table, but it's not a big deal */
254
34.8k
    switch (cinfo->dct_method) {
255
0
#ifdef DCT_ISLOW_SUPPORTED
256
28.9k
    case JDCT_ISLOW:
257
      /* For LL&M IDCT method, divisors are equal to raw quantization
258
       * coefficients multiplied by 8 (to counteract scaling).
259
       */
260
28.9k
      if (fdct->divisors[qtblno] == NULL) {
261
19.1k
        fdct->divisors[qtblno] = (DCTELEM *)
262
19.1k
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
263
19.1k
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
264
19.1k
      }
265
28.9k
      dtbl = fdct->divisors[qtblno];
266
1.88M
      for (i = 0; i < DCTSIZE2; i++) {
267
#if BITS_IN_JSAMPLE == 8
268
#ifdef WITH_SIMD
269
        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
270
            fdct->quantize == jsimd_quantize)
271
          fdct->quantize = quantize;
272
#else
273
        compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]);
274
#endif
275
#else
276
1.85M
        dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
277
1.85M
#endif
278
1.85M
      }
279
28.9k
      break;
280
0
#endif
281
0
#ifdef DCT_IFAST_SUPPORTED
282
5.86k
    case JDCT_IFAST:
283
5.86k
      {
284
        /* For AA&N IDCT method, divisors are equal to quantization
285
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
286
         *   scalefactor[0] = 1
287
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
288
         * We apply a further scale factor of 8.
289
         */
290
5.86k
#define CONST_BITS  14
291
5.86k
        static const INT16 aanscales[DCTSIZE2] = {
292
          /* precomputed values scaled up by 14 bits */
293
5.86k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
294
5.86k
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
295
5.86k
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
296
5.86k
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
297
5.86k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
298
5.86k
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
299
5.86k
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
300
5.86k
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
301
5.86k
        };
302
5.86k
        SHIFT_TEMPS
303
304
5.86k
        if (fdct->divisors[qtblno] == NULL) {
305
3.90k
          fdct->divisors[qtblno] = (DCTELEM *)
306
3.90k
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
307
3.90k
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
308
3.90k
        }
309
5.86k
        dtbl = fdct->divisors[qtblno];
310
381k
        for (i = 0; i < DCTSIZE2; i++) {
311
#if BITS_IN_JSAMPLE == 8
312
#ifdef WITH_SIMD
313
          if (!compute_reciprocal(
314
                DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
315
                                      (JLONG)aanscales[i]),
316
                        CONST_BITS - 3), &dtbl[i]) &&
317
              fdct->quantize == jsimd_quantize)
318
            fdct->quantize = quantize;
319
#else
320
          compute_reciprocal(
321
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
322
                                  (JLONG)aanscales[i]),
323
                    CONST_BITS-3), &dtbl[i]);
324
#endif
325
#else
326
375k
          dtbl[i] = (DCTELEM)
327
375k
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
328
375k
                                  (JLONG)aanscales[i]),
329
375k
                    CONST_BITS - 3);
330
375k
#endif
331
375k
        }
332
5.86k
      }
333
5.86k
      break;
334
0
#endif
335
0
#ifdef DCT_FLOAT_SUPPORTED
336
0
    case JDCT_FLOAT:
337
0
      {
338
        /* For float AA&N IDCT method, divisors are equal to quantization
339
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
340
         *   scalefactor[0] = 1
341
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
342
         * We apply a further scale factor of 8.
343
         * What's actually stored is 1/divisor so that the inner loop can
344
         * use a multiplication rather than a division.
345
         */
346
0
        FAST_FLOAT *fdtbl;
347
0
        int row, col;
348
0
        static const double aanscalefactor[DCTSIZE] = {
349
0
          1.0, 1.387039845, 1.306562965, 1.175875602,
350
0
          1.0, 0.785694958, 0.541196100, 0.275899379
351
0
        };
352
353
0
        if (fdct->float_divisors[qtblno] == NULL) {
354
0
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
355
0
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
356
0
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
357
0
        }
358
0
        fdtbl = fdct->float_divisors[qtblno];
359
0
        i = 0;
360
0
        for (row = 0; row < DCTSIZE; row++) {
361
0
          for (col = 0; col < DCTSIZE; col++) {
362
0
            fdtbl[i] = (FAST_FLOAT)
363
0
              (1.0 / (((double)qtbl->quantval[i] *
364
0
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
365
0
            i++;
366
0
          }
367
0
        }
368
0
      }
369
0
      break;
370
0
#endif
371
0
    default:
372
0
      ERREXIT(cinfo, JERR_NOT_COMPILED);
373
0
      break;
374
34.8k
    }
375
34.8k
  }
376
13.3k
}
377
378
379
/*
380
 * Load data into workspace, applying unsigned->signed conversion.
381
 */
382
383
METHODDEF(void)
384
convsamp(_JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
385
21.2M
{
386
21.2M
  register DCTELEM *workspaceptr;
387
21.2M
  register _JSAMPROW elemptr;
388
21.2M
  register int elemr;
389
390
21.2M
  workspaceptr = workspace;
391
191M
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
392
170M
    elemptr = sample_data[elemr] + start_col;
393
394
170M
#if DCTSIZE == 8                /* unroll the inner loop */
395
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
396
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
397
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
398
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
399
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
400
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
401
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
402
170M
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
403
#else
404
    {
405
      register int elemc;
406
      for (elemc = DCTSIZE; elemc > 0; elemc--)
407
        *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
408
    }
409
#endif
410
170M
  }
411
21.2M
}
412
413
414
/*
415
 * Quantize/descale the coefficients, and store into coef_blocks[].
416
 */
417
418
METHODDEF(void)
419
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
420
21.2M
{
421
21.2M
  int i;
422
21.2M
  DCTELEM temp;
423
21.2M
  JCOEFPTR output_ptr = coef_block;
424
425
#if BITS_IN_JSAMPLE == 8
426
427
  UDCTELEM recip, corr;
428
  int shift;
429
  UDCTELEM2 product;
430
431
  for (i = 0; i < DCTSIZE2; i++) {
432
    temp = workspace[i];
433
    recip = divisors[i + DCTSIZE2 * 0];
434
    corr =  divisors[i + DCTSIZE2 * 1];
435
    shift = divisors[i + DCTSIZE2 * 3];
436
437
    if (temp < 0) {
438
      temp = -temp;
439
      product = (UDCTELEM2)(temp + corr) * recip;
440
      product >>= shift + sizeof(DCTELEM) * 8;
441
      temp = (DCTELEM)product;
442
      temp = -temp;
443
    } else {
444
      product = (UDCTELEM2)(temp + corr) * recip;
445
      product >>= shift + sizeof(DCTELEM) * 8;
446
      temp = (DCTELEM)product;
447
    }
448
    output_ptr[i] = (JCOEF)temp;
449
  }
450
451
#else
452
453
21.2M
  register DCTELEM qval;
454
455
1.38G
  for (i = 0; i < DCTSIZE2; i++) {
456
1.36G
    qval = divisors[i];
457
1.36G
    temp = workspace[i];
458
    /* Divide the coefficient value by qval, ensuring proper rounding.
459
     * Since C does not specify the direction of rounding for negative
460
     * quotients, we have to force the dividend positive for portability.
461
     *
462
     * In most files, at least half of the output values will be zero
463
     * (at default quantization settings, more like three-quarters...)
464
     * so we should ensure that this case is fast.  On many machines,
465
     * a comparison is enough cheaper than a divide to make a special test
466
     * a win.  Since both inputs will be nonnegative, we need only test
467
     * for a < b to discover whether a/b is 0.
468
     * If your machine's division is fast enough, define FAST_DIVIDE.
469
     */
470
#ifdef FAST_DIVIDE
471
#define DIVIDE_BY(a, b)  a /= b
472
#else
473
1.36G
#define DIVIDE_BY(a, b)  if (a >= b) a /= b;  else a = 0
474
1.36G
#endif
475
1.36G
    if (temp < 0) {
476
72.4M
      temp = -temp;
477
72.4M
      temp += qval >> 1;        /* for rounding */
478
72.4M
      DIVIDE_BY(temp, qval);
479
72.4M
      temp = -temp;
480
1.28G
    } else {
481
1.28G
      temp += qval >> 1;        /* for rounding */
482
1.28G
      DIVIDE_BY(temp, qval);
483
1.28G
    }
484
1.36G
    output_ptr[i] = (JCOEF)temp;
485
1.36G
  }
486
487
21.2M
#endif
488
489
21.2M
}
490
491
492
/*
493
 * Perform forward DCT on one or more blocks of a component.
494
 *
495
 * The input samples are taken from the sample_data[] array starting at
496
 * position start_row/start_col, and moving to the right for any additional
497
 * blocks. The quantized coefficients are returned in coef_blocks[].
498
 */
499
500
METHODDEF(void)
501
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
502
            _JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
503
            JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
504
/* This version is used for integer DCT implementations. */
505
15.2M
{
506
  /* This routine is heavily used, so it's worth coding it tightly. */
507
15.2M
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
508
15.2M
  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
509
15.2M
  DCTELEM *workspace;
510
15.2M
  JDIMENSION bi;
511
512
  /* Make sure the compiler doesn't look up these every pass */
513
15.2M
  forward_DCT_method_ptr do_dct = fdct->dct;
514
15.2M
  convsamp_method_ptr do_convsamp = fdct->convsamp;
515
15.2M
  quantize_method_ptr do_quantize = fdct->quantize;
516
15.2M
  workspace = fdct->workspace;
517
518
15.2M
  sample_data += start_row;     /* fold in the vertical offset once */
519
520
36.5M
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
521
    /* Load data into workspace, applying unsigned->signed conversion */
522
21.2M
    (*do_convsamp) (sample_data, start_col, workspace);
523
524
    /* Perform the DCT */
525
21.2M
    (*do_dct) (workspace);
526
527
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
528
21.2M
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
529
21.2M
  }
530
15.2M
}
531
532
533
#ifdef DCT_FLOAT_SUPPORTED
534
535
METHODDEF(void)
536
convsamp_float(_JSAMPARRAY sample_data, JDIMENSION start_col,
537
               FAST_FLOAT *workspace)
538
0
{
539
0
  register FAST_FLOAT *workspaceptr;
540
0
  register _JSAMPROW elemptr;
541
0
  register int elemr;
542
543
0
  workspaceptr = workspace;
544
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
545
0
    elemptr = sample_data[elemr] + start_col;
546
0
#if DCTSIZE == 8                /* unroll the inner loop */
547
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
548
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
549
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
550
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
551
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
552
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
553
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
554
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
555
#else
556
    {
557
      register int elemc;
558
      for (elemc = DCTSIZE; elemc > 0; elemc--)
559
        *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
560
    }
561
#endif
562
0
  }
563
0
}
564
565
566
METHODDEF(void)
567
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
568
               FAST_FLOAT *workspace)
569
0
{
570
0
  register FAST_FLOAT temp;
571
0
  register int i;
572
0
  register JCOEFPTR output_ptr = coef_block;
573
574
0
  for (i = 0; i < DCTSIZE2; i++) {
575
    /* Apply the quantization and scaling factor */
576
0
    temp = workspace[i] * divisors[i];
577
578
    /* Round to nearest integer.
579
     * Since C does not specify the direction of rounding for negative
580
     * quotients, we have to force the dividend positive for portability.
581
     * The maximum coefficient size is +-16K (for 12-bit data), so this
582
     * code should work for either 16-bit or 32-bit ints.
583
     */
584
0
    output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
585
0
  }
586
0
}
587
588
589
METHODDEF(void)
590
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
591
                  _JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
592
                  JDIMENSION start_row, JDIMENSION start_col,
593
                  JDIMENSION num_blocks)
594
/* This version is used for floating-point DCT implementations. */
595
0
{
596
  /* This routine is heavily used, so it's worth coding it tightly. */
597
0
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
598
0
  FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
599
0
  FAST_FLOAT *workspace;
600
0
  JDIMENSION bi;
601
602
603
  /* Make sure the compiler doesn't look up these every pass */
604
0
  float_DCT_method_ptr do_dct = fdct->float_dct;
605
0
  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
606
0
  float_quantize_method_ptr do_quantize = fdct->float_quantize;
607
0
  workspace = fdct->float_workspace;
608
609
0
  sample_data += start_row;     /* fold in the vertical offset once */
610
611
0
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
612
    /* Load data into workspace, applying unsigned->signed conversion */
613
0
    (*do_convsamp) (sample_data, start_col, workspace);
614
615
    /* Perform the DCT */
616
0
    (*do_dct) (workspace);
617
618
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
619
0
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
620
0
  }
621
0
}
622
623
#endif /* DCT_FLOAT_SUPPORTED */
624
625
626
/*
627
 * Initialize FDCT manager.
628
 */
629
630
GLOBAL(void)
631
_jinit_forward_dct(j_compress_ptr cinfo)
632
13.3k
{
633
13.3k
  my_fdct_ptr fdct;
634
13.3k
  int i;
635
636
13.3k
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
637
0
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
638
639
13.3k
  fdct = (my_fdct_ptr)
640
13.3k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
641
13.3k
                                sizeof(my_fdct_controller));
642
13.3k
  cinfo->fdct = (struct jpeg_forward_dct *)fdct;
643
13.3k
  fdct->pub.start_pass = start_pass_fdctmgr;
644
645
  /* First determine the DCT... */
646
13.3k
  switch (cinfo->dct_method) {
647
0
#ifdef DCT_ISLOW_SUPPORTED
648
11.3k
  case JDCT_ISLOW:
649
11.3k
    fdct->pub._forward_DCT = forward_DCT;
650
#ifdef WITH_SIMD
651
0
    if (jsimd_can_fdct_islow())
652
0
      fdct->dct = jsimd_fdct_islow;
653
0
    else
654
0
#endif
655
11.3k
      fdct->dct = _jpeg_fdct_islow;
656
11.3k
    break;
657
0
#endif
658
0
#ifdef DCT_IFAST_SUPPORTED
659
1.95k
  case JDCT_IFAST:
660
1.95k
    fdct->pub._forward_DCT = forward_DCT;
661
#ifdef WITH_SIMD
662
0
    if (jsimd_can_fdct_ifast())
663
0
      fdct->dct = jsimd_fdct_ifast;
664
0
    else
665
0
#endif
666
1.95k
      fdct->dct = _jpeg_fdct_ifast;
667
1.95k
    break;
668
0
#endif
669
0
#ifdef DCT_FLOAT_SUPPORTED
670
0
  case JDCT_FLOAT:
671
0
    fdct->pub._forward_DCT = forward_DCT_float;
672
#ifdef WITH_SIMD
673
0
    if (jsimd_can_fdct_float())
674
0
      fdct->float_dct = jsimd_fdct_float;
675
0
    else
676
0
#endif
677
0
      fdct->float_dct = jpeg_fdct_float;
678
0
    break;
679
0
#endif
680
0
  default:
681
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
682
0
    break;
683
13.3k
  }
684
685
  /* ...then the supporting stages. */
686
13.3k
  switch (cinfo->dct_method) {
687
0
#ifdef DCT_ISLOW_SUPPORTED
688
11.3k
  case JDCT_ISLOW:
689
11.3k
#endif
690
11.3k
#ifdef DCT_IFAST_SUPPORTED
691
13.3k
  case JDCT_IFAST:
692
13.3k
#endif
693
13.3k
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
694
#ifdef WITH_SIMD
695
0
    if (jsimd_can_convsamp())
696
0
      fdct->convsamp = jsimd_convsamp;
697
0
    else
698
0
#endif
699
0
      fdct->convsamp = convsamp;
700
#ifdef WITH_SIMD
701
0
    if (jsimd_can_quantize())
702
0
      fdct->quantize = jsimd_quantize;
703
0
    else
704
0
#endif
705
0
      fdct->quantize = quantize;
706
13.3k
    break;
707
0
#endif
708
0
#ifdef DCT_FLOAT_SUPPORTED
709
0
  case JDCT_FLOAT:
710
#ifdef WITH_SIMD
711
0
    if (jsimd_can_convsamp_float())
712
0
      fdct->float_convsamp = jsimd_convsamp_float;
713
0
    else
714
0
#endif
715
0
      fdct->float_convsamp = convsamp_float;
716
#ifdef WITH_SIMD
717
0
    if (jsimd_can_quantize_float())
718
0
      fdct->float_quantize = jsimd_quantize_float;
719
0
    else
720
0
#endif
721
0
      fdct->float_quantize = quantize_float;
722
0
    break;
723
0
#endif
724
0
  default:
725
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
726
0
    break;
727
13.3k
  }
728
729
  /* Allocate workspace memory */
730
13.3k
#ifdef DCT_FLOAT_SUPPORTED
731
13.3k
  if (cinfo->dct_method == JDCT_FLOAT)
732
0
    fdct->float_workspace = (FAST_FLOAT *)
733
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
734
0
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
735
13.3k
  else
736
13.3k
#endif
737
13.3k
    fdct->workspace = (DCTELEM *)
738
13.3k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
739
13.3k
                                  sizeof(DCTELEM) * DCTSIZE2);
740
741
  /* Mark divisor tables unallocated */
742
66.6k
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
743
53.3k
    fdct->divisors[i] = NULL;
744
53.3k
#ifdef DCT_FLOAT_SUPPORTED
745
53.3k
    fdct->float_divisors[i] = NULL;
746
53.3k
#endif
747
53.3k
  }
748
13.3k
}
j12init_forward_dct
Line
Count
Source
632
13.3k
{
633
13.3k
  my_fdct_ptr fdct;
634
13.3k
  int i;
635
636
13.3k
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
637
0
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
638
639
13.3k
  fdct = (my_fdct_ptr)
640
13.3k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
641
13.3k
                                sizeof(my_fdct_controller));
642
13.3k
  cinfo->fdct = (struct jpeg_forward_dct *)fdct;
643
13.3k
  fdct->pub.start_pass = start_pass_fdctmgr;
644
645
  /* First determine the DCT... */
646
13.3k
  switch (cinfo->dct_method) {
647
0
#ifdef DCT_ISLOW_SUPPORTED
648
11.3k
  case JDCT_ISLOW:
649
11.3k
    fdct->pub._forward_DCT = forward_DCT;
650
#ifdef WITH_SIMD
651
    if (jsimd_can_fdct_islow())
652
      fdct->dct = jsimd_fdct_islow;
653
    else
654
#endif
655
11.3k
      fdct->dct = _jpeg_fdct_islow;
656
11.3k
    break;
657
0
#endif
658
0
#ifdef DCT_IFAST_SUPPORTED
659
1.95k
  case JDCT_IFAST:
660
1.95k
    fdct->pub._forward_DCT = forward_DCT;
661
#ifdef WITH_SIMD
662
    if (jsimd_can_fdct_ifast())
663
      fdct->dct = jsimd_fdct_ifast;
664
    else
665
#endif
666
1.95k
      fdct->dct = _jpeg_fdct_ifast;
667
1.95k
    break;
668
0
#endif
669
0
#ifdef DCT_FLOAT_SUPPORTED
670
0
  case JDCT_FLOAT:
671
0
    fdct->pub._forward_DCT = forward_DCT_float;
672
#ifdef WITH_SIMD
673
    if (jsimd_can_fdct_float())
674
      fdct->float_dct = jsimd_fdct_float;
675
    else
676
#endif
677
0
      fdct->float_dct = jpeg_fdct_float;
678
0
    break;
679
0
#endif
680
0
  default:
681
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
682
0
    break;
683
13.3k
  }
684
685
  /* ...then the supporting stages. */
686
13.3k
  switch (cinfo->dct_method) {
687
0
#ifdef DCT_ISLOW_SUPPORTED
688
11.3k
  case JDCT_ISLOW:
689
11.3k
#endif
690
11.3k
#ifdef DCT_IFAST_SUPPORTED
691
13.3k
  case JDCT_IFAST:
692
13.3k
#endif
693
13.3k
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
694
#ifdef WITH_SIMD
695
    if (jsimd_can_convsamp())
696
      fdct->convsamp = jsimd_convsamp;
697
    else
698
#endif
699
13.3k
      fdct->convsamp = convsamp;
700
#ifdef WITH_SIMD
701
    if (jsimd_can_quantize())
702
      fdct->quantize = jsimd_quantize;
703
    else
704
#endif
705
13.3k
      fdct->quantize = quantize;
706
13.3k
    break;
707
0
#endif
708
0
#ifdef DCT_FLOAT_SUPPORTED
709
0
  case JDCT_FLOAT:
710
#ifdef WITH_SIMD
711
    if (jsimd_can_convsamp_float())
712
      fdct->float_convsamp = jsimd_convsamp_float;
713
    else
714
#endif
715
0
      fdct->float_convsamp = convsamp_float;
716
#ifdef WITH_SIMD
717
    if (jsimd_can_quantize_float())
718
      fdct->float_quantize = jsimd_quantize_float;
719
    else
720
#endif
721
0
      fdct->float_quantize = quantize_float;
722
0
    break;
723
0
#endif
724
0
  default:
725
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
726
0
    break;
727
13.3k
  }
728
729
  /* Allocate workspace memory */
730
13.3k
#ifdef DCT_FLOAT_SUPPORTED
731
13.3k
  if (cinfo->dct_method == JDCT_FLOAT)
732
0
    fdct->float_workspace = (FAST_FLOAT *)
733
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
734
0
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
735
13.3k
  else
736
13.3k
#endif
737
13.3k
    fdct->workspace = (DCTELEM *)
738
13.3k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
739
13.3k
                                  sizeof(DCTELEM) * DCTSIZE2);
740
741
  /* Mark divisor tables unallocated */
742
66.6k
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
743
53.3k
    fdct->divisors[i] = NULL;
744
53.3k
#ifdef DCT_FLOAT_SUPPORTED
745
53.3k
    fdct->float_divisors[i] = NULL;
746
53.3k
#endif
747
53.3k
  }
748
13.3k
}
Unexecuted instantiation: jinit_forward_dct