/src/libjpeg-turbo.3.0.x/jcdctmgr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jcdctmgr.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 1999-2006, MIYASAKA Masaru. |
8 | | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
9 | | * Copyright (C) 2011, 2014-2015, 2022, 2024, D. R. Commander. |
10 | | * For conditions of distribution and use, see the accompanying README.ijg |
11 | | * file. |
12 | | * |
13 | | * This file contains the forward-DCT management logic. |
14 | | * This code selects a particular DCT implementation to be used, |
15 | | * and it performs related housekeeping chores including coefficient |
16 | | * quantization. |
17 | | */ |
18 | | |
19 | | #define JPEG_INTERNALS |
20 | | #include "jinclude.h" |
21 | | #include "jpeglib.h" |
22 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
23 | | #include "jsimddct.h" |
24 | | |
25 | | |
26 | | /* Private subobject for this module */ |
27 | | |
28 | | typedef void (*forward_DCT_method_ptr) (DCTELEM *data); |
29 | | typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); |
30 | | |
31 | | typedef void (*convsamp_method_ptr) (_JSAMPARRAY sample_data, |
32 | | JDIMENSION start_col, |
33 | | DCTELEM *workspace); |
34 | | typedef void (*float_convsamp_method_ptr) (_JSAMPARRAY sample_data, |
35 | | JDIMENSION start_col, |
36 | | FAST_FLOAT *workspace); |
37 | | |
38 | | typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, |
39 | | DCTELEM *workspace); |
40 | | typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, |
41 | | FAST_FLOAT *divisors, |
42 | | FAST_FLOAT *workspace); |
43 | | |
44 | | METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *); |
45 | | |
46 | | typedef struct { |
47 | | struct jpeg_forward_dct pub; /* public fields */ |
48 | | |
49 | | /* Pointer to the DCT routine actually in use */ |
50 | | forward_DCT_method_ptr dct; |
51 | | convsamp_method_ptr convsamp; |
52 | | quantize_method_ptr quantize; |
53 | | |
54 | | /* The actual post-DCT divisors --- not identical to the quant table |
55 | | * entries, because of scaling (especially for an unnormalized DCT). |
56 | | * Each table is given in normal array order. |
57 | | */ |
58 | | DCTELEM *divisors[NUM_QUANT_TBLS]; |
59 | | |
60 | | /* work area for FDCT subroutine */ |
61 | | DCTELEM *workspace; |
62 | | |
63 | | #ifdef DCT_FLOAT_SUPPORTED |
64 | | /* Same as above for the floating-point case. */ |
65 | | float_DCT_method_ptr float_dct; |
66 | | float_convsamp_method_ptr float_convsamp; |
67 | | float_quantize_method_ptr float_quantize; |
68 | | FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; |
69 | | FAST_FLOAT *float_workspace; |
70 | | #endif |
71 | | } my_fdct_controller; |
72 | | |
73 | | typedef my_fdct_controller *my_fdct_ptr; |
74 | | |
75 | | |
76 | | #if BITS_IN_JSAMPLE == 8 |
77 | | |
78 | | /* |
79 | | * Find the highest bit in an integer through binary search. |
80 | | */ |
81 | | |
82 | | LOCAL(int) |
83 | | flss(UINT16 val) |
84 | 0 | { |
85 | 0 | int bit; |
86 | |
|
87 | 0 | bit = 16; |
88 | |
|
89 | 0 | if (!val) |
90 | 0 | return 0; |
91 | | |
92 | 0 | if (!(val & 0xff00)) { |
93 | 0 | bit -= 8; |
94 | 0 | val <<= 8; |
95 | 0 | } |
96 | 0 | if (!(val & 0xf000)) { |
97 | 0 | bit -= 4; |
98 | 0 | val <<= 4; |
99 | 0 | } |
100 | 0 | if (!(val & 0xc000)) { |
101 | 0 | bit -= 2; |
102 | 0 | val <<= 2; |
103 | 0 | } |
104 | 0 | if (!(val & 0x8000)) { |
105 | 0 | bit -= 1; |
106 | 0 | val <<= 1; |
107 | 0 | } |
108 | |
|
109 | 0 | return bit; |
110 | 0 | } |
111 | | |
112 | | |
113 | | /* |
114 | | * Compute values to do a division using reciprocal. |
115 | | * |
116 | | * This implementation is based on an algorithm described in |
117 | | * "Optimizing subroutines in assembly language: |
118 | | * An optimization guide for x86 platforms" (https://agner.org/optimize). |
119 | | * More information about the basic algorithm can be found in |
120 | | * the paper "Integer Division Using Reciprocals" by Robert Alverson. |
121 | | * |
122 | | * The basic idea is to replace x/d by x * d^-1. In order to store |
123 | | * d^-1 with enough precision we shift it left a few places. It turns |
124 | | * out that this algoright gives just enough precision, and also fits |
125 | | * into DCTELEM: |
126 | | * |
127 | | * b = (the number of significant bits in divisor) - 1 |
128 | | * r = (word size) + b |
129 | | * f = 2^r / divisor |
130 | | * |
131 | | * f will not be an integer for most cases, so we need to compensate |
132 | | * for the rounding error introduced: |
133 | | * |
134 | | * no fractional part: |
135 | | * |
136 | | * result = input >> r |
137 | | * |
138 | | * fractional part of f < 0.5: |
139 | | * |
140 | | * round f down to nearest integer |
141 | | * result = ((input + 1) * f) >> r |
142 | | * |
143 | | * fractional part of f > 0.5: |
144 | | * |
145 | | * round f up to nearest integer |
146 | | * result = (input * f) >> r |
147 | | * |
148 | | * This is the original algorithm that gives truncated results. But we |
149 | | * want properly rounded results, so we replace "input" with |
150 | | * "input + divisor/2". |
151 | | * |
152 | | * In order to allow SIMD implementations we also tweak the values to |
153 | | * allow the same calculation to be made at all times: |
154 | | * |
155 | | * dctbl[0] = f rounded to nearest integer |
156 | | * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
157 | | * dctbl[2] = 1 << ((word size) * 2 - r) |
158 | | * dctbl[3] = r - (word size) |
159 | | * |
160 | | * dctbl[2] is for stupid instruction sets where the shift operation |
161 | | * isn't member wise (e.g. MMX). |
162 | | * |
163 | | * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
164 | | * is that most SIMD implementations have a "multiply and store top |
165 | | * half" operation. |
166 | | * |
167 | | * Lastly, we store each of the values in their own table instead |
168 | | * of in a consecutive manner, yet again in order to allow SIMD |
169 | | * routines. |
170 | | */ |
171 | | |
172 | | LOCAL(int) |
173 | | compute_reciprocal(UINT16 divisor, DCTELEM *dtbl) |
174 | 0 | { |
175 | 0 | UDCTELEM2 fq, fr; |
176 | 0 | UDCTELEM c; |
177 | 0 | int b, r; |
178 | |
|
179 | 0 | if (divisor == 1) { |
180 | | /* divisor == 1 means unquantized, so these reciprocal/correction/shift |
181 | | * values will cause the C quantization algorithm to act like the |
182 | | * identity function. Since only the C quantization algorithm is used in |
183 | | * these cases, the scale value is irrelevant. |
184 | | */ |
185 | 0 | dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */ |
186 | 0 | dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */ |
187 | 0 | dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */ |
188 | 0 | dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */ |
189 | 0 | return 0; |
190 | 0 | } |
191 | | |
192 | 0 | b = flss(divisor) - 1; |
193 | 0 | r = sizeof(DCTELEM) * 8 + b; |
194 | |
|
195 | 0 | fq = ((UDCTELEM2)1 << r) / divisor; |
196 | 0 | fr = ((UDCTELEM2)1 << r) % divisor; |
197 | |
|
198 | 0 | c = divisor / 2; /* for rounding */ |
199 | |
|
200 | 0 | if (fr == 0) { /* divisor is power of two */ |
201 | | /* fq will be one bit too large to fit in DCTELEM, so adjust */ |
202 | 0 | fq >>= 1; |
203 | 0 | r--; |
204 | 0 | } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ |
205 | 0 | c++; |
206 | 0 | } else { /* fractional part is > 0.5 */ |
207 | 0 | fq++; |
208 | 0 | } |
209 | |
|
210 | 0 | dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */ |
211 | 0 | dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */ |
212 | 0 | #ifdef WITH_SIMD |
213 | 0 | dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ |
214 | | #else |
215 | | dtbl[DCTSIZE2 * 2] = 1; |
216 | | #endif |
217 | 0 | dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ |
218 | |
|
219 | 0 | if (r <= 16) return 0; |
220 | 0 | else return 1; |
221 | 0 | } |
222 | | |
223 | | #endif |
224 | | |
225 | | |
226 | | /* |
227 | | * Initialize for a processing pass. |
228 | | * Verify that all referenced Q-tables are present, and set up |
229 | | * the divisor table for each one. |
230 | | * In the current implementation, DCT of all components is done during |
231 | | * the first pass, even if only some components will be output in the |
232 | | * first scan. Hence all components should be examined here. |
233 | | */ |
234 | | |
235 | | METHODDEF(void) |
236 | | start_pass_fdctmgr(j_compress_ptr cinfo) |
237 | 13.3k | { |
238 | 13.3k | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
239 | 13.3k | int ci, qtblno, i; |
240 | 13.3k | jpeg_component_info *compptr; |
241 | 13.3k | JQUANT_TBL *qtbl; |
242 | 13.3k | DCTELEM *dtbl; |
243 | | |
244 | 48.1k | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
245 | 34.8k | ci++, compptr++) { |
246 | 34.8k | qtblno = compptr->quant_tbl_no; |
247 | | /* Make sure specified quantization table is present */ |
248 | 34.8k | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
249 | 34.8k | cinfo->quant_tbl_ptrs[qtblno] == NULL) |
250 | 0 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
251 | 34.8k | qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
252 | | /* Compute divisors for this quant table */ |
253 | | /* We may do this more than once for same table, but it's not a big deal */ |
254 | 34.8k | switch (cinfo->dct_method) { |
255 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
256 | 28.9k | case JDCT_ISLOW: |
257 | | /* For LL&M IDCT method, divisors are equal to raw quantization |
258 | | * coefficients multiplied by 8 (to counteract scaling). |
259 | | */ |
260 | 28.9k | if (fdct->divisors[qtblno] == NULL) { |
261 | 19.1k | fdct->divisors[qtblno] = (DCTELEM *) |
262 | 19.1k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
263 | 19.1k | (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
264 | 19.1k | } |
265 | 28.9k | dtbl = fdct->divisors[qtblno]; |
266 | 1.88M | for (i = 0; i < DCTSIZE2; i++) { |
267 | | #if BITS_IN_JSAMPLE == 8 |
268 | | #ifdef WITH_SIMD |
269 | | if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && |
270 | | fdct->quantize == jsimd_quantize) |
271 | | fdct->quantize = quantize; |
272 | | #else |
273 | | compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]); |
274 | | #endif |
275 | | #else |
276 | 1.85M | dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; |
277 | 1.85M | #endif |
278 | 1.85M | } |
279 | 28.9k | break; |
280 | 0 | #endif |
281 | 0 | #ifdef DCT_IFAST_SUPPORTED |
282 | 5.86k | case JDCT_IFAST: |
283 | 5.86k | { |
284 | | /* For AA&N IDCT method, divisors are equal to quantization |
285 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
286 | | * scalefactor[0] = 1 |
287 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
288 | | * We apply a further scale factor of 8. |
289 | | */ |
290 | 5.86k | #define CONST_BITS 14 |
291 | 5.86k | static const INT16 aanscales[DCTSIZE2] = { |
292 | | /* precomputed values scaled up by 14 bits */ |
293 | 5.86k | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
294 | 5.86k | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
295 | 5.86k | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
296 | 5.86k | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
297 | 5.86k | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
298 | 5.86k | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
299 | 5.86k | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
300 | 5.86k | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
301 | 5.86k | }; |
302 | 5.86k | SHIFT_TEMPS |
303 | | |
304 | 5.86k | if (fdct->divisors[qtblno] == NULL) { |
305 | 3.90k | fdct->divisors[qtblno] = (DCTELEM *) |
306 | 3.90k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
307 | 3.90k | (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
308 | 3.90k | } |
309 | 5.86k | dtbl = fdct->divisors[qtblno]; |
310 | 381k | for (i = 0; i < DCTSIZE2; i++) { |
311 | | #if BITS_IN_JSAMPLE == 8 |
312 | | #ifdef WITH_SIMD |
313 | | if (!compute_reciprocal( |
314 | | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
315 | | (JLONG)aanscales[i]), |
316 | | CONST_BITS - 3), &dtbl[i]) && |
317 | | fdct->quantize == jsimd_quantize) |
318 | | fdct->quantize = quantize; |
319 | | #else |
320 | | compute_reciprocal( |
321 | | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
322 | | (JLONG)aanscales[i]), |
323 | | CONST_BITS-3), &dtbl[i]); |
324 | | #endif |
325 | | #else |
326 | 375k | dtbl[i] = (DCTELEM) |
327 | 375k | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
328 | 375k | (JLONG)aanscales[i]), |
329 | 375k | CONST_BITS - 3); |
330 | 375k | #endif |
331 | 375k | } |
332 | 5.86k | } |
333 | 5.86k | break; |
334 | 0 | #endif |
335 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
336 | 0 | case JDCT_FLOAT: |
337 | 0 | { |
338 | | /* For float AA&N IDCT method, divisors are equal to quantization |
339 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
340 | | * scalefactor[0] = 1 |
341 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
342 | | * We apply a further scale factor of 8. |
343 | | * What's actually stored is 1/divisor so that the inner loop can |
344 | | * use a multiplication rather than a division. |
345 | | */ |
346 | 0 | FAST_FLOAT *fdtbl; |
347 | 0 | int row, col; |
348 | 0 | static const double aanscalefactor[DCTSIZE] = { |
349 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
350 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
351 | 0 | }; |
352 | |
|
353 | 0 | if (fdct->float_divisors[qtblno] == NULL) { |
354 | 0 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
355 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
356 | 0 | DCTSIZE2 * sizeof(FAST_FLOAT)); |
357 | 0 | } |
358 | 0 | fdtbl = fdct->float_divisors[qtblno]; |
359 | 0 | i = 0; |
360 | 0 | for (row = 0; row < DCTSIZE; row++) { |
361 | 0 | for (col = 0; col < DCTSIZE; col++) { |
362 | 0 | fdtbl[i] = (FAST_FLOAT) |
363 | 0 | (1.0 / (((double)qtbl->quantval[i] * |
364 | 0 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
365 | 0 | i++; |
366 | 0 | } |
367 | 0 | } |
368 | 0 | } |
369 | 0 | break; |
370 | 0 | #endif |
371 | 0 | default: |
372 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
373 | 0 | break; |
374 | 34.8k | } |
375 | 34.8k | } |
376 | 13.3k | } |
377 | | |
378 | | |
379 | | /* |
380 | | * Load data into workspace, applying unsigned->signed conversion. |
381 | | */ |
382 | | |
383 | | METHODDEF(void) |
384 | | convsamp(_JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) |
385 | 21.2M | { |
386 | 21.2M | register DCTELEM *workspaceptr; |
387 | 21.2M | register _JSAMPROW elemptr; |
388 | 21.2M | register int elemr; |
389 | | |
390 | 21.2M | workspaceptr = workspace; |
391 | 191M | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
392 | 170M | elemptr = sample_data[elemr] + start_col; |
393 | | |
394 | 170M | #if DCTSIZE == 8 /* unroll the inner loop */ |
395 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
396 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
397 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
398 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
399 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
400 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
401 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
402 | 170M | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
403 | | #else |
404 | | { |
405 | | register int elemc; |
406 | | for (elemc = DCTSIZE; elemc > 0; elemc--) |
407 | | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
408 | | } |
409 | | #endif |
410 | 170M | } |
411 | 21.2M | } |
412 | | |
413 | | |
414 | | /* |
415 | | * Quantize/descale the coefficients, and store into coef_blocks[]. |
416 | | */ |
417 | | |
418 | | METHODDEF(void) |
419 | | quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) |
420 | 21.2M | { |
421 | 21.2M | int i; |
422 | 21.2M | DCTELEM temp; |
423 | 21.2M | JCOEFPTR output_ptr = coef_block; |
424 | | |
425 | | #if BITS_IN_JSAMPLE == 8 |
426 | | |
427 | | UDCTELEM recip, corr; |
428 | | int shift; |
429 | | UDCTELEM2 product; |
430 | | |
431 | | for (i = 0; i < DCTSIZE2; i++) { |
432 | | temp = workspace[i]; |
433 | | recip = divisors[i + DCTSIZE2 * 0]; |
434 | | corr = divisors[i + DCTSIZE2 * 1]; |
435 | | shift = divisors[i + DCTSIZE2 * 3]; |
436 | | |
437 | | if (temp < 0) { |
438 | | temp = -temp; |
439 | | product = (UDCTELEM2)(temp + corr) * recip; |
440 | | product >>= shift + sizeof(DCTELEM) * 8; |
441 | | temp = (DCTELEM)product; |
442 | | temp = -temp; |
443 | | } else { |
444 | | product = (UDCTELEM2)(temp + corr) * recip; |
445 | | product >>= shift + sizeof(DCTELEM) * 8; |
446 | | temp = (DCTELEM)product; |
447 | | } |
448 | | output_ptr[i] = (JCOEF)temp; |
449 | | } |
450 | | |
451 | | #else |
452 | | |
453 | 21.2M | register DCTELEM qval; |
454 | | |
455 | 1.38G | for (i = 0; i < DCTSIZE2; i++) { |
456 | 1.36G | qval = divisors[i]; |
457 | 1.36G | temp = workspace[i]; |
458 | | /* Divide the coefficient value by qval, ensuring proper rounding. |
459 | | * Since C does not specify the direction of rounding for negative |
460 | | * quotients, we have to force the dividend positive for portability. |
461 | | * |
462 | | * In most files, at least half of the output values will be zero |
463 | | * (at default quantization settings, more like three-quarters...) |
464 | | * so we should ensure that this case is fast. On many machines, |
465 | | * a comparison is enough cheaper than a divide to make a special test |
466 | | * a win. Since both inputs will be nonnegative, we need only test |
467 | | * for a < b to discover whether a/b is 0. |
468 | | * If your machine's division is fast enough, define FAST_DIVIDE. |
469 | | */ |
470 | | #ifdef FAST_DIVIDE |
471 | | #define DIVIDE_BY(a, b) a /= b |
472 | | #else |
473 | 1.36G | #define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0 |
474 | 1.36G | #endif |
475 | 1.36G | if (temp < 0) { |
476 | 72.4M | temp = -temp; |
477 | 72.4M | temp += qval >> 1; /* for rounding */ |
478 | 72.4M | DIVIDE_BY(temp, qval); |
479 | 72.4M | temp = -temp; |
480 | 1.28G | } else { |
481 | 1.28G | temp += qval >> 1; /* for rounding */ |
482 | 1.28G | DIVIDE_BY(temp, qval); |
483 | 1.28G | } |
484 | 1.36G | output_ptr[i] = (JCOEF)temp; |
485 | 1.36G | } |
486 | | |
487 | 21.2M | #endif |
488 | | |
489 | 21.2M | } |
490 | | |
491 | | |
492 | | /* |
493 | | * Perform forward DCT on one or more blocks of a component. |
494 | | * |
495 | | * The input samples are taken from the sample_data[] array starting at |
496 | | * position start_row/start_col, and moving to the right for any additional |
497 | | * blocks. The quantized coefficients are returned in coef_blocks[]. |
498 | | */ |
499 | | |
500 | | METHODDEF(void) |
501 | | forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, |
502 | | _JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
503 | | JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) |
504 | | /* This version is used for integer DCT implementations. */ |
505 | 15.2M | { |
506 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
507 | 15.2M | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
508 | 15.2M | DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; |
509 | 15.2M | DCTELEM *workspace; |
510 | 15.2M | JDIMENSION bi; |
511 | | |
512 | | /* Make sure the compiler doesn't look up these every pass */ |
513 | 15.2M | forward_DCT_method_ptr do_dct = fdct->dct; |
514 | 15.2M | convsamp_method_ptr do_convsamp = fdct->convsamp; |
515 | 15.2M | quantize_method_ptr do_quantize = fdct->quantize; |
516 | 15.2M | workspace = fdct->workspace; |
517 | | |
518 | 15.2M | sample_data += start_row; /* fold in the vertical offset once */ |
519 | | |
520 | 36.5M | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
521 | | /* Load data into workspace, applying unsigned->signed conversion */ |
522 | 21.2M | (*do_convsamp) (sample_data, start_col, workspace); |
523 | | |
524 | | /* Perform the DCT */ |
525 | 21.2M | (*do_dct) (workspace); |
526 | | |
527 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
528 | 21.2M | (*do_quantize) (coef_blocks[bi], divisors, workspace); |
529 | 21.2M | } |
530 | 15.2M | } |
531 | | |
532 | | |
533 | | #ifdef DCT_FLOAT_SUPPORTED |
534 | | |
535 | | METHODDEF(void) |
536 | | convsamp_float(_JSAMPARRAY sample_data, JDIMENSION start_col, |
537 | | FAST_FLOAT *workspace) |
538 | 0 | { |
539 | 0 | register FAST_FLOAT *workspaceptr; |
540 | 0 | register _JSAMPROW elemptr; |
541 | 0 | register int elemr; |
542 | |
|
543 | 0 | workspaceptr = workspace; |
544 | 0 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
545 | 0 | elemptr = sample_data[elemr] + start_col; |
546 | 0 | #if DCTSIZE == 8 /* unroll the inner loop */ |
547 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
548 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
549 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
550 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
551 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
552 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
553 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
554 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
555 | | #else |
556 | | { |
557 | | register int elemc; |
558 | | for (elemc = DCTSIZE; elemc > 0; elemc--) |
559 | | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
560 | | } |
561 | | #endif |
562 | 0 | } |
563 | 0 | } |
564 | | |
565 | | |
566 | | METHODDEF(void) |
567 | | quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, |
568 | | FAST_FLOAT *workspace) |
569 | 0 | { |
570 | 0 | register FAST_FLOAT temp; |
571 | 0 | register int i; |
572 | 0 | register JCOEFPTR output_ptr = coef_block; |
573 | |
|
574 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
575 | | /* Apply the quantization and scaling factor */ |
576 | 0 | temp = workspace[i] * divisors[i]; |
577 | | |
578 | | /* Round to nearest integer. |
579 | | * Since C does not specify the direction of rounding for negative |
580 | | * quotients, we have to force the dividend positive for portability. |
581 | | * The maximum coefficient size is +-16K (for 12-bit data), so this |
582 | | * code should work for either 16-bit or 32-bit ints. |
583 | | */ |
584 | 0 | output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384); |
585 | 0 | } |
586 | 0 | } |
587 | | |
588 | | |
589 | | METHODDEF(void) |
590 | | forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, |
591 | | _JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
592 | | JDIMENSION start_row, JDIMENSION start_col, |
593 | | JDIMENSION num_blocks) |
594 | | /* This version is used for floating-point DCT implementations. */ |
595 | 0 | { |
596 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
597 | 0 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
598 | 0 | FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
599 | 0 | FAST_FLOAT *workspace; |
600 | 0 | JDIMENSION bi; |
601 | | |
602 | | |
603 | | /* Make sure the compiler doesn't look up these every pass */ |
604 | 0 | float_DCT_method_ptr do_dct = fdct->float_dct; |
605 | 0 | float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
606 | 0 | float_quantize_method_ptr do_quantize = fdct->float_quantize; |
607 | 0 | workspace = fdct->float_workspace; |
608 | |
|
609 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
610 | |
|
611 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
612 | | /* Load data into workspace, applying unsigned->signed conversion */ |
613 | 0 | (*do_convsamp) (sample_data, start_col, workspace); |
614 | | |
615 | | /* Perform the DCT */ |
616 | 0 | (*do_dct) (workspace); |
617 | | |
618 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
619 | 0 | (*do_quantize) (coef_blocks[bi], divisors, workspace); |
620 | 0 | } |
621 | 0 | } |
622 | | |
623 | | #endif /* DCT_FLOAT_SUPPORTED */ |
624 | | |
625 | | |
626 | | /* |
627 | | * Initialize FDCT manager. |
628 | | */ |
629 | | |
630 | | GLOBAL(void) |
631 | | _jinit_forward_dct(j_compress_ptr cinfo) |
632 | 13.3k | { |
633 | 13.3k | my_fdct_ptr fdct; |
634 | 13.3k | int i; |
635 | | |
636 | 13.3k | if (cinfo->data_precision != BITS_IN_JSAMPLE) |
637 | 0 | ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
638 | | |
639 | 13.3k | fdct = (my_fdct_ptr) |
640 | 13.3k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
641 | 13.3k | sizeof(my_fdct_controller)); |
642 | 13.3k | cinfo->fdct = (struct jpeg_forward_dct *)fdct; |
643 | 13.3k | fdct->pub.start_pass = start_pass_fdctmgr; |
644 | | |
645 | | /* First determine the DCT... */ |
646 | 13.3k | switch (cinfo->dct_method) { |
647 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
648 | 11.3k | case JDCT_ISLOW: |
649 | 11.3k | fdct->pub._forward_DCT = forward_DCT; |
650 | | #ifdef WITH_SIMD |
651 | 0 | if (jsimd_can_fdct_islow()) |
652 | 0 | fdct->dct = jsimd_fdct_islow; |
653 | 0 | else |
654 | 0 | #endif |
655 | 11.3k | fdct->dct = _jpeg_fdct_islow; |
656 | 11.3k | break; |
657 | 0 | #endif |
658 | 0 | #ifdef DCT_IFAST_SUPPORTED |
659 | 1.95k | case JDCT_IFAST: |
660 | 1.95k | fdct->pub._forward_DCT = forward_DCT; |
661 | | #ifdef WITH_SIMD |
662 | 0 | if (jsimd_can_fdct_ifast()) |
663 | 0 | fdct->dct = jsimd_fdct_ifast; |
664 | 0 | else |
665 | 0 | #endif |
666 | 1.95k | fdct->dct = _jpeg_fdct_ifast; |
667 | 1.95k | break; |
668 | 0 | #endif |
669 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
670 | 0 | case JDCT_FLOAT: |
671 | 0 | fdct->pub._forward_DCT = forward_DCT_float; |
672 | | #ifdef WITH_SIMD |
673 | 0 | if (jsimd_can_fdct_float()) |
674 | 0 | fdct->float_dct = jsimd_fdct_float; |
675 | 0 | else |
676 | 0 | #endif |
677 | 0 | fdct->float_dct = jpeg_fdct_float; |
678 | 0 | break; |
679 | 0 | #endif |
680 | 0 | default: |
681 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
682 | 0 | break; |
683 | 13.3k | } |
684 | | |
685 | | /* ...then the supporting stages. */ |
686 | 13.3k | switch (cinfo->dct_method) { |
687 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
688 | 11.3k | case JDCT_ISLOW: |
689 | 11.3k | #endif |
690 | 11.3k | #ifdef DCT_IFAST_SUPPORTED |
691 | 13.3k | case JDCT_IFAST: |
692 | 13.3k | #endif |
693 | 13.3k | #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
694 | | #ifdef WITH_SIMD |
695 | 0 | if (jsimd_can_convsamp()) |
696 | 0 | fdct->convsamp = jsimd_convsamp; |
697 | 0 | else |
698 | 0 | #endif |
699 | 0 | fdct->convsamp = convsamp; |
700 | | #ifdef WITH_SIMD |
701 | 0 | if (jsimd_can_quantize()) |
702 | 0 | fdct->quantize = jsimd_quantize; |
703 | 0 | else |
704 | 0 | #endif |
705 | 0 | fdct->quantize = quantize; |
706 | 13.3k | break; |
707 | 0 | #endif |
708 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
709 | 0 | case JDCT_FLOAT: |
710 | | #ifdef WITH_SIMD |
711 | 0 | if (jsimd_can_convsamp_float()) |
712 | 0 | fdct->float_convsamp = jsimd_convsamp_float; |
713 | 0 | else |
714 | 0 | #endif |
715 | 0 | fdct->float_convsamp = convsamp_float; |
716 | | #ifdef WITH_SIMD |
717 | 0 | if (jsimd_can_quantize_float()) |
718 | 0 | fdct->float_quantize = jsimd_quantize_float; |
719 | 0 | else |
720 | 0 | #endif |
721 | 0 | fdct->float_quantize = quantize_float; |
722 | 0 | break; |
723 | 0 | #endif |
724 | 0 | default: |
725 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
726 | 0 | break; |
727 | 13.3k | } |
728 | | |
729 | | /* Allocate workspace memory */ |
730 | 13.3k | #ifdef DCT_FLOAT_SUPPORTED |
731 | 13.3k | if (cinfo->dct_method == JDCT_FLOAT) |
732 | 0 | fdct->float_workspace = (FAST_FLOAT *) |
733 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
734 | 0 | sizeof(FAST_FLOAT) * DCTSIZE2); |
735 | 13.3k | else |
736 | 13.3k | #endif |
737 | 13.3k | fdct->workspace = (DCTELEM *) |
738 | 13.3k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
739 | 13.3k | sizeof(DCTELEM) * DCTSIZE2); |
740 | | |
741 | | /* Mark divisor tables unallocated */ |
742 | 66.6k | for (i = 0; i < NUM_QUANT_TBLS; i++) { |
743 | 53.3k | fdct->divisors[i] = NULL; |
744 | 53.3k | #ifdef DCT_FLOAT_SUPPORTED |
745 | 53.3k | fdct->float_divisors[i] = NULL; |
746 | 53.3k | #endif |
747 | 53.3k | } |
748 | 13.3k | } Line | Count | Source | 632 | 13.3k | { | 633 | 13.3k | my_fdct_ptr fdct; | 634 | 13.3k | int i; | 635 | | | 636 | 13.3k | if (cinfo->data_precision != BITS_IN_JSAMPLE) | 637 | 0 | ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | 638 | | | 639 | 13.3k | fdct = (my_fdct_ptr) | 640 | 13.3k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 641 | 13.3k | sizeof(my_fdct_controller)); | 642 | 13.3k | cinfo->fdct = (struct jpeg_forward_dct *)fdct; | 643 | 13.3k | fdct->pub.start_pass = start_pass_fdctmgr; | 644 | | | 645 | | /* First determine the DCT... */ | 646 | 13.3k | switch (cinfo->dct_method) { | 647 | 0 | #ifdef DCT_ISLOW_SUPPORTED | 648 | 11.3k | case JDCT_ISLOW: | 649 | 11.3k | fdct->pub._forward_DCT = forward_DCT; | 650 | | #ifdef WITH_SIMD | 651 | | if (jsimd_can_fdct_islow()) | 652 | | fdct->dct = jsimd_fdct_islow; | 653 | | else | 654 | | #endif | 655 | 11.3k | fdct->dct = _jpeg_fdct_islow; | 656 | 11.3k | break; | 657 | 0 | #endif | 658 | 0 | #ifdef DCT_IFAST_SUPPORTED | 659 | 1.95k | case JDCT_IFAST: | 660 | 1.95k | fdct->pub._forward_DCT = forward_DCT; | 661 | | #ifdef WITH_SIMD | 662 | | if (jsimd_can_fdct_ifast()) | 663 | | fdct->dct = jsimd_fdct_ifast; | 664 | | else | 665 | | #endif | 666 | 1.95k | fdct->dct = _jpeg_fdct_ifast; | 667 | 1.95k | break; | 668 | 0 | #endif | 669 | 0 | #ifdef DCT_FLOAT_SUPPORTED | 670 | 0 | case JDCT_FLOAT: | 671 | 0 | fdct->pub._forward_DCT = forward_DCT_float; | 672 | | #ifdef WITH_SIMD | 673 | | if (jsimd_can_fdct_float()) | 674 | | fdct->float_dct = jsimd_fdct_float; | 675 | | else | 676 | | #endif | 677 | 0 | fdct->float_dct = jpeg_fdct_float; | 678 | 0 | break; | 679 | 0 | #endif | 680 | 0 | default: | 681 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 682 | 0 | break; | 683 | 13.3k | } | 684 | | | 685 | | /* ...then the supporting stages. */ | 686 | 13.3k | switch (cinfo->dct_method) { | 687 | 0 | #ifdef DCT_ISLOW_SUPPORTED | 688 | 11.3k | case JDCT_ISLOW: | 689 | 11.3k | #endif | 690 | 11.3k | #ifdef DCT_IFAST_SUPPORTED | 691 | 13.3k | case JDCT_IFAST: | 692 | 13.3k | #endif | 693 | 13.3k | #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) | 694 | | #ifdef WITH_SIMD | 695 | | if (jsimd_can_convsamp()) | 696 | | fdct->convsamp = jsimd_convsamp; | 697 | | else | 698 | | #endif | 699 | 13.3k | fdct->convsamp = convsamp; | 700 | | #ifdef WITH_SIMD | 701 | | if (jsimd_can_quantize()) | 702 | | fdct->quantize = jsimd_quantize; | 703 | | else | 704 | | #endif | 705 | 13.3k | fdct->quantize = quantize; | 706 | 13.3k | break; | 707 | 0 | #endif | 708 | 0 | #ifdef DCT_FLOAT_SUPPORTED | 709 | 0 | case JDCT_FLOAT: | 710 | | #ifdef WITH_SIMD | 711 | | if (jsimd_can_convsamp_float()) | 712 | | fdct->float_convsamp = jsimd_convsamp_float; | 713 | | else | 714 | | #endif | 715 | 0 | fdct->float_convsamp = convsamp_float; | 716 | | #ifdef WITH_SIMD | 717 | | if (jsimd_can_quantize_float()) | 718 | | fdct->float_quantize = jsimd_quantize_float; | 719 | | else | 720 | | #endif | 721 | 0 | fdct->float_quantize = quantize_float; | 722 | 0 | break; | 723 | 0 | #endif | 724 | 0 | default: | 725 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 726 | 0 | break; | 727 | 13.3k | } | 728 | | | 729 | | /* Allocate workspace memory */ | 730 | 13.3k | #ifdef DCT_FLOAT_SUPPORTED | 731 | 13.3k | if (cinfo->dct_method == JDCT_FLOAT) | 732 | 0 | fdct->float_workspace = (FAST_FLOAT *) | 733 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 734 | 0 | sizeof(FAST_FLOAT) * DCTSIZE2); | 735 | 13.3k | else | 736 | 13.3k | #endif | 737 | 13.3k | fdct->workspace = (DCTELEM *) | 738 | 13.3k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 739 | 13.3k | sizeof(DCTELEM) * DCTSIZE2); | 740 | | | 741 | | /* Mark divisor tables unallocated */ | 742 | 66.6k | for (i = 0; i < NUM_QUANT_TBLS; i++) { | 743 | 53.3k | fdct->divisors[i] = NULL; | 744 | 53.3k | #ifdef DCT_FLOAT_SUPPORTED | 745 | 53.3k | fdct->float_divisors[i] = NULL; | 746 | 53.3k | #endif | 747 | 53.3k | } | 748 | 13.3k | } |
Unexecuted instantiation: jinit_forward_dct |