Coverage Report

Created: 2025-08-26 06:41

/src/libjpeg-turbo.main/src/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
7.59k
{
81
7.59k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
7.59k
  int ci, blkn, dctbl, actbl;
83
7.59k
  d_derived_tbl **pdtbl;
84
7.59k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
7.59k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
7.59k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
5.45k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
20.5k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
12.9k
    compptr = cinfo->cur_comp_info[ci];
96
12.9k
    dctbl = compptr->dc_tbl_no;
97
12.9k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
12.9k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
12.9k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
12.9k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
12.9k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
12.9k
    entropy->saved.last_dc_val[ci] = 0;
106
12.9k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
32.9k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
25.3k
    ci = cinfo->MCU_membership[blkn];
111
25.3k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
25.3k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
25.3k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
25.3k
    if (compptr->component_needed) {
117
25.2k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
25.2k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
25.2k
    } else {
121
116
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
116
    }
123
25.3k
  }
124
125
  /* Initialize bitread state variables */
126
7.59k
  entropy->bitstate.bits_left = 0;
127
7.59k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
7.59k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
7.59k
  entropy->restarts_to_go = cinfo->restart_interval;
132
7.59k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
34.9k
{
146
34.9k
  JHUFF_TBL *htbl;
147
34.9k
  d_derived_tbl *dtbl;
148
34.9k
  int p, i, l, si, numsymbols;
149
34.9k
  int lookbits, ctr;
150
34.9k
  char huffsize[257];
151
34.9k
  unsigned int huffcode[257];
152
34.9k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
34.9k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
41
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
34.9k
  htbl =
162
34.9k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
34.9k
  if (htbl == NULL)
164
14
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
34.9k
  if (*pdtbl == NULL)
168
4.69k
    *pdtbl = (d_derived_tbl *)
169
4.69k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
4.69k
                                  sizeof(d_derived_tbl));
171
34.9k
  dtbl = *pdtbl;
172
34.9k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
34.9k
  p = 0;
177
593k
  for (l = 1; l <= 16; l++) {
178
558k
    i = (int)htbl->bits[l];
179
558k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
2.13M
    while (i--)
182
1.57M
      huffsize[p++] = (char)l;
183
558k
  }
184
34.9k
  huffsize[p] = 0;
185
34.9k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
34.9k
  code = 0;
191
34.9k
  si = huffsize[0];
192
34.9k
  p = 0;
193
393k
  while (huffsize[p]) {
194
1.93M
    while (((int)huffsize[p]) == si) {
195
1.57M
      huffcode[p++] = code;
196
1.57M
      code++;
197
1.57M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
358k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
5
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
358k
    code <<= 1;
204
358k
    si++;
205
358k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
34.9k
  p = 0;
210
593k
  for (l = 1; l <= 16; l++) {
211
558k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
260k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
260k
      p += htbl->bits[l];
217
260k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
297k
    } else {
219
297k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
297k
    }
221
558k
  }
222
34.9k
  dtbl->valoffset[17] = 0;
223
34.9k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
8.96M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
8.93M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
34.9k
  p = 0;
236
314k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
624k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
345k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
7.97M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
7.62M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
7.62M
        lookbits++;
244
7.62M
      }
245
345k
    }
246
279k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
34.9k
  if (isDC) {
255
179k
    for (i = 0; i < numsymbols; i++) {
256
159k
      int sym = htbl->huffval[i];
257
159k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
13
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
159k
    }
260
20.1k
  }
261
34.9k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
42.9M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
24.4M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
24.4M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
24.4M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
24.4M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
24.4M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
434k
    while (bits_left < MIN_GET_BITS) {
303
385k
      register int c;
304
305
      /* Attempt to read a byte */
306
385k
      if (bytes_in_buffer == 0) {
307
1.65k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.65k
        next_input_byte = cinfo->src->next_input_byte;
310
1.65k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.65k
      }
312
385k
      bytes_in_buffer--;
313
385k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
385k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
45.6k
        do {
323
45.6k
          if (bytes_in_buffer == 0) {
324
38
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
38
            next_input_byte = cinfo->src->next_input_byte;
327
38
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
38
          }
329
45.6k
          bytes_in_buffer--;
330
45.6k
          c = *next_input_byte++;
331
45.6k
        } while (c == 0xFF);
332
333
32.1k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
12.8k
          c = 0xFF;
336
19.3k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
19.3k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
19.3k
          goto no_more_bytes;
348
19.3k
        }
349
32.1k
      }
350
351
      /* OK, load c into get_buffer */
352
366k
      get_buffer = (get_buffer << 8) | c;
353
366k
      bits_left += 8;
354
366k
    } /* end while */
355
24.3M
  } else {
356
24.3M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
24.3M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
21.2M
      if (!cinfo->entropy->insufficient_data) {
368
17.4k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
17.4k
        cinfo->entropy->insufficient_data = TRUE;
370
17.4k
      }
371
      /* Fill the buffer with zero bits */
372
21.2M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
21.2M
      bits_left = MIN_GET_BITS;
374
21.2M
    }
375
24.3M
  }
376
377
  /* Unload the local registers */
378
24.4M
  state->next_input_byte = next_input_byte;
379
24.4M
  state->bytes_in_buffer = bytes_in_buffer;
380
24.4M
  state->get_buffer = get_buffer;
381
24.4M
  state->bits_left = bits_left;
382
383
24.4M
  return TRUE;
384
24.4M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
342k
#define GET_BYTE { \
392
342k
  register int c0, c1; \
393
342k
  c0 = *buffer++; \
394
342k
  c1 = *buffer; \
395
342k
  /* Pre-execute most common case */ \
396
342k
  get_buffer = (get_buffer << 8) | c0; \
397
342k
  bits_left += 8; \
398
342k
  if (c0 == 0xFF) { \
399
125k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
125k
    buffer++; \
401
125k
    if (c1 != 0) { \
402
106k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
106k
      cinfo->unread_marker = c1; \
404
106k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
106k
      buffer -= 2; \
406
106k
      get_buffer &= ~0xFF; \
407
106k
    } \
408
125k
  } \
409
342k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
1.13M
  if (bits_left <= 16) { \
416
57.0k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
57.0k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
8.85M
{
440
8.85M
  register int l = min_bits;
441
8.85M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
8.85M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
8.85M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
55.5M
  while (code > htbl->maxcode[l]) {
453
46.7M
    code <<= 1;
454
46.7M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
46.7M
    code |= GET_BITS(1);
456
46.7M
    l++;
457
46.7M
  }
458
459
  /* Unload the local registers */
460
8.85M
  state->get_buffer = get_buffer;
461
8.85M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
8.85M
  if (l > 16) {
466
1.36M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
1.36M
    return 0;                   /* fake a zero as the safest result */
468
1.36M
  }
469
470
7.49M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
8.85M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.15M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.15M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
25.6k
{
514
25.6k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
25.6k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
25.6k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
25.6k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
25.6k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
63.3k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
37.7k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
25.6k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
25.6k
  if (cinfo->unread_marker == 0)
539
756
    entropy->pub.insufficient_data = FALSE;
540
541
25.6k
  return TRUE;
542
25.6k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
55.4k
{
554
55.4k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
55.4k
  BITREAD_STATE_VARS;
556
55.4k
  int blkn;
557
55.4k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
55.4k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
55.4k
  state = entropy->saved;
563
564
143k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
87.6k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
87.6k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
87.6k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
87.6k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
87.6k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
87.6k
    if (s) {
575
35.4k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
35.4k
      r = GET_BITS(s);
577
35.4k
      s = HUFF_EXTEND(r, s);
578
35.4k
    }
579
580
87.6k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
87.6k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
87.6k
      s += state.last_dc_val[ci];
592
87.6k
      state.last_dc_val[ci] = s;
593
87.6k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
87.6k
        (*block)[0] = (JCOEF)s;
596
87.6k
      }
597
87.6k
    }
598
599
87.6k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
748k
      for (k = 1; k < DCTSIZE2; k++) {
604
730k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
730k
        r = s >> 4;
607
730k
        s &= 15;
608
609
730k
        if (s) {
610
654k
          k += r;
611
654k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
654k
          r = GET_BITS(s);
613
654k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
654k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
654k
        } else {
620
76.4k
          if (r != 15)
621
69.5k
            break;
622
6.90k
          k += 15;
623
6.90k
        }
624
730k
      }
625
626
87.6k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
87.6k
  }
648
649
  /* Completed MCU, so update state */
650
55.4k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
55.4k
  entropy->saved = state;
652
55.4k
  return TRUE;
653
55.4k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
84.2k
{
665
84.2k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
84.2k
  BITREAD_STATE_VARS;
667
84.2k
  JOCTET *buffer;
668
84.2k
  int blkn;
669
84.2k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
84.2k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
84.2k
  buffer = (JOCTET *)br_state.next_input_byte;
675
84.2k
  state = entropy->saved;
676
677
222k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
138k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
138k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
138k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
138k
    register int s, k, r, l;
682
683
138k
    HUFF_DECODE_FAST(s, l, dctbl);
684
138k
    if (s) {
685
64.5k
      FILL_BIT_BUFFER_FAST
686
64.5k
      r = GET_BITS(s);
687
64.5k
      s = HUFF_EXTEND(r, s);
688
64.5k
    }
689
690
138k
    if (entropy->dc_needed[blkn]) {
691
138k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
138k
      s += state.last_dc_val[ci];
696
138k
      state.last_dc_val[ci] = s;
697
138k
      if (block)
698
138k
        (*block)[0] = (JCOEF)s;
699
138k
    }
700
701
138k
    if (entropy->ac_needed[blkn] && block) {
702
703
543k
      for (k = 1; k < DCTSIZE2; k++) {
704
533k
        HUFF_DECODE_FAST(s, l, actbl);
705
533k
        r = s >> 4;
706
533k
        s &= 15;
707
708
533k
        if (s) {
709
398k
          k += r;
710
398k
          FILL_BIT_BUFFER_FAST
711
398k
          r = GET_BITS(s);
712
398k
          s = HUFF_EXTEND(r, s);
713
398k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
398k
        } else {
715
135k
          if (r != 15) break;
716
6.71k
          k += 15;
717
6.71k
        }
718
533k
      }
719
720
138k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
138k
  }
738
739
84.2k
  if (cinfo->unread_marker != 0) {
740
6.93k
    cinfo->unread_marker = 0;
741
6.93k
    return FALSE;
742
6.93k
  }
743
744
77.3k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
77.3k
  br_state.next_input_byte = buffer;
746
77.3k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
77.3k
  entropy->saved = state;
748
77.3k
  return TRUE;
749
84.2k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
10.5M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
10.5M
{
772
10.5M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
10.5M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
10.5M
  if (cinfo->restart_interval) {
777
2.76M
    if (entropy->restarts_to_go == 0)
778
25.6k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
2.76M
    usefast = 0;
781
2.76M
  }
782
783
10.5M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
10.5M
      cinfo->unread_marker != 0)
785
10.4M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
10.5M
  if (!entropy->pub.insufficient_data) {
791
792
132k
    if (usefast) {
793
84.2k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
84.2k
    } else {
795
55.4k
use_slow:
796
55.4k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
55.4k
    }
798
799
132k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
10.5M
  if (cinfo->restart_interval)
803
2.76M
    entropy->restarts_to_go--;
804
805
10.5M
  return TRUE;
806
10.5M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.30k
{
816
1.30k
  huff_entropy_ptr entropy;
817
1.30k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.30k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.30k
  entropy = (huff_entropy_ptr)
826
1.30k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.30k
                                sizeof(huff_entropy_decoder));
828
1.30k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.30k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.30k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
6.50k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
5.20k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
5.20k
  }
836
1.30k
}