Coverage Report

Created: 2025-10-10 07:04

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.main/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
8.01k
{
81
8.01k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
8.01k
  int ci, blkn, dctbl, actbl;
83
8.01k
  d_derived_tbl **pdtbl;
84
8.01k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
8.01k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
2.71k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
5.94k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
21.1k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
13.1k
    compptr = cinfo->cur_comp_info[ci];
96
13.1k
    dctbl = compptr->dc_tbl_no;
97
13.1k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
13.1k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
13.1k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
13.1k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
13.1k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
13.1k
    entropy->saved.last_dc_val[ci] = 0;
106
13.1k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
33.5k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
25.5k
    ci = cinfo->MCU_membership[blkn];
111
25.5k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
25.5k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
25.5k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
25.5k
    if (compptr->component_needed) {
117
25.4k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
25.4k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
25.4k
    } else {
121
118
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
118
    }
123
25.5k
  }
124
125
  /* Initialize bitread state variables */
126
8.01k
  entropy->bitstate.bits_left = 0;
127
8.01k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
8.01k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
8.01k
  entropy->restarts_to_go = cinfo->restart_interval;
132
8.01k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
35.0k
{
146
35.0k
  JHUFF_TBL *htbl;
147
35.0k
  d_derived_tbl *dtbl;
148
35.0k
  int p, i, l, si, numsymbols;
149
35.0k
  int lookbits, ctr;
150
35.0k
  char huffsize[257];
151
35.0k
  unsigned int huffcode[257];
152
35.0k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
35.0k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
37
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
35.0k
  htbl =
162
35.0k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
35.0k
  if (htbl == NULL)
164
13
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
35.0k
  if (*pdtbl == NULL)
168
4.42k
    *pdtbl = (d_derived_tbl *)
169
4.42k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
4.42k
                                  sizeof(d_derived_tbl));
171
35.0k
  dtbl = *pdtbl;
172
35.0k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
35.0k
  p = 0;
177
595k
  for (l = 1; l <= 16; l++) {
178
560k
    i = (int)htbl->bits[l];
179
560k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
2.09M
    while (i--)
182
1.53M
      huffsize[p++] = (char)l;
183
560k
  }
184
35.0k
  huffsize[p] = 0;
185
35.0k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
35.0k
  code = 0;
191
35.0k
  si = huffsize[0];
192
35.0k
  p = 0;
193
401k
  while (huffsize[p]) {
194
1.90M
    while (((int)huffsize[p]) == si) {
195
1.53M
      huffcode[p++] = code;
196
1.53M
      code++;
197
1.53M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
366k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
4
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
366k
    code <<= 1;
204
366k
    si++;
205
366k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
35.0k
  p = 0;
210
595k
  for (l = 1; l <= 16; l++) {
211
560k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
260k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
260k
      p += htbl->bits[l];
217
260k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
299k
    } else {
219
299k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
299k
    }
221
560k
  }
222
35.0k
  dtbl->valoffset[17] = 0;
223
35.0k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
8.99M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
8.96M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
35.0k
  p = 0;
236
315k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
623k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
343k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
7.90M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
7.55M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
7.55M
        lookbits++;
244
7.55M
      }
245
343k
    }
246
280k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
35.0k
  if (isDC) {
255
181k
    for (i = 0; i < numsymbols; i++) {
256
161k
      int sym = htbl->huffval[i];
257
161k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
15
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
161k
    }
260
20.1k
  }
261
35.0k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
26.4M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
16.4M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
16.4M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
16.4M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
16.4M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
16.4M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
460k
    while (bits_left < MIN_GET_BITS) {
303
407k
      register int c;
304
305
      /* Attempt to read a byte */
306
407k
      if (bytes_in_buffer == 0) {
307
1.58k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.58k
        next_input_byte = cinfo->src->next_input_byte;
310
1.58k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.58k
      }
312
407k
      bytes_in_buffer--;
313
407k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
407k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
44.4k
        do {
323
44.4k
          if (bytes_in_buffer == 0) {
324
32
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
32
            next_input_byte = cinfo->src->next_input_byte;
327
32
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
32
          }
329
44.4k
          bytes_in_buffer--;
330
44.4k
          c = *next_input_byte++;
331
44.4k
        } while (c == 0xFF);
332
333
31.7k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
12.8k
          c = 0xFF;
336
18.8k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
18.8k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
18.8k
          goto no_more_bytes;
348
18.8k
        }
349
31.7k
      }
350
351
      /* OK, load c into get_buffer */
352
388k
      get_buffer = (get_buffer << 8) | c;
353
388k
      bits_left += 8;
354
388k
    } /* end while */
355
16.3M
  } else {
356
16.3M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
16.3M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
12.9M
      if (!cinfo->entropy->insufficient_data) {
368
17.0k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
17.0k
        cinfo->entropy->insufficient_data = TRUE;
370
17.0k
      }
371
      /* Fill the buffer with zero bits */
372
12.9M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
12.9M
      bits_left = MIN_GET_BITS;
374
12.9M
    }
375
16.3M
  }
376
377
  /* Unload the local registers */
378
16.4M
  state->next_input_byte = next_input_byte;
379
16.4M
  state->bytes_in_buffer = bytes_in_buffer;
380
16.4M
  state->get_buffer = get_buffer;
381
16.4M
  state->bits_left = bits_left;
382
383
16.4M
  return TRUE;
384
16.4M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
281k
#define GET_BYTE { \
392
281k
  register int c0, c1; \
393
281k
  c0 = *buffer++; \
394
281k
  c1 = *buffer; \
395
281k
  /* Pre-execute most common case */ \
396
281k
  get_buffer = (get_buffer << 8) | c0; \
397
281k
  bits_left += 8; \
398
281k
  if (c0 == 0xFF) { \
399
107k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
107k
    buffer++; \
401
107k
    if (c1 != 0) { \
402
92.2k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
92.2k
      cinfo->unread_marker = c1; \
404
92.2k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
92.2k
      buffer -= 2; \
406
92.2k
      get_buffer &= ~0xFF; \
407
92.2k
    } \
408
107k
  } \
409
281k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
938k
  if (bits_left <= 16) { \
416
46.8k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
46.8k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
8.53M
{
440
8.53M
  register int l = min_bits;
441
8.53M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
8.53M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
8.53M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
51.1M
  while (code > htbl->maxcode[l]) {
453
42.5M
    code <<= 1;
454
42.5M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
42.5M
    code |= GET_BITS(1);
456
42.5M
    l++;
457
42.5M
  }
458
459
  /* Unload the local registers */
460
8.53M
  state->get_buffer = get_buffer;
461
8.53M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
8.53M
  if (l > 16) {
466
1.32M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
1.32M
    return 0;                   /* fake a zero as the safest result */
468
1.32M
  }
469
470
7.20M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
8.53M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.11M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.11M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
29.2k
{
514
29.2k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
29.2k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
29.2k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
29.2k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
29.2k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
71.0k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
41.8k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
29.2k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
29.2k
  if (cinfo->unread_marker == 0)
539
864
    entropy->pub.insufficient_data = FALSE;
540
541
29.2k
  return TRUE;
542
29.2k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
57.9k
{
554
57.9k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
57.9k
  BITREAD_STATE_VARS;
556
57.9k
  int blkn;
557
57.9k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
57.9k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
57.9k
  state = entropy->saved;
563
564
148k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
90.9k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
90.9k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
90.9k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
90.9k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
90.9k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
90.9k
    if (s) {
575
38.4k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
38.4k
      r = GET_BITS(s);
577
38.4k
      s = HUFF_EXTEND(r, s);
578
38.4k
    }
579
580
90.9k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
90.9k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
90.9k
      s += state.last_dc_val[ci];
592
90.9k
      state.last_dc_val[ci] = s;
593
90.9k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
90.9k
        (*block)[0] = (JCOEF)s;
596
90.9k
      }
597
90.9k
    }
598
599
90.9k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
787k
      for (k = 1; k < DCTSIZE2; k++) {
604
767k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
767k
        r = s >> 4;
607
767k
        s &= 15;
608
609
767k
        if (s) {
610
689k
          k += r;
611
689k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
689k
          r = GET_BITS(s);
613
689k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
689k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
689k
        } else {
620
77.4k
          if (r != 15)
621
70.3k
            break;
622
7.13k
          k += 15;
623
7.13k
        }
624
767k
      }
625
626
90.9k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
90.9k
  }
648
649
  /* Completed MCU, so update state */
650
57.9k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
57.9k
  entropy->saved = state;
652
57.9k
  return TRUE;
653
57.9k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
66.4k
{
665
66.4k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
66.4k
  BITREAD_STATE_VARS;
667
66.4k
  JOCTET *buffer;
668
66.4k
  int blkn;
669
66.4k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
66.4k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
66.4k
  buffer = (JOCTET *)br_state.next_input_byte;
675
66.4k
  state = entropy->saved;
676
677
180k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
114k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
114k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
114k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
114k
    register int s, k, r, l;
682
683
114k
    HUFF_DECODE_FAST(s, l, dctbl);
684
114k
    if (s) {
685
51.3k
      FILL_BIT_BUFFER_FAST
686
51.3k
      r = GET_BITS(s);
687
51.3k
      s = HUFF_EXTEND(r, s);
688
51.3k
    }
689
690
114k
    if (entropy->dc_needed[blkn]) {
691
114k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
114k
      s += state.last_dc_val[ci];
696
114k
      state.last_dc_val[ci] = s;
697
114k
      if (block)
698
114k
        (*block)[0] = (JCOEF)s;
699
114k
    }
700
701
114k
    if (entropy->ac_needed[blkn] && block) {
702
703
451k
      for (k = 1; k < DCTSIZE2; k++) {
704
442k
        HUFF_DECODE_FAST(s, l, actbl);
705
442k
        r = s >> 4;
706
442k
        s &= 15;
707
708
442k
        if (s) {
709
330k
          k += r;
710
330k
          FILL_BIT_BUFFER_FAST
711
330k
          r = GET_BITS(s);
712
330k
          s = HUFF_EXTEND(r, s);
713
330k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
330k
        } else {
715
111k
          if (r != 15) break;
716
6.71k
          k += 15;
717
6.71k
        }
718
442k
      }
719
720
114k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
114k
  }
738
739
66.4k
  if (cinfo->unread_marker != 0) {
740
5.98k
    cinfo->unread_marker = 0;
741
5.98k
    return FALSE;
742
5.98k
  }
743
744
60.4k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
60.4k
  br_state.next_input_byte = buffer;
746
60.4k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
60.4k
  entropy->saved = state;
748
60.4k
  return TRUE;
749
66.4k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
12.4M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
12.4M
{
772
12.4M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
12.4M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
12.4M
  if (cinfo->restart_interval) {
777
3.89M
    if (entropy->restarts_to_go == 0)
778
29.2k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
3.89M
    usefast = 0;
781
3.89M
  }
782
783
12.4M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
8.03M
      cinfo->unread_marker != 0)
785
12.3M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
12.4M
  if (!entropy->pub.insufficient_data) {
791
792
118k
    if (usefast) {
793
66.4k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
66.4k
    } else {
795
57.9k
use_slow:
796
57.9k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
57.9k
    }
798
799
118k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
12.4M
  if (cinfo->restart_interval)
803
3.89M
    entropy->restarts_to_go--;
804
805
12.4M
  return TRUE;
806
12.4M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.22k
{
816
1.22k
  huff_entropy_ptr entropy;
817
1.22k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.22k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.22k
  entropy = (huff_entropy_ptr)
826
1.22k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.22k
                                sizeof(huff_entropy_decoder));
828
1.22k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.22k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.22k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
6.12k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
4.90k
  }
836
1.22k
}