/src/libjpeg-turbo.dev/src/jcdctmgr.c
Line | Count | Source |
1 | | /* |
2 | | * jcdctmgr.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 1999-2006, MIYASAKA Masaru. |
8 | | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
9 | | * Copyright (C) 2011, 2014-2015, 2022, 2024-2025, D. R. Commander. |
10 | | * For conditions of distribution and use, see the accompanying README.ijg |
11 | | * file. |
12 | | * |
13 | | * This file contains the forward-DCT management logic. |
14 | | * This code selects a particular DCT implementation to be used, |
15 | | * and it performs related housekeeping chores including coefficient |
16 | | * quantization. |
17 | | */ |
18 | | |
19 | | #define JPEG_INTERNALS |
20 | | #include "jinclude.h" |
21 | | #include "jpeglib.h" |
22 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
23 | | #ifdef WITH_SIMD |
24 | | #include "../simd/jsimddct.h" |
25 | | #endif |
26 | | #ifdef WITH_PROFILE |
27 | | #include "tjutil.h" |
28 | | #endif |
29 | | |
30 | | |
31 | | /* Private subobject for this module */ |
32 | | |
33 | | METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *); |
34 | | |
35 | | typedef struct { |
36 | | struct jpeg_forward_dct pub; /* public fields */ |
37 | | |
38 | | /* Pointer to the DCT routine actually in use */ |
39 | | forward_DCT_method_ptr dct; |
40 | | convsamp_method_ptr convsamp; |
41 | | quantize_method_ptr quantize; |
42 | | |
43 | | /* The actual post-DCT divisors --- not identical to the quant table |
44 | | * entries, because of scaling (especially for an unnormalized DCT). |
45 | | * Each table is given in normal array order. |
46 | | */ |
47 | | DCTELEM *divisors[NUM_QUANT_TBLS]; |
48 | | |
49 | | /* work area for FDCT subroutine */ |
50 | | DCTELEM *workspace; |
51 | | |
52 | | #ifdef DCT_FLOAT_SUPPORTED |
53 | | /* Same as above for the floating-point case. */ |
54 | | float_DCT_method_ptr float_dct; |
55 | | float_convsamp_method_ptr float_convsamp; |
56 | | float_quantize_method_ptr float_quantize; |
57 | | FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; |
58 | | FAST_FLOAT *float_workspace; |
59 | | #endif |
60 | | } my_fdct_controller; |
61 | | |
62 | | typedef my_fdct_controller *my_fdct_ptr; |
63 | | |
64 | | |
65 | | #if BITS_IN_JSAMPLE == 8 |
66 | | |
67 | | /* |
68 | | * Find the highest bit in an integer through binary search. |
69 | | */ |
70 | | |
71 | | LOCAL(int) |
72 | | flss(UINT16 val) |
73 | 2.15M | { |
74 | 2.15M | int bit; |
75 | | |
76 | 2.15M | bit = 16; |
77 | | |
78 | 2.15M | if (!val) |
79 | 0 | return 0; |
80 | | |
81 | 2.15M | if (!(val & 0xff00)) { |
82 | 1.11M | bit -= 8; |
83 | 1.11M | val <<= 8; |
84 | 1.11M | } |
85 | 2.15M | if (!(val & 0xf000)) { |
86 | 1.40M | bit -= 4; |
87 | 1.40M | val <<= 4; |
88 | 1.40M | } |
89 | 2.15M | if (!(val & 0xc000)) { |
90 | 1.19M | bit -= 2; |
91 | 1.19M | val <<= 2; |
92 | 1.19M | } |
93 | 2.15M | if (!(val & 0x8000)) { |
94 | 937k | bit -= 1; |
95 | 937k | val <<= 1; |
96 | 937k | } |
97 | | |
98 | 2.15M | return bit; |
99 | 2.15M | } |
100 | | |
101 | | |
102 | | /* |
103 | | * Compute values to do a division using reciprocal. |
104 | | * |
105 | | * This implementation is based on an algorithm described in |
106 | | * "Optimizing subroutines in assembly language: |
107 | | * An optimization guide for x86 platforms" (https://agner.org/optimize). |
108 | | * More information about the basic algorithm can be found in |
109 | | * the paper "Integer Division Using Reciprocals" by Robert Alverson. |
110 | | * |
111 | | * The basic idea is to replace x/d by x * d^-1. In order to store |
112 | | * d^-1 with enough precision we shift it left a few places. It turns |
113 | | * out that this algoright gives just enough precision, and also fits |
114 | | * into DCTELEM: |
115 | | * |
116 | | * b = (the number of significant bits in divisor) - 1 |
117 | | * r = (word size) + b |
118 | | * f = 2^r / divisor |
119 | | * |
120 | | * f will not be an integer for most cases, so we need to compensate |
121 | | * for the rounding error introduced: |
122 | | * |
123 | | * no fractional part: |
124 | | * |
125 | | * result = input >> r |
126 | | * |
127 | | * fractional part of f < 0.5: |
128 | | * |
129 | | * round f down to nearest integer |
130 | | * result = ((input + 1) * f) >> r |
131 | | * |
132 | | * fractional part of f > 0.5: |
133 | | * |
134 | | * round f up to nearest integer |
135 | | * result = (input * f) >> r |
136 | | * |
137 | | * This is the original algorithm that gives truncated results. But we |
138 | | * want properly rounded results, so we replace "input" with |
139 | | * "input + divisor/2". |
140 | | * |
141 | | * In order to allow SIMD implementations we also tweak the values to |
142 | | * allow the same calculation to be made at all times: |
143 | | * |
144 | | * dctbl[0] = f rounded to nearest integer |
145 | | * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
146 | | * dctbl[2] = 1 << ((word size) * 2 - r) |
147 | | * dctbl[3] = r - (word size) |
148 | | * |
149 | | * dctbl[2] is for stupid instruction sets where the shift operation |
150 | | * isn't member wise (e.g. MMX). |
151 | | * |
152 | | * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
153 | | * is that most SIMD implementations have a "multiply and store top |
154 | | * half" operation. |
155 | | * |
156 | | * Lastly, we store each of the values in their own table instead |
157 | | * of in a consecutive manner, yet again in order to allow SIMD |
158 | | * routines. |
159 | | */ |
160 | | |
161 | | LOCAL(int) |
162 | | compute_reciprocal(UINT16 divisor, DCTELEM *dtbl) |
163 | 2.15M | { |
164 | 2.15M | UDCTELEM2 fq, fr; |
165 | 2.15M | UDCTELEM c; |
166 | 2.15M | int b, r; |
167 | | |
168 | 2.15M | if (divisor == 1) { |
169 | | /* divisor == 1 means unquantized, so these reciprocal/correction/shift |
170 | | * values will cause the C quantization algorithm to act like the |
171 | | * identity function. Since only the C quantization algorithm is used in |
172 | | * these cases, the scale value is irrelevant. |
173 | | */ |
174 | 0 | dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */ |
175 | 0 | dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */ |
176 | 0 | dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */ |
177 | 0 | dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */ |
178 | 0 | return 0; |
179 | 0 | } |
180 | | |
181 | 2.15M | b = flss(divisor) - 1; |
182 | 2.15M | r = sizeof(DCTELEM) * 8 + b; |
183 | | |
184 | 2.15M | fq = ((UDCTELEM2)1 << r) / divisor; |
185 | 2.15M | fr = ((UDCTELEM2)1 << r) % divisor; |
186 | | |
187 | 2.15M | c = divisor / 2; /* for rounding */ |
188 | | |
189 | 2.15M | if (fr == 0) { /* divisor is power of two */ |
190 | | /* fq will be one bit too large to fit in DCTELEM, so adjust */ |
191 | 426k | fq >>= 1; |
192 | 426k | r--; |
193 | 1.72M | } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ |
194 | 706k | c++; |
195 | 1.01M | } else { /* fractional part is > 0.5 */ |
196 | 1.01M | fq++; |
197 | 1.01M | } |
198 | | |
199 | 2.15M | dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */ |
200 | 2.15M | dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */ |
201 | 2.15M | #ifdef WITH_SIMD |
202 | 2.15M | dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ |
203 | | #else |
204 | | dtbl[DCTSIZE2 * 2] = 1; |
205 | | #endif |
206 | 2.15M | dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ |
207 | | |
208 | 2.15M | if (r <= 16) return 0; |
209 | 2.15M | else return 1; |
210 | 2.15M | } |
211 | | |
212 | | #endif |
213 | | |
214 | | |
215 | | /* |
216 | | * Initialize for a processing pass. |
217 | | * Verify that all referenced Q-tables are present, and set up |
218 | | * the divisor table for each one. |
219 | | * In the current implementation, DCT of all components is done during |
220 | | * the first pass, even if only some components will be output in the |
221 | | * first scan. Hence all components should be examined here. |
222 | | */ |
223 | | |
224 | | METHODDEF(void) |
225 | | start_pass_fdctmgr(j_compress_ptr cinfo) |
226 | 12.8k | { |
227 | 12.8k | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
228 | 12.8k | int ci, qtblno, i; |
229 | 12.8k | jpeg_component_info *compptr; |
230 | 12.8k | JQUANT_TBL *qtbl; |
231 | 12.8k | DCTELEM *dtbl; |
232 | | |
233 | 46.4k | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
234 | 33.6k | ci++, compptr++) { |
235 | 33.6k | qtblno = compptr->quant_tbl_no; |
236 | | /* Make sure specified quantization table is present */ |
237 | 33.6k | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
238 | 33.6k | cinfo->quant_tbl_ptrs[qtblno] == NULL) |
239 | 0 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
240 | 33.6k | qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
241 | | /* Compute divisors for this quant table */ |
242 | | /* We may do this more than once for same table, but it's not a big deal */ |
243 | 33.6k | switch (cinfo->dct_method) { |
244 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
245 | 27.9k | case JDCT_ISLOW: |
246 | | /* For LL&M IDCT method, divisors are equal to raw quantization |
247 | | * coefficients multiplied by 8 (to counteract scaling). |
248 | | */ |
249 | 27.9k | if (fdct->divisors[qtblno] == NULL) { |
250 | 18.5k | fdct->divisors[qtblno] = (DCTELEM *) |
251 | 18.5k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
252 | 18.5k | (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
253 | 18.5k | } |
254 | 27.9k | dtbl = fdct->divisors[qtblno]; |
255 | 1.81M | for (i = 0; i < DCTSIZE2; i++) { |
256 | | #if BITS_IN_JSAMPLE == 8 |
257 | | #ifdef WITH_SIMD |
258 | 1.78M | if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && |
259 | 0 | fdct->quantize != quantize) |
260 | 0 | fdct->quantize = quantize; |
261 | | #else |
262 | | compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]); |
263 | | #endif |
264 | | #else |
265 | | dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; |
266 | | #endif |
267 | 1.78M | } |
268 | 27.9k | break; |
269 | 0 | #endif |
270 | 0 | #ifdef DCT_IFAST_SUPPORTED |
271 | 5.66k | case JDCT_IFAST: |
272 | 5.66k | { |
273 | | /* For AA&N IDCT method, divisors are equal to quantization |
274 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
275 | | * scalefactor[0] = 1 |
276 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
277 | | * We apply a further scale factor of 8. |
278 | | */ |
279 | 5.66k | #define CONST_BITS 14 |
280 | 5.66k | static const INT16 aanscales[DCTSIZE2] = { |
281 | | /* precomputed values scaled up by 14 bits */ |
282 | 5.66k | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
283 | 5.66k | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
284 | 5.66k | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
285 | 5.66k | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
286 | 5.66k | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
287 | 5.66k | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
288 | 5.66k | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
289 | 5.66k | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
290 | 5.66k | }; |
291 | 5.66k | SHIFT_TEMPS |
292 | | |
293 | 5.66k | if (fdct->divisors[qtblno] == NULL) { |
294 | 3.77k | fdct->divisors[qtblno] = (DCTELEM *) |
295 | 3.77k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
296 | 3.77k | (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
297 | 3.77k | } |
298 | 5.66k | dtbl = fdct->divisors[qtblno]; |
299 | 368k | for (i = 0; i < DCTSIZE2; i++) { |
300 | | #if BITS_IN_JSAMPLE == 8 |
301 | | #ifdef WITH_SIMD |
302 | 362k | if (!compute_reciprocal( |
303 | 362k | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
304 | 362k | (JLONG)aanscales[i]), |
305 | 362k | CONST_BITS - 3), &dtbl[i]) && |
306 | 0 | fdct->quantize != quantize) |
307 | 0 | fdct->quantize = quantize; |
308 | | #else |
309 | | compute_reciprocal( |
310 | | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
311 | | (JLONG)aanscales[i]), |
312 | | CONST_BITS-3), &dtbl[i]); |
313 | | #endif |
314 | | #else |
315 | | dtbl[i] = (DCTELEM) |
316 | 0 | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
317 | | (JLONG)aanscales[i]), |
318 | | CONST_BITS - 3); |
319 | | #endif |
320 | 362k | } |
321 | 5.66k | } |
322 | 5.66k | break; |
323 | 0 | #endif |
324 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
325 | 0 | case JDCT_FLOAT: |
326 | 0 | { |
327 | | /* For float AA&N IDCT method, divisors are equal to quantization |
328 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
329 | | * scalefactor[0] = 1 |
330 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
331 | | * We apply a further scale factor of 8. |
332 | | * What's actually stored is 1/divisor so that the inner loop can |
333 | | * use a multiplication rather than a division. |
334 | | */ |
335 | 0 | FAST_FLOAT *fdtbl; |
336 | 0 | int row, col; |
337 | 0 | static const double aanscalefactor[DCTSIZE] = { |
338 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
339 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
340 | 0 | }; |
341 | |
|
342 | 0 | if (fdct->float_divisors[qtblno] == NULL) { |
343 | 0 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
344 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
345 | 0 | DCTSIZE2 * sizeof(FAST_FLOAT)); |
346 | 0 | } |
347 | 0 | fdtbl = fdct->float_divisors[qtblno]; |
348 | 0 | i = 0; |
349 | 0 | for (row = 0; row < DCTSIZE; row++) { |
350 | 0 | for (col = 0; col < DCTSIZE; col++) { |
351 | 0 | fdtbl[i] = (FAST_FLOAT) |
352 | 0 | (1.0 / (((double)qtbl->quantval[i] * |
353 | 0 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
354 | 0 | i++; |
355 | 0 | } |
356 | 0 | } |
357 | 0 | } |
358 | 0 | break; |
359 | 0 | #endif |
360 | 0 | default: |
361 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
362 | 0 | break; |
363 | 33.6k | } |
364 | 33.6k | } |
365 | 12.8k | } jcdctmgr-8.c:start_pass_fdctmgr Line | Count | Source | 226 | 12.8k | { | 227 | 12.8k | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; | 228 | 12.8k | int ci, qtblno, i; | 229 | 12.8k | jpeg_component_info *compptr; | 230 | 12.8k | JQUANT_TBL *qtbl; | 231 | 12.8k | DCTELEM *dtbl; | 232 | | | 233 | 46.4k | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 234 | 33.6k | ci++, compptr++) { | 235 | 33.6k | qtblno = compptr->quant_tbl_no; | 236 | | /* Make sure specified quantization table is present */ | 237 | 33.6k | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | 238 | 33.6k | cinfo->quant_tbl_ptrs[qtblno] == NULL) | 239 | 0 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | 240 | 33.6k | qtbl = cinfo->quant_tbl_ptrs[qtblno]; | 241 | | /* Compute divisors for this quant table */ | 242 | | /* We may do this more than once for same table, but it's not a big deal */ | 243 | 33.6k | switch (cinfo->dct_method) { | 244 | 0 | #ifdef DCT_ISLOW_SUPPORTED | 245 | 27.9k | case JDCT_ISLOW: | 246 | | /* For LL&M IDCT method, divisors are equal to raw quantization | 247 | | * coefficients multiplied by 8 (to counteract scaling). | 248 | | */ | 249 | 27.9k | if (fdct->divisors[qtblno] == NULL) { | 250 | 18.5k | fdct->divisors[qtblno] = (DCTELEM *) | 251 | 18.5k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 252 | 18.5k | (DCTSIZE2 * 4) * sizeof(DCTELEM)); | 253 | 18.5k | } | 254 | 27.9k | dtbl = fdct->divisors[qtblno]; | 255 | 1.81M | for (i = 0; i < DCTSIZE2; i++) { | 256 | 1.78M | #if BITS_IN_JSAMPLE == 8 | 257 | 1.78M | #ifdef WITH_SIMD | 258 | 1.78M | if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && | 259 | 0 | fdct->quantize != quantize) | 260 | 0 | fdct->quantize = quantize; | 261 | | #else | 262 | | compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]); | 263 | | #endif | 264 | | #else | 265 | | dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; | 266 | | #endif | 267 | 1.78M | } | 268 | 27.9k | break; | 269 | 0 | #endif | 270 | 0 | #ifdef DCT_IFAST_SUPPORTED | 271 | 5.66k | case JDCT_IFAST: | 272 | 5.66k | { | 273 | | /* For AA&N IDCT method, divisors are equal to quantization | 274 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 275 | | * scalefactor[0] = 1 | 276 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | 277 | | * We apply a further scale factor of 8. | 278 | | */ | 279 | 5.66k | #define CONST_BITS 14 | 280 | 5.66k | static const INT16 aanscales[DCTSIZE2] = { | 281 | | /* precomputed values scaled up by 14 bits */ | 282 | 5.66k | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | 283 | 5.66k | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | 284 | 5.66k | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | 285 | 5.66k | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | 286 | 5.66k | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | 287 | 5.66k | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | 288 | 5.66k | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | 289 | 5.66k | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | 290 | 5.66k | }; | 291 | 5.66k | SHIFT_TEMPS | 292 | | | 293 | 5.66k | if (fdct->divisors[qtblno] == NULL) { | 294 | 3.77k | fdct->divisors[qtblno] = (DCTELEM *) | 295 | 3.77k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 296 | 3.77k | (DCTSIZE2 * 4) * sizeof(DCTELEM)); | 297 | 3.77k | } | 298 | 5.66k | dtbl = fdct->divisors[qtblno]; | 299 | 368k | for (i = 0; i < DCTSIZE2; i++) { | 300 | 362k | #if BITS_IN_JSAMPLE == 8 | 301 | 362k | #ifdef WITH_SIMD | 302 | 362k | if (!compute_reciprocal( | 303 | 362k | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], | 304 | 362k | (JLONG)aanscales[i]), | 305 | 362k | CONST_BITS - 3), &dtbl[i]) && | 306 | 0 | fdct->quantize != quantize) | 307 | 0 | fdct->quantize = quantize; | 308 | | #else | 309 | | compute_reciprocal( | 310 | | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], | 311 | | (JLONG)aanscales[i]), | 312 | | CONST_BITS-3), &dtbl[i]); | 313 | | #endif | 314 | | #else | 315 | | dtbl[i] = (DCTELEM) | 316 | | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], | 317 | | (JLONG)aanscales[i]), | 318 | | CONST_BITS - 3); | 319 | | #endif | 320 | 362k | } | 321 | 5.66k | } | 322 | 5.66k | break; | 323 | 0 | #endif | 324 | 0 | #ifdef DCT_FLOAT_SUPPORTED | 325 | 0 | case JDCT_FLOAT: | 326 | 0 | { | 327 | | /* For float AA&N IDCT method, divisors are equal to quantization | 328 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where | 329 | | * scalefactor[0] = 1 | 330 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | 331 | | * We apply a further scale factor of 8. | 332 | | * What's actually stored is 1/divisor so that the inner loop can | 333 | | * use a multiplication rather than a division. | 334 | | */ | 335 | 0 | FAST_FLOAT *fdtbl; | 336 | 0 | int row, col; | 337 | 0 | static const double aanscalefactor[DCTSIZE] = { | 338 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, | 339 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 | 340 | 0 | }; | 341 | |
| 342 | 0 | if (fdct->float_divisors[qtblno] == NULL) { | 343 | 0 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) | 344 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 345 | 0 | DCTSIZE2 * sizeof(FAST_FLOAT)); | 346 | 0 | } | 347 | 0 | fdtbl = fdct->float_divisors[qtblno]; | 348 | 0 | i = 0; | 349 | 0 | for (row = 0; row < DCTSIZE; row++) { | 350 | 0 | for (col = 0; col < DCTSIZE; col++) { | 351 | 0 | fdtbl[i] = (FAST_FLOAT) | 352 | 0 | (1.0 / (((double)qtbl->quantval[i] * | 353 | 0 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); | 354 | 0 | i++; | 355 | 0 | } | 356 | 0 | } | 357 | 0 | } | 358 | 0 | break; | 359 | 0 | #endif | 360 | 0 | default: | 361 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 362 | 0 | break; | 363 | 33.6k | } | 364 | 33.6k | } | 365 | 12.8k | } |
Unexecuted instantiation: jcdctmgr-12.c:start_pass_fdctmgr |
366 | | |
367 | | |
368 | | /* |
369 | | * Load data into workspace, applying unsigned->signed conversion. |
370 | | */ |
371 | | |
372 | | METHODDEF(void) |
373 | | convsamp(_JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) |
374 | 0 | { |
375 | 0 | register DCTELEM *workspaceptr; |
376 | 0 | register _JSAMPROW elemptr; |
377 | 0 | register int elemr; |
378 | |
|
379 | 0 | workspaceptr = workspace; |
380 | 0 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
381 | 0 | elemptr = sample_data[elemr] + start_col; |
382 | |
|
383 | 0 | #if DCTSIZE == 8 /* unroll the inner loop */ |
384 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
385 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
386 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
387 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
388 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
389 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
390 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
391 | 0 | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
392 | | #else |
393 | | { |
394 | | register int elemc; |
395 | | for (elemc = DCTSIZE; elemc > 0; elemc--) |
396 | | *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE; |
397 | | } |
398 | | #endif |
399 | 0 | } |
400 | 0 | } Unexecuted instantiation: jcdctmgr-8.c:convsamp Unexecuted instantiation: jcdctmgr-12.c:convsamp |
401 | | |
402 | | |
403 | | /* |
404 | | * Quantize/descale the coefficients, and store into coef_blocks[]. |
405 | | */ |
406 | | |
407 | | METHODDEF(void) |
408 | | quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) |
409 | 0 | { |
410 | 0 | int i; |
411 | 0 | DCTELEM temp; |
412 | 0 | JCOEFPTR output_ptr = coef_block; |
413 | |
|
414 | | #if BITS_IN_JSAMPLE == 8 |
415 | | |
416 | | UDCTELEM recip, corr; |
417 | | int shift; |
418 | | UDCTELEM2 product; |
419 | | |
420 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
421 | 0 | temp = workspace[i]; |
422 | 0 | recip = divisors[i + DCTSIZE2 * 0]; |
423 | 0 | corr = divisors[i + DCTSIZE2 * 1]; |
424 | 0 | shift = divisors[i + DCTSIZE2 * 3]; |
425 | |
|
426 | 0 | if (temp < 0) { |
427 | 0 | temp = -temp; |
428 | 0 | product = (UDCTELEM2)(temp + corr) * recip; |
429 | 0 | product >>= shift + sizeof(DCTELEM) * 8; |
430 | 0 | temp = (DCTELEM)product; |
431 | 0 | temp = -temp; |
432 | 0 | } else { |
433 | 0 | product = (UDCTELEM2)(temp + corr) * recip; |
434 | 0 | product >>= shift + sizeof(DCTELEM) * 8; |
435 | 0 | temp = (DCTELEM)product; |
436 | 0 | } |
437 | 0 | output_ptr[i] = (JCOEF)temp; |
438 | 0 | } |
439 | | |
440 | | #else |
441 | | |
442 | | register DCTELEM qval; |
443 | | |
444 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
445 | 0 | qval = divisors[i]; |
446 | 0 | temp = workspace[i]; |
447 | | /* Divide the coefficient value by qval, ensuring proper rounding. |
448 | | * Since C does not specify the direction of rounding for negative |
449 | | * quotients, we have to force the dividend positive for portability. |
450 | | * |
451 | | * In most files, at least half of the output values will be zero |
452 | | * (at default quantization settings, more like three-quarters...) |
453 | | * so we should ensure that this case is fast. On many machines, |
454 | | * a comparison is enough cheaper than a divide to make a special test |
455 | | * a win. Since both inputs will be nonnegative, we need only test |
456 | | * for a < b to discover whether a/b is 0. |
457 | | * If your machine's division is fast enough, define FAST_DIVIDE. |
458 | | */ |
459 | | #ifdef FAST_DIVIDE |
460 | | #define DIVIDE_BY(a, b) a /= b |
461 | | #else |
462 | 0 | #define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0 |
463 | 0 | #endif |
464 | 0 | if (temp < 0) { |
465 | 0 | temp = -temp; |
466 | 0 | temp += qval >> 1; /* for rounding */ |
467 | 0 | DIVIDE_BY(temp, qval); |
468 | 0 | temp = -temp; |
469 | 0 | } else { |
470 | 0 | temp += qval >> 1; /* for rounding */ |
471 | 0 | DIVIDE_BY(temp, qval); |
472 | 0 | } |
473 | 0 | output_ptr[i] = (JCOEF)temp; |
474 | 0 | } |
475 | | |
476 | | #endif |
477 | |
|
478 | 0 | } Unexecuted instantiation: jcdctmgr-8.c:quantize Unexecuted instantiation: jcdctmgr-12.c:quantize |
479 | | |
480 | | |
481 | | /* |
482 | | * Perform forward DCT on one or more blocks of a component. |
483 | | * |
484 | | * The input samples are taken from the sample_data[] array starting at |
485 | | * position start_row/start_col, and moving to the right for any additional |
486 | | * blocks. The quantized coefficients are returned in coef_blocks[]. |
487 | | */ |
488 | | |
489 | | METHODDEF(void) |
490 | | forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, |
491 | | _JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
492 | | JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) |
493 | | /* This version is used for integer DCT implementations. */ |
494 | 15.4M | { |
495 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
496 | 15.4M | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
497 | 15.4M | DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; |
498 | 15.4M | DCTELEM *workspace; |
499 | 15.4M | JDIMENSION bi; |
500 | | |
501 | | /* Make sure the compiler doesn't look up these every pass */ |
502 | 15.4M | forward_DCT_method_ptr do_dct = fdct->dct; |
503 | 15.4M | convsamp_method_ptr do_convsamp = fdct->convsamp; |
504 | 15.4M | quantize_method_ptr do_quantize = fdct->quantize; |
505 | 15.4M | workspace = fdct->workspace; |
506 | | |
507 | 15.4M | sample_data += start_row; /* fold in the vertical offset once */ |
508 | | |
509 | 34.9M | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
510 | | /* Load data into workspace, applying unsigned->signed conversion */ |
511 | | #ifdef WITH_PROFILE |
512 | | cinfo->master->start = getTime(); |
513 | | #endif |
514 | 19.4M | (*do_convsamp) (sample_data, start_col, workspace); |
515 | | #ifdef WITH_PROFILE |
516 | | cinfo->master->convsamp_elapsed += getTime() - cinfo->master->start; |
517 | | cinfo->master->convsamp_msamples += (double)DCTSIZE2 / 1000000.; |
518 | | #endif |
519 | | |
520 | | /* Perform the DCT */ |
521 | | #ifdef WITH_PROFILE |
522 | | cinfo->master->start = getTime(); |
523 | | #endif |
524 | 19.4M | (*do_dct) (workspace); |
525 | | #ifdef WITH_PROFILE |
526 | | cinfo->master->fdct_elapsed += getTime() - cinfo->master->start; |
527 | | cinfo->master->fdct_mcoeffs += (double)DCTSIZE2 / 1000000.; |
528 | | #endif |
529 | | |
530 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
531 | | #ifdef WITH_PROFILE |
532 | | cinfo->master->start = getTime(); |
533 | | #endif |
534 | 19.4M | (*do_quantize) (coef_blocks[bi], divisors, workspace); |
535 | | #ifdef WITH_PROFILE |
536 | | cinfo->master->quantize_elapsed += getTime() - cinfo->master->start; |
537 | | cinfo->master->quantize_mcoeffs += (double)DCTSIZE2 / 1000000.; |
538 | | #endif |
539 | 19.4M | } |
540 | 15.4M | } Line | Count | Source | 494 | 15.4M | { | 495 | | /* This routine is heavily used, so it's worth coding it tightly. */ | 496 | 15.4M | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; | 497 | 15.4M | DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; | 498 | 15.4M | DCTELEM *workspace; | 499 | 15.4M | JDIMENSION bi; | 500 | | | 501 | | /* Make sure the compiler doesn't look up these every pass */ | 502 | 15.4M | forward_DCT_method_ptr do_dct = fdct->dct; | 503 | 15.4M | convsamp_method_ptr do_convsamp = fdct->convsamp; | 504 | 15.4M | quantize_method_ptr do_quantize = fdct->quantize; | 505 | 15.4M | workspace = fdct->workspace; | 506 | | | 507 | 15.4M | sample_data += start_row; /* fold in the vertical offset once */ | 508 | | | 509 | 34.9M | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | 510 | | /* Load data into workspace, applying unsigned->signed conversion */ | 511 | | #ifdef WITH_PROFILE | 512 | | cinfo->master->start = getTime(); | 513 | | #endif | 514 | 19.4M | (*do_convsamp) (sample_data, start_col, workspace); | 515 | | #ifdef WITH_PROFILE | 516 | | cinfo->master->convsamp_elapsed += getTime() - cinfo->master->start; | 517 | | cinfo->master->convsamp_msamples += (double)DCTSIZE2 / 1000000.; | 518 | | #endif | 519 | | | 520 | | /* Perform the DCT */ | 521 | | #ifdef WITH_PROFILE | 522 | | cinfo->master->start = getTime(); | 523 | | #endif | 524 | 19.4M | (*do_dct) (workspace); | 525 | | #ifdef WITH_PROFILE | 526 | | cinfo->master->fdct_elapsed += getTime() - cinfo->master->start; | 527 | | cinfo->master->fdct_mcoeffs += (double)DCTSIZE2 / 1000000.; | 528 | | #endif | 529 | | | 530 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 531 | | #ifdef WITH_PROFILE | 532 | | cinfo->master->start = getTime(); | 533 | | #endif | 534 | 19.4M | (*do_quantize) (coef_blocks[bi], divisors, workspace); | 535 | | #ifdef WITH_PROFILE | 536 | | cinfo->master->quantize_elapsed += getTime() - cinfo->master->start; | 537 | | cinfo->master->quantize_mcoeffs += (double)DCTSIZE2 / 1000000.; | 538 | | #endif | 539 | 19.4M | } | 540 | 15.4M | } |
Unexecuted instantiation: jcdctmgr-12.c:forward_DCT |
541 | | |
542 | | |
543 | | #ifdef DCT_FLOAT_SUPPORTED |
544 | | |
545 | | METHODDEF(void) |
546 | | convsamp_float(_JSAMPARRAY sample_data, JDIMENSION start_col, |
547 | | FAST_FLOAT *workspace) |
548 | 0 | { |
549 | 0 | register FAST_FLOAT *workspaceptr; |
550 | 0 | register _JSAMPROW elemptr; |
551 | 0 | register int elemr; |
552 | |
|
553 | 0 | workspaceptr = workspace; |
554 | 0 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
555 | 0 | elemptr = sample_data[elemr] + start_col; |
556 | 0 | #if DCTSIZE == 8 /* unroll the inner loop */ |
557 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
558 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
559 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
560 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
561 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
562 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
563 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
564 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
565 | | #else |
566 | | { |
567 | | register int elemc; |
568 | | for (elemc = DCTSIZE; elemc > 0; elemc--) |
569 | | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE); |
570 | | } |
571 | | #endif |
572 | 0 | } |
573 | 0 | } Unexecuted instantiation: jcdctmgr-8.c:convsamp_float Unexecuted instantiation: jcdctmgr-12.c:convsamp_float |
574 | | |
575 | | |
576 | | METHODDEF(void) |
577 | | quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, |
578 | | FAST_FLOAT *workspace) |
579 | 0 | { |
580 | 0 | register FAST_FLOAT temp; |
581 | 0 | register int i; |
582 | 0 | register JCOEFPTR output_ptr = coef_block; |
583 | |
|
584 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
585 | | /* Apply the quantization and scaling factor */ |
586 | 0 | temp = workspace[i] * divisors[i]; |
587 | | |
588 | | /* Round to nearest integer. |
589 | | * Since C does not specify the direction of rounding for negative |
590 | | * quotients, we have to force the dividend positive for portability. |
591 | | * The maximum coefficient size is +-16K (for 12-bit data), so this |
592 | | * code should work for either 16-bit or 32-bit ints. |
593 | | */ |
594 | 0 | output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384); |
595 | 0 | } |
596 | 0 | } Unexecuted instantiation: jcdctmgr-8.c:quantize_float Unexecuted instantiation: jcdctmgr-12.c:quantize_float |
597 | | |
598 | | |
599 | | METHODDEF(void) |
600 | | forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, |
601 | | _JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
602 | | JDIMENSION start_row, JDIMENSION start_col, |
603 | | JDIMENSION num_blocks) |
604 | | /* This version is used for floating-point DCT implementations. */ |
605 | 0 | { |
606 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
607 | 0 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
608 | 0 | FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
609 | 0 | FAST_FLOAT *workspace; |
610 | 0 | JDIMENSION bi; |
611 | | |
612 | | |
613 | | /* Make sure the compiler doesn't look up these every pass */ |
614 | 0 | float_DCT_method_ptr do_dct = fdct->float_dct; |
615 | 0 | float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
616 | 0 | float_quantize_method_ptr do_quantize = fdct->float_quantize; |
617 | 0 | workspace = fdct->float_workspace; |
618 | |
|
619 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
620 | |
|
621 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
622 | | /* Load data into workspace, applying unsigned->signed conversion */ |
623 | | #ifdef WITH_PROFILE |
624 | | cinfo->master->start = getTime(); |
625 | | #endif |
626 | 0 | (*do_convsamp) (sample_data, start_col, workspace); |
627 | | #ifdef WITH_PROFILE |
628 | | cinfo->master->convsamp_elapsed += getTime() - cinfo->master->start; |
629 | | cinfo->master->convsamp_msamples += (double)DCTSIZE2 / 1000000.; |
630 | | #endif |
631 | | |
632 | | /* Perform the DCT */ |
633 | | #ifdef WITH_PROFILE |
634 | | cinfo->master->start = getTime(); |
635 | | #endif |
636 | 0 | (*do_dct) (workspace); |
637 | | #ifdef WITH_PROFILE |
638 | | cinfo->master->fdct_elapsed += getTime() - cinfo->master->start; |
639 | | cinfo->master->fdct_mcoeffs += (double)DCTSIZE2 / 1000000.; |
640 | | #endif |
641 | | |
642 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
643 | | #ifdef WITH_PROFILE |
644 | | cinfo->master->start = getTime(); |
645 | | #endif |
646 | 0 | (*do_quantize) (coef_blocks[bi], divisors, workspace); |
647 | | #ifdef WITH_PROFILE |
648 | | cinfo->master->quantize_elapsed += getTime() - cinfo->master->start; |
649 | | cinfo->master->quantize_mcoeffs += (double)DCTSIZE2 / 1000000.; |
650 | | #endif |
651 | 0 | } |
652 | 0 | } Unexecuted instantiation: jcdctmgr-8.c:forward_DCT_float Unexecuted instantiation: jcdctmgr-12.c:forward_DCT_float |
653 | | |
654 | | #endif /* DCT_FLOAT_SUPPORTED */ |
655 | | |
656 | | |
657 | | /* |
658 | | * Initialize FDCT manager. |
659 | | */ |
660 | | |
661 | | GLOBAL(void) |
662 | | _jinit_forward_dct(j_compress_ptr cinfo) |
663 | 12.8k | { |
664 | 12.8k | my_fdct_ptr fdct; |
665 | 12.8k | int i; |
666 | | |
667 | 12.8k | if (cinfo->data_precision != BITS_IN_JSAMPLE) |
668 | 0 | ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
669 | | |
670 | 12.8k | fdct = (my_fdct_ptr) |
671 | 12.8k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
672 | 12.8k | sizeof(my_fdct_controller)); |
673 | 12.8k | cinfo->fdct = (struct jpeg_forward_dct *)fdct; |
674 | 12.8k | fdct->pub.start_pass = start_pass_fdctmgr; |
675 | | |
676 | | /* First determine the DCT... */ |
677 | 12.8k | switch (cinfo->dct_method) { |
678 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
679 | 10.9k | case JDCT_ISLOW: |
680 | 10.9k | fdct->pub._forward_DCT = forward_DCT; |
681 | | #ifdef WITH_SIMD |
682 | 10.9k | if (!jsimd_set_fdct_islow(cinfo, &fdct->dct)) |
683 | 0 | #endif |
684 | 0 | fdct->dct = _jpeg_fdct_islow; |
685 | 10.9k | break; |
686 | 0 | #endif |
687 | 0 | #ifdef DCT_IFAST_SUPPORTED |
688 | 1.88k | case JDCT_IFAST: |
689 | 1.88k | fdct->pub._forward_DCT = forward_DCT; |
690 | | #ifdef WITH_SIMD |
691 | 1.88k | if (!jsimd_set_fdct_ifast(cinfo, &fdct->dct)) |
692 | 0 | #endif |
693 | 0 | fdct->dct = _jpeg_fdct_ifast; |
694 | 1.88k | break; |
695 | 0 | #endif |
696 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
697 | 0 | case JDCT_FLOAT: |
698 | 0 | fdct->pub._forward_DCT = forward_DCT_float; |
699 | | #ifdef WITH_SIMD |
700 | 0 | if (!jsimd_set_fdct_float(cinfo, &fdct->float_dct)) |
701 | 0 | #endif |
702 | 0 | fdct->float_dct = jpeg_fdct_float; |
703 | 0 | break; |
704 | 0 | #endif |
705 | 0 | default: |
706 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
707 | 0 | break; |
708 | 12.8k | } |
709 | | |
710 | | /* ...then the supporting stages. */ |
711 | 12.8k | switch (cinfo->dct_method) { |
712 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
713 | 10.9k | case JDCT_ISLOW: |
714 | 10.9k | #endif |
715 | 10.9k | #ifdef DCT_IFAST_SUPPORTED |
716 | 12.8k | case JDCT_IFAST: |
717 | 12.8k | #endif |
718 | 12.8k | #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
719 | | #ifdef WITH_SIMD |
720 | 12.8k | if (!jsimd_set_convsamp(cinfo, &fdct->convsamp)) |
721 | 0 | #endif |
722 | 0 | fdct->convsamp = convsamp; |
723 | | #ifdef WITH_SIMD |
724 | 12.8k | if (!jsimd_set_quantize(cinfo, &fdct->quantize)) |
725 | 0 | #endif |
726 | 0 | fdct->quantize = quantize; |
727 | 12.8k | break; |
728 | 0 | #endif |
729 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
730 | 0 | case JDCT_FLOAT: |
731 | | #ifdef WITH_SIMD |
732 | 0 | if (!jsimd_set_convsamp_float(cinfo, &fdct->float_convsamp)) |
733 | 0 | #endif |
734 | 0 | fdct->float_convsamp = convsamp_float; |
735 | | #ifdef WITH_SIMD |
736 | 0 | if (!jsimd_set_quantize_float(cinfo, &fdct->float_quantize)) |
737 | 0 | #endif |
738 | 0 | fdct->float_quantize = quantize_float; |
739 | 0 | break; |
740 | 0 | #endif |
741 | 0 | default: |
742 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
743 | 0 | break; |
744 | 12.8k | } |
745 | | |
746 | | /* Allocate workspace memory */ |
747 | 12.8k | #ifdef DCT_FLOAT_SUPPORTED |
748 | 12.8k | if (cinfo->dct_method == JDCT_FLOAT) |
749 | 0 | fdct->float_workspace = (FAST_FLOAT *) |
750 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
751 | 0 | sizeof(FAST_FLOAT) * DCTSIZE2); |
752 | 12.8k | else |
753 | 12.8k | #endif |
754 | 12.8k | fdct->workspace = (DCTELEM *) |
755 | 12.8k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
756 | 12.8k | sizeof(DCTELEM) * DCTSIZE2); |
757 | | |
758 | | /* Mark divisor tables unallocated */ |
759 | 64.2k | for (i = 0; i < NUM_QUANT_TBLS; i++) { |
760 | 51.4k | fdct->divisors[i] = NULL; |
761 | 51.4k | #ifdef DCT_FLOAT_SUPPORTED |
762 | | fdct->float_divisors[i] = NULL; |
763 | 51.4k | #endif |
764 | 51.4k | } |
765 | 12.8k | } Line | Count | Source | 663 | 12.8k | { | 664 | 12.8k | my_fdct_ptr fdct; | 665 | 12.8k | int i; | 666 | | | 667 | 12.8k | if (cinfo->data_precision != BITS_IN_JSAMPLE) | 668 | 0 | ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | 669 | | | 670 | 12.8k | fdct = (my_fdct_ptr) | 671 | 12.8k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 672 | 12.8k | sizeof(my_fdct_controller)); | 673 | 12.8k | cinfo->fdct = (struct jpeg_forward_dct *)fdct; | 674 | 12.8k | fdct->pub.start_pass = start_pass_fdctmgr; | 675 | | | 676 | | /* First determine the DCT... */ | 677 | 12.8k | switch (cinfo->dct_method) { | 678 | 0 | #ifdef DCT_ISLOW_SUPPORTED | 679 | 10.9k | case JDCT_ISLOW: | 680 | 10.9k | fdct->pub._forward_DCT = forward_DCT; | 681 | 10.9k | #ifdef WITH_SIMD | 682 | 10.9k | if (!jsimd_set_fdct_islow(cinfo, &fdct->dct)) | 683 | 0 | #endif | 684 | 0 | fdct->dct = _jpeg_fdct_islow; | 685 | 10.9k | break; | 686 | 0 | #endif | 687 | 0 | #ifdef DCT_IFAST_SUPPORTED | 688 | 1.88k | case JDCT_IFAST: | 689 | 1.88k | fdct->pub._forward_DCT = forward_DCT; | 690 | 1.88k | #ifdef WITH_SIMD | 691 | 1.88k | if (!jsimd_set_fdct_ifast(cinfo, &fdct->dct)) | 692 | 0 | #endif | 693 | 0 | fdct->dct = _jpeg_fdct_ifast; | 694 | 1.88k | break; | 695 | 0 | #endif | 696 | 0 | #ifdef DCT_FLOAT_SUPPORTED | 697 | 0 | case JDCT_FLOAT: | 698 | 0 | fdct->pub._forward_DCT = forward_DCT_float; | 699 | 0 | #ifdef WITH_SIMD | 700 | 0 | if (!jsimd_set_fdct_float(cinfo, &fdct->float_dct)) | 701 | 0 | #endif | 702 | 0 | fdct->float_dct = jpeg_fdct_float; | 703 | 0 | break; | 704 | 0 | #endif | 705 | 0 | default: | 706 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 707 | 0 | break; | 708 | 12.8k | } | 709 | | | 710 | | /* ...then the supporting stages. */ | 711 | 12.8k | switch (cinfo->dct_method) { | 712 | 0 | #ifdef DCT_ISLOW_SUPPORTED | 713 | 10.9k | case JDCT_ISLOW: | 714 | 10.9k | #endif | 715 | 10.9k | #ifdef DCT_IFAST_SUPPORTED | 716 | 12.8k | case JDCT_IFAST: | 717 | 12.8k | #endif | 718 | 12.8k | #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) | 719 | 12.8k | #ifdef WITH_SIMD | 720 | 12.8k | if (!jsimd_set_convsamp(cinfo, &fdct->convsamp)) | 721 | 0 | #endif | 722 | 0 | fdct->convsamp = convsamp; | 723 | 12.8k | #ifdef WITH_SIMD | 724 | 12.8k | if (!jsimd_set_quantize(cinfo, &fdct->quantize)) | 725 | 0 | #endif | 726 | 0 | fdct->quantize = quantize; | 727 | 12.8k | break; | 728 | 0 | #endif | 729 | 0 | #ifdef DCT_FLOAT_SUPPORTED | 730 | 0 | case JDCT_FLOAT: | 731 | 0 | #ifdef WITH_SIMD | 732 | 0 | if (!jsimd_set_convsamp_float(cinfo, &fdct->float_convsamp)) | 733 | 0 | #endif | 734 | 0 | fdct->float_convsamp = convsamp_float; | 735 | 0 | #ifdef WITH_SIMD | 736 | 0 | if (!jsimd_set_quantize_float(cinfo, &fdct->float_quantize)) | 737 | 0 | #endif | 738 | 0 | fdct->float_quantize = quantize_float; | 739 | 0 | break; | 740 | 0 | #endif | 741 | 0 | default: | 742 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); | 743 | 0 | break; | 744 | 12.8k | } | 745 | | | 746 | | /* Allocate workspace memory */ | 747 | 12.8k | #ifdef DCT_FLOAT_SUPPORTED | 748 | 12.8k | if (cinfo->dct_method == JDCT_FLOAT) | 749 | 0 | fdct->float_workspace = (FAST_FLOAT *) | 750 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 751 | 0 | sizeof(FAST_FLOAT) * DCTSIZE2); | 752 | 12.8k | else | 753 | 12.8k | #endif | 754 | 12.8k | fdct->workspace = (DCTELEM *) | 755 | 12.8k | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, | 756 | 12.8k | sizeof(DCTELEM) * DCTSIZE2); | 757 | | | 758 | | /* Mark divisor tables unallocated */ | 759 | 64.2k | for (i = 0; i < NUM_QUANT_TBLS; i++) { | 760 | 51.4k | fdct->divisors[i] = NULL; | 761 | 51.4k | #ifdef DCT_FLOAT_SUPPORTED | 762 | | fdct->float_divisors[i] = NULL; | 763 | 51.4k | #endif | 764 | 51.4k | } | 765 | 12.8k | } |
Unexecuted instantiation: j12init_forward_dct |