Coverage Report

Created: 2025-10-13 06:04

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.main/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
12.5k
{
81
12.5k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
12.5k
  int ci, blkn, dctbl, actbl;
83
12.5k
  d_derived_tbl **pdtbl;
84
12.5k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
12.5k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
6.27k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
6.69k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
30.9k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
18.4k
    compptr = cinfo->cur_comp_info[ci];
96
18.4k
    dctbl = compptr->dc_tbl_no;
97
18.4k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
18.4k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
18.4k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
18.4k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
18.4k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
18.4k
    entropy->saved.last_dc_val[ci] = 0;
106
18.4k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
41.8k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
29.2k
    ci = cinfo->MCU_membership[blkn];
111
29.2k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
29.2k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
29.2k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
29.2k
    if (compptr->component_needed) {
117
27.3k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
27.3k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
27.3k
    } else {
121
1.86k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
1.86k
    }
123
29.2k
  }
124
125
  /* Initialize bitread state variables */
126
12.5k
  entropy->bitstate.bits_left = 0;
127
12.5k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
12.5k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
12.5k
  entropy->restarts_to_go = cinfo->restart_interval;
132
12.5k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
47.5k
{
146
47.5k
  JHUFF_TBL *htbl;
147
47.5k
  d_derived_tbl *dtbl;
148
47.5k
  int p, i, l, si, numsymbols;
149
47.5k
  int lookbits, ctr;
150
47.5k
  char huffsize[257];
151
47.5k
  unsigned int huffcode[257];
152
47.5k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
47.5k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
44
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
47.5k
  htbl =
162
47.5k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
47.5k
  if (htbl == NULL)
164
21
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
47.5k
  if (*pdtbl == NULL)
168
5.30k
    *pdtbl = (d_derived_tbl *)
169
5.30k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
5.30k
                                  sizeof(d_derived_tbl));
171
47.5k
  dtbl = *pdtbl;
172
47.5k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
47.5k
  p = 0;
177
807k
  for (l = 1; l <= 16; l++) {
178
759k
    i = (int)htbl->bits[l];
179
759k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
2.52M
    while (i--)
182
1.76M
      huffsize[p++] = (char)l;
183
759k
  }
184
47.5k
  huffsize[p] = 0;
185
47.5k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
47.5k
  code = 0;
191
47.5k
  si = huffsize[0];
192
47.5k
  p = 0;
193
434k
  while (huffsize[p]) {
194
2.15M
    while (((int)huffsize[p]) == si) {
195
1.76M
      huffcode[p++] = code;
196
1.76M
      code++;
197
1.76M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
387k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
3
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
387k
    code <<= 1;
204
387k
    si++;
205
387k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
47.5k
  p = 0;
210
807k
  for (l = 1; l <= 16; l++) {
211
759k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
332k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
332k
      p += htbl->bits[l];
217
332k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
426k
    } else {
219
426k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
426k
    }
221
759k
  }
222
47.5k
  dtbl->valoffset[17] = 0;
223
47.5k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
12.2M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
12.1M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
47.5k
  p = 0;
236
427k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
850k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
470k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
11.0M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
10.5M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
10.5M
        lookbits++;
244
10.5M
      }
245
470k
    }
246
379k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
47.5k
  if (isDC) {
255
227k
    for (i = 0; i < numsymbols; i++) {
256
200k
      int sym = htbl->huffval[i];
257
200k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
24
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
200k
    }
260
27.1k
  }
261
47.5k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
71.8M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
44.2M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
44.2M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
44.2M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
44.2M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
44.2M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
692k
    while (bits_left < MIN_GET_BITS) {
303
614k
      register int c;
304
305
      /* Attempt to read a byte */
306
614k
      if (bytes_in_buffer == 0) {
307
1.71k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.71k
        next_input_byte = cinfo->src->next_input_byte;
310
1.71k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.71k
      }
312
614k
      bytes_in_buffer--;
313
614k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
614k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
102k
        do {
323
102k
          if (bytes_in_buffer == 0) {
324
18
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
18
            next_input_byte = cinfo->src->next_input_byte;
327
18
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
18
          }
329
102k
          bytes_in_buffer--;
330
102k
          c = *next_input_byte++;
331
102k
        } while (c == 0xFF);
332
333
55.0k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
25.7k
          c = 0xFF;
336
29.3k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
29.3k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
29.3k
          goto no_more_bytes;
348
29.3k
        }
349
55.0k
      }
350
351
      /* OK, load c into get_buffer */
352
584k
      get_buffer = (get_buffer << 8) | c;
353
584k
      bits_left += 8;
354
584k
    } /* end while */
355
44.1M
  } else {
356
44.1M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
44.1M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
35.5M
      if (!cinfo->entropy->insufficient_data) {
368
25.3k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
25.3k
        cinfo->entropy->insufficient_data = TRUE;
370
25.3k
      }
371
      /* Fill the buffer with zero bits */
372
35.5M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
35.5M
      bits_left = MIN_GET_BITS;
374
35.5M
    }
375
44.1M
  }
376
377
  /* Unload the local registers */
378
44.2M
  state->next_input_byte = next_input_byte;
379
44.2M
  state->bytes_in_buffer = bytes_in_buffer;
380
44.2M
  state->get_buffer = get_buffer;
381
44.2M
  state->bits_left = bits_left;
382
383
44.2M
  return TRUE;
384
44.2M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
590k
#define GET_BYTE { \
392
590k
  register int c0, c1; \
393
590k
  c0 = *buffer++; \
394
590k
  c1 = *buffer; \
395
590k
  /* Pre-execute most common case */ \
396
590k
  get_buffer = (get_buffer << 8) | c0; \
397
590k
  bits_left += 8; \
398
590k
  if (c0 == 0xFF) { \
399
141k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
141k
    buffer++; \
401
141k
    if (c1 != 0) { \
402
103k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
103k
      cinfo->unread_marker = c1; \
404
103k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
103k
      buffer -= 2; \
406
103k
      get_buffer &= ~0xFF; \
407
103k
    } \
408
141k
  } \
409
590k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
1.83M
  if (bits_left <= 16) { \
416
98.4k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
98.4k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
40.4M
{
440
40.4M
  register int l = min_bits;
441
40.4M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
40.4M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
40.4M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
402M
  while (code > htbl->maxcode[l]) {
453
362M
    code <<= 1;
454
362M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
362M
    code |= GET_BITS(1);
456
362M
    l++;
457
362M
  }
458
459
  /* Unload the local registers */
460
40.4M
  state->get_buffer = get_buffer;
461
40.4M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
40.4M
  if (l > 16) {
466
38.3M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
38.3M
    return 0;                   /* fake a zero as the safest result */
468
38.3M
  }
469
470
2.08M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
40.4M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.56M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.56M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
27.7k
{
514
27.7k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
27.7k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
27.7k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
27.7k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
27.7k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
71.9k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
44.1k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
27.7k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
27.7k
  if (cinfo->unread_marker == 0)
539
871
    entropy->pub.insufficient_data = FALSE;
540
541
27.7k
  return TRUE;
542
27.7k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
57.7k
{
554
57.7k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
57.7k
  BITREAD_STATE_VARS;
556
57.7k
  int blkn;
557
57.7k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
57.7k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
57.7k
  state = entropy->saved;
563
564
148k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
90.8k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
90.8k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
90.8k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
90.8k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
90.8k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
90.8k
    if (s) {
575
37.7k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
37.7k
      r = GET_BITS(s);
577
37.7k
      s = HUFF_EXTEND(r, s);
578
37.7k
    }
579
580
90.8k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
83.5k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
83.5k
      s += state.last_dc_val[ci];
592
83.5k
      state.last_dc_val[ci] = s;
593
83.5k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
83.5k
        (*block)[0] = (JCOEF)s;
596
83.5k
      }
597
83.5k
    }
598
599
90.8k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
1.01M
      for (k = 1; k < DCTSIZE2; k++) {
604
992k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
992k
        r = s >> 4;
607
992k
        s &= 15;
608
609
992k
        if (s) {
610
925k
          k += r;
611
925k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
925k
          r = GET_BITS(s);
613
925k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
925k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
925k
        } else {
620
66.4k
          if (r != 15)
621
61.9k
            break;
622
4.47k
          k += 15;
623
4.47k
        }
624
992k
      }
625
626
83.5k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
116k
      for (k = 1; k < DCTSIZE2; k++) {
631
113k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
113k
        r = s >> 4;
634
113k
        s &= 15;
635
636
113k
        if (s) {
637
108k
          k += r;
638
108k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
108k
          DROP_BITS(s);
640
108k
        } else {
641
5.25k
          if (r != 15)
642
4.35k
            break;
643
898
          k += 15;
644
898
        }
645
113k
      }
646
7.32k
    }
647
90.8k
  }
648
649
  /* Completed MCU, so update state */
650
57.7k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
57.7k
  entropy->saved = state;
652
57.7k
  return TRUE;
653
57.7k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
177k
{
665
177k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
177k
  BITREAD_STATE_VARS;
667
177k
  JOCTET *buffer;
668
177k
  int blkn;
669
177k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
177k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
177k
  buffer = (JOCTET *)br_state.next_input_byte;
675
177k
  state = entropy->saved;
676
677
462k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
285k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
285k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
285k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
285k
    register int s, k, r, l;
682
683
285k
    HUFF_DECODE_FAST(s, l, dctbl);
684
285k
    if (s) {
685
123k
      FILL_BIT_BUFFER_FAST
686
123k
      r = GET_BITS(s);
687
123k
      s = HUFF_EXTEND(r, s);
688
123k
    }
689
690
285k
    if (entropy->dc_needed[blkn]) {
691
280k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
280k
      s += state.last_dc_val[ci];
696
280k
      state.last_dc_val[ci] = s;
697
280k
      if (block)
698
280k
        (*block)[0] = (JCOEF)s;
699
280k
    }
700
701
285k
    if (entropy->ac_needed[blkn] && block) {
702
703
762k
      for (k = 1; k < DCTSIZE2; k++) {
704
752k
        HUFF_DECODE_FAST(s, l, actbl);
705
752k
        r = s >> 4;
706
752k
        s &= 15;
707
708
752k
        if (s) {
709
481k
          k += r;
710
481k
          FILL_BIT_BUFFER_FAST
711
481k
          r = GET_BITS(s);
712
481k
          s = HUFF_EXTEND(r, s);
713
481k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
481k
        } else {
715
271k
          if (r != 15) break;
716
1.52k
          k += 15;
717
1.52k
        }
718
752k
      }
719
720
280k
    } else {
721
722
99.2k
      for (k = 1; k < DCTSIZE2; k++) {
723
96.8k
        HUFF_DECODE_FAST(s, l, actbl);
724
96.8k
        r = s >> 4;
725
96.8k
        s &= 15;
726
727
96.8k
        if (s) {
728
93.9k
          k += r;
729
93.9k
          FILL_BIT_BUFFER_FAST
730
93.9k
          DROP_BITS(s);
731
93.9k
        } else {
732
2.93k
          if (r != 15) break;
733
295
          k += 15;
734
295
        }
735
96.8k
      }
736
5.00k
    }
737
285k
  }
738
739
177k
  if (cinfo->unread_marker != 0) {
740
12.7k
    cinfo->unread_marker = 0;
741
12.7k
    return FALSE;
742
12.7k
  }
743
744
164k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
164k
  br_state.next_input_byte = buffer;
746
164k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
164k
  entropy->saved = state;
748
164k
  return TRUE;
749
177k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
8.25M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
8.25M
{
772
8.25M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
8.25M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
8.25M
  if (cinfo->restart_interval) {
777
2.12M
    if (entropy->restarts_to_go == 0)
778
27.7k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
2.12M
    usefast = 0;
781
2.12M
  }
782
783
8.25M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
4.05M
      cinfo->unread_marker != 0)
785
8.06M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
8.25M
  if (!entropy->pub.insufficient_data) {
791
792
222k
    if (usefast) {
793
177k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
177k
    } else {
795
57.7k
use_slow:
796
57.7k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
57.7k
    }
798
799
222k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
8.25M
  if (cinfo->restart_interval)
803
2.12M
    entropy->restarts_to_go--;
804
805
8.25M
  return TRUE;
806
8.25M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.60k
{
816
1.60k
  huff_entropy_ptr entropy;
817
1.60k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.60k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.60k
  entropy = (huff_entropy_ptr)
826
1.60k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.60k
                                sizeof(huff_entropy_decoder));
828
1.60k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.60k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.60k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
8.02k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
6.42k
  }
836
1.60k
}