Coverage Report

Created: 2025-11-11 06:31

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.main/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
24.4k
{
81
24.4k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
24.4k
  int ci, blkn, dctbl, actbl;
83
24.4k
  d_derived_tbl **pdtbl;
84
24.4k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
24.4k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
1.31k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
24.1k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
62.1k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
37.6k
    compptr = cinfo->cur_comp_info[ci];
96
37.6k
    dctbl = compptr->dc_tbl_no;
97
37.6k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
37.6k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
37.6k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
37.6k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
37.6k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
37.6k
    entropy->saved.last_dc_val[ci] = 0;
106
37.6k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
94.6k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
70.2k
    ci = cinfo->MCU_membership[blkn];
111
70.2k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
70.2k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
70.2k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
70.2k
    if (compptr->component_needed) {
117
70.2k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
70.2k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
70.2k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
70.2k
  }
124
125
  /* Initialize bitread state variables */
126
24.4k
  entropy->bitstate.bits_left = 0;
127
24.4k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
24.4k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
24.4k
  entropy->restarts_to_go = cinfo->restart_interval;
132
24.4k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
81.8k
{
146
81.8k
  JHUFF_TBL *htbl;
147
81.8k
  d_derived_tbl *dtbl;
148
81.8k
  int p, i, l, si, numsymbols;
149
81.8k
  int lookbits, ctr;
150
81.8k
  char huffsize[257];
151
81.8k
  unsigned int huffcode[257];
152
81.8k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
81.8k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
117
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
81.8k
  htbl =
162
81.8k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
81.8k
  if (htbl == NULL)
164
77
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
81.8k
  if (*pdtbl == NULL)
168
13.0k
    *pdtbl = (d_derived_tbl *)
169
13.0k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
13.0k
                                  sizeof(d_derived_tbl));
171
81.8k
  dtbl = *pdtbl;
172
81.8k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
81.8k
  p = 0;
177
1.38M
  for (l = 1; l <= 16; l++) {
178
1.30M
    i = (int)htbl->bits[l];
179
1.30M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
4.93M
    while (i--)
182
3.63M
      huffsize[p++] = (char)l;
183
1.30M
  }
184
81.8k
  huffsize[p] = 0;
185
81.8k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
81.8k
  code = 0;
191
81.8k
  si = huffsize[0];
192
81.8k
  p = 0;
193
886k
  while (huffsize[p]) {
194
4.41M
    while (((int)huffsize[p]) == si) {
195
3.60M
      huffcode[p++] = code;
196
3.60M
      code++;
197
3.60M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
804k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
333
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
804k
    code <<= 1;
204
804k
    si++;
205
804k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
81.8k
  p = 0;
210
1.38M
  for (l = 1; l <= 16; l++) {
211
1.30M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
610k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
610k
      p += htbl->bits[l];
217
610k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
691k
    } else {
219
691k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
691k
    }
221
1.30M
  }
222
81.8k
  dtbl->valoffset[17] = 0;
223
81.8k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
20.9M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
20.8M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
81.8k
  p = 0;
236
732k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
1.50M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
849k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
19.6M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
18.8M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
18.8M
        lookbits++;
244
18.8M
      }
245
849k
    }
246
650k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
81.8k
  if (isDC) {
255
384k
    for (i = 0; i < numsymbols; i++) {
256
345k
      int sym = htbl->huffval[i];
257
345k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
460
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
345k
    }
260
38.6k
  }
261
81.8k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
5.77M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
2.21M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
2.21M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
2.21M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
2.21M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
2.21M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
2.47M
    while (bits_left < MIN_GET_BITS) {
303
2.15M
      register int c;
304
305
      /* Attempt to read a byte */
306
2.15M
      if (bytes_in_buffer == 0) {
307
2.76k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
2.76k
        next_input_byte = cinfo->src->next_input_byte;
310
2.76k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
2.76k
      }
312
2.15M
      bytes_in_buffer--;
313
2.15M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
2.15M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
117k
        do {
323
117k
          if (bytes_in_buffer == 0) {
324
57
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
57
            next_input_byte = cinfo->src->next_input_byte;
327
57
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
57
          }
329
117k
          bytes_in_buffer--;
330
117k
          c = *next_input_byte++;
331
117k
        } while (c == 0xFF);
332
333
68.1k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
30.5k
          c = 0xFF;
336
37.6k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
37.6k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
37.6k
          goto no_more_bytes;
348
37.6k
        }
349
68.1k
      }
350
351
      /* OK, load c into get_buffer */
352
2.11M
      get_buffer = (get_buffer << 8) | c;
353
2.11M
      bits_left += 8;
354
2.11M
    } /* end while */
355
1.86M
  } else {
356
1.90M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
1.90M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
1.65M
      if (!cinfo->entropy->insufficient_data) {
368
37.3k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
37.3k
        cinfo->entropy->insufficient_data = TRUE;
370
37.3k
      }
371
      /* Fill the buffer with zero bits */
372
1.65M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
1.65M
      bits_left = MIN_GET_BITS;
374
1.65M
    }
375
1.90M
  }
376
377
  /* Unload the local registers */
378
2.21M
  state->next_input_byte = next_input_byte;
379
2.21M
  state->bytes_in_buffer = bytes_in_buffer;
380
2.21M
  state->get_buffer = get_buffer;
381
2.21M
  state->bits_left = bits_left;
382
383
2.21M
  return TRUE;
384
2.21M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
1.51M
#define GET_BYTE { \
392
1.51M
  register int c0, c1; \
393
1.51M
  c0 = *buffer++; \
394
1.51M
  c1 = *buffer; \
395
1.51M
  /* Pre-execute most common case */ \
396
1.51M
  get_buffer = (get_buffer << 8) | c0; \
397
1.51M
  bits_left += 8; \
398
1.51M
  if (c0 == 0xFF) { \
399
322k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
322k
    buffer++; \
401
322k
    if (c1 != 0) { \
402
292k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
292k
      cinfo->unread_marker = c1; \
404
292k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
292k
      buffer -= 2; \
406
292k
      get_buffer &= ~0xFF; \
407
292k
    } \
408
322k
  } \
409
1.51M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
4.91M
  if (bits_left <= 16) { \
416
253k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
253k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
268k
{
440
268k
  register int l = min_bits;
441
268k
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
268k
  CHECK_BIT_BUFFER(*state, l, return -1);
447
268k
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
709k
  while (code > htbl->maxcode[l]) {
453
441k
    code <<= 1;
454
441k
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
441k
    code |= GET_BITS(1);
456
441k
    l++;
457
441k
  }
458
459
  /* Unload the local registers */
460
268k
  state->get_buffer = get_buffer;
461
268k
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
268k
  if (l > 16) {
466
25.0k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
25.0k
    return 0;                   /* fake a zero as the safest result */
468
25.0k
  }
469
470
243k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
268k
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
4.00M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
4.00M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
125k
{
514
125k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
125k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
125k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
125k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
125k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
261k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
135k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
125k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
125k
  if (cinfo->unread_marker == 0)
539
3.89k
    entropy->pub.insufficient_data = FALSE;
540
541
125k
  return TRUE;
542
125k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
139k
{
554
139k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
139k
  BITREAD_STATE_VARS;
556
139k
  int blkn;
557
139k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
139k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
139k
  state = entropy->saved;
563
564
362k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
222k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
222k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
222k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
222k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
222k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
222k
    if (s) {
575
94.4k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
94.4k
      r = GET_BITS(s);
577
94.4k
      s = HUFF_EXTEND(r, s);
578
94.4k
    }
579
580
222k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
222k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
222k
      s += state.last_dc_val[ci];
592
222k
      state.last_dc_val[ci] = s;
593
222k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
222k
        (*block)[0] = (JCOEF)s;
596
222k
      }
597
222k
    }
598
599
222k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
2.04M
      for (k = 1; k < DCTSIZE2; k++) {
604
1.98M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
1.98M
        r = s >> 4;
607
1.98M
        s &= 15;
608
609
1.98M
        if (s) {
610
1.81M
          k += r;
611
1.81M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
1.81M
          r = GET_BITS(s);
613
1.81M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
1.81M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
1.81M
        } else {
620
169k
          if (r != 15)
621
165k
            break;
622
3.81k
          k += 15;
623
3.81k
        }
624
1.98M
      }
625
626
222k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
222k
  }
648
649
  /* Completed MCU, so update state */
650
139k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
139k
  entropy->saved = state;
652
139k
  return TRUE;
653
139k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
317k
{
665
317k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
317k
  BITREAD_STATE_VARS;
667
317k
  JOCTET *buffer;
668
317k
  int blkn;
669
317k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
317k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
317k
  buffer = (JOCTET *)br_state.next_input_byte;
675
317k
  state = entropy->saved;
676
677
865k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
548k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
548k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
548k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
548k
    register int s, k, r, l;
682
683
548k
    HUFF_DECODE_FAST(s, l, dctbl);
684
548k
    if (s) {
685
357k
      FILL_BIT_BUFFER_FAST
686
357k
      r = GET_BITS(s);
687
357k
      s = HUFF_EXTEND(r, s);
688
357k
    }
689
690
548k
    if (entropy->dc_needed[blkn]) {
691
548k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
548k
      s += state.last_dc_val[ci];
696
548k
      state.last_dc_val[ci] = s;
697
548k
      if (block)
698
548k
        (*block)[0] = (JCOEF)s;
699
548k
    }
700
701
548k
    if (entropy->ac_needed[blkn] && block) {
702
703
2.32M
      for (k = 1; k < DCTSIZE2; k++) {
704
2.26M
        HUFF_DECODE_FAST(s, l, actbl);
705
2.26M
        r = s >> 4;
706
2.26M
        s &= 15;
707
708
2.26M
        if (s) {
709
1.73M
          k += r;
710
1.73M
          FILL_BIT_BUFFER_FAST
711
1.73M
          r = GET_BITS(s);
712
1.73M
          s = HUFF_EXTEND(r, s);
713
1.73M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
1.73M
        } else {
715
529k
          if (r != 15) break;
716
36.9k
          k += 15;
717
36.9k
        }
718
2.26M
      }
719
720
548k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
548k
  }
738
739
317k
  if (cinfo->unread_marker != 0) {
740
19.2k
    cinfo->unread_marker = 0;
741
19.2k
    return FALSE;
742
19.2k
  }
743
744
298k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
298k
  br_state.next_input_byte = buffer;
746
298k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
298k
  entropy->saved = state;
748
298k
  return TRUE;
749
317k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
40.5M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
40.5M
{
772
40.5M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
40.5M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
40.5M
  if (cinfo->restart_interval) {
777
11.9M
    if (entropy->restarts_to_go == 0)
778
125k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
11.9M
    usefast = 0;
781
11.9M
  }
782
783
40.5M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
24.9M
      cinfo->unread_marker != 0)
785
40.1M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
40.5M
  if (!entropy->pub.insufficient_data) {
791
792
438k
    if (usefast) {
793
317k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
317k
    } else {
795
139k
use_slow:
796
139k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
139k
    }
798
799
438k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
40.5M
  if (cinfo->restart_interval)
803
11.9M
    entropy->restarts_to_go--;
804
805
40.5M
  return TRUE;
806
40.5M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
6.00k
{
816
6.00k
  huff_entropy_ptr entropy;
817
6.00k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
6.00k
  std_huff_tables((j_common_ptr)cinfo);
824
825
6.00k
  entropy = (huff_entropy_ptr)
826
6.00k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
6.00k
                                sizeof(huff_entropy_decoder));
828
6.00k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
6.00k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
6.00k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
30.0k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
24.0k
  }
836
6.00k
}