Coverage Report

Created: 2025-11-24 06:36

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.main/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
8.27k
{
81
8.27k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
8.27k
  int ci, blkn, dctbl, actbl;
83
8.27k
  d_derived_tbl **pdtbl;
84
8.27k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
8.27k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
2.69k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
6.21k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
22.3k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
14.0k
    compptr = cinfo->cur_comp_info[ci];
96
14.0k
    dctbl = compptr->dc_tbl_no;
97
14.0k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
14.0k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
14.0k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
14.0k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
14.0k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
14.0k
    entropy->saved.last_dc_val[ci] = 0;
106
14.0k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
36.3k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
28.0k
    ci = cinfo->MCU_membership[blkn];
111
28.0k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
28.0k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
28.0k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
28.0k
    if (compptr->component_needed) {
117
27.9k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
27.9k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
27.9k
    } else {
121
114
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
114
    }
123
28.0k
  }
124
125
  /* Initialize bitread state variables */
126
8.27k
  entropy->bitstate.bits_left = 0;
127
8.27k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
8.27k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
8.27k
  entropy->restarts_to_go = cinfo->restart_interval;
132
8.27k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
36.6k
{
146
36.6k
  JHUFF_TBL *htbl;
147
36.6k
  d_derived_tbl *dtbl;
148
36.6k
  int p, i, l, si, numsymbols;
149
36.6k
  int lookbits, ctr;
150
36.6k
  char huffsize[257];
151
36.6k
  unsigned int huffcode[257];
152
36.6k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
36.6k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
37
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
36.6k
  htbl =
162
36.6k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
36.6k
  if (htbl == NULL)
164
13
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
36.6k
  if (*pdtbl == NULL)
168
4.47k
    *pdtbl = (d_derived_tbl *)
169
4.47k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
4.47k
                                  sizeof(d_derived_tbl));
171
36.6k
  dtbl = *pdtbl;
172
36.6k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
36.6k
  p = 0;
177
621k
  for (l = 1; l <= 16; l++) {
178
585k
    i = (int)htbl->bits[l];
179
585k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
2.18M
    while (i--)
182
1.60M
      huffsize[p++] = (char)l;
183
585k
  }
184
36.6k
  huffsize[p] = 0;
185
36.6k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
36.6k
  code = 0;
191
36.6k
  si = huffsize[0];
192
36.6k
  p = 0;
193
416k
  while (huffsize[p]) {
194
1.98M
    while (((int)huffsize[p]) == si) {
195
1.60M
      huffcode[p++] = code;
196
1.60M
      code++;
197
1.60M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
379k
    if (((JLONG)code) >= (((JLONG)1) << si))
202
4
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
379k
    code <<= 1;
204
379k
    si++;
205
379k
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
36.6k
  p = 0;
210
621k
  for (l = 1; l <= 16; l++) {
211
585k
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
269k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
269k
      p += htbl->bits[l];
217
269k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
315k
    } else {
219
315k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
315k
    }
221
585k
  }
222
36.6k
  dtbl->valoffset[17] = 0;
223
36.6k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
9.40M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
9.36M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
36.6k
  p = 0;
236
329k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
646k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
354k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
8.35M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
7.99M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
7.99M
        lookbits++;
244
7.99M
      }
245
354k
    }
246
292k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
36.6k
  if (isDC) {
255
186k
    for (i = 0; i < numsymbols; i++) {
256
165k
      int sym = htbl->huffval[i];
257
165k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
19
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
165k
    }
260
20.9k
  }
261
36.6k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
43.3M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
24.6M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
24.6M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
24.6M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
24.6M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
24.6M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
449k
    while (bits_left < MIN_GET_BITS) {
303
397k
      register int c;
304
305
      /* Attempt to read a byte */
306
397k
      if (bytes_in_buffer == 0) {
307
1.62k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
1.62k
        next_input_byte = cinfo->src->next_input_byte;
310
1.62k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
1.62k
      }
312
397k
      bytes_in_buffer--;
313
397k
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
397k
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
47.3k
        do {
323
47.3k
          if (bytes_in_buffer == 0) {
324
33
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
33
            next_input_byte = cinfo->src->next_input_byte;
327
33
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
33
          }
329
47.3k
          bytes_in_buffer--;
330
47.3k
          c = *next_input_byte++;
331
47.3k
        } while (c == 0xFF);
332
333
33.6k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
14.0k
          c = 0xFF;
336
19.6k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
19.6k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
19.6k
          goto no_more_bytes;
348
19.6k
        }
349
33.6k
      }
350
351
      /* OK, load c into get_buffer */
352
377k
      get_buffer = (get_buffer << 8) | c;
353
377k
      bits_left += 8;
354
377k
    } /* end while */
355
24.5M
  } else {
356
24.6M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
24.6M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
21.4M
      if (!cinfo->entropy->insufficient_data) {
368
17.8k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
17.8k
        cinfo->entropy->insufficient_data = TRUE;
370
17.8k
      }
371
      /* Fill the buffer with zero bits */
372
21.4M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
21.4M
      bits_left = MIN_GET_BITS;
374
21.4M
    }
375
24.6M
  }
376
377
  /* Unload the local registers */
378
24.6M
  state->next_input_byte = next_input_byte;
379
24.6M
  state->bytes_in_buffer = bytes_in_buffer;
380
24.6M
  state->get_buffer = get_buffer;
381
24.6M
  state->bits_left = bits_left;
382
383
24.6M
  return TRUE;
384
24.6M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
292k
#define GET_BYTE { \
392
292k
  register int c0, c1; \
393
292k
  c0 = *buffer++; \
394
292k
  c1 = *buffer; \
395
292k
  /* Pre-execute most common case */ \
396
292k
  get_buffer = (get_buffer << 8) | c0; \
397
292k
  bits_left += 8; \
398
292k
  if (c0 == 0xFF) { \
399
115k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
115k
    buffer++; \
401
115k
    if (c1 != 0) { \
402
100k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
100k
      cinfo->unread_marker = c1; \
404
100k
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
100k
      buffer -= 2; \
406
100k
      get_buffer &= ~0xFF; \
407
100k
    } \
408
115k
  } \
409
292k
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
993k
  if (bits_left <= 16) { \
416
48.8k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
48.8k
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
8.55M
{
440
8.55M
  register int l = min_bits;
441
8.55M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
8.55M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
8.55M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
54.6M
  while (code > htbl->maxcode[l]) {
453
46.1M
    code <<= 1;
454
46.1M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
46.1M
    code |= GET_BITS(1);
456
46.1M
    l++;
457
46.1M
  }
458
459
  /* Unload the local registers */
460
8.55M
  state->get_buffer = get_buffer;
461
8.55M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
8.55M
  if (l > 16) {
466
1.74M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
1.74M
    return 0;                   /* fake a zero as the safest result */
468
1.74M
  }
469
470
6.80M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
8.55M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
1.16M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
1.16M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
32.1k
{
514
32.1k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
32.1k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
32.1k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
32.1k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
32.1k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
86.3k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
54.2k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
32.1k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
32.1k
  if (cinfo->unread_marker == 0)
539
904
    entropy->pub.insufficient_data = FALSE;
540
541
32.1k
  return TRUE;
542
32.1k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
64.7k
{
554
64.7k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
64.7k
  BITREAD_STATE_VARS;
556
64.7k
  int blkn;
557
64.7k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
64.7k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
64.7k
  state = entropy->saved;
563
564
172k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
108k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
108k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
108k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
108k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
108k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
108k
    if (s) {
575
48.3k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
48.3k
      r = GET_BITS(s);
577
48.3k
      s = HUFF_EXTEND(r, s);
578
48.3k
    }
579
580
108k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
108k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
108k
      s += state.last_dc_val[ci];
592
108k
      state.last_dc_val[ci] = s;
593
108k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
108k
        (*block)[0] = (JCOEF)s;
596
108k
      }
597
108k
    }
598
599
108k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
829k
      for (k = 1; k < DCTSIZE2; k++) {
604
806k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
806k
        r = s >> 4;
607
806k
        s &= 15;
608
609
806k
        if (s) {
610
714k
          k += r;
611
714k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
714k
          r = GET_BITS(s);
613
714k
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
714k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
714k
        } else {
620
92.0k
          if (r != 15)
621
84.9k
            break;
622
7.08k
          k += 15;
623
7.08k
        }
624
806k
      }
625
626
108k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
0
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
0
    }
647
108k
  }
648
649
  /* Completed MCU, so update state */
650
64.7k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
64.7k
  entropy->saved = state;
652
64.7k
  return TRUE;
653
64.7k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
71.1k
{
665
71.1k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
71.1k
  BITREAD_STATE_VARS;
667
71.1k
  JOCTET *buffer;
668
71.1k
  int blkn;
669
71.1k
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
71.1k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
71.1k
  buffer = (JOCTET *)br_state.next_input_byte;
675
71.1k
  state = entropy->saved;
676
677
188k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
117k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
117k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
117k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
117k
    register int s, k, r, l;
682
683
117k
    HUFF_DECODE_FAST(s, l, dctbl);
684
117k
    if (s) {
685
50.5k
      FILL_BIT_BUFFER_FAST
686
50.5k
      r = GET_BITS(s);
687
50.5k
      s = HUFF_EXTEND(r, s);
688
50.5k
    }
689
690
117k
    if (entropy->dc_needed[blkn]) {
691
117k
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
117k
      s += state.last_dc_val[ci];
696
117k
      state.last_dc_val[ci] = s;
697
117k
      if (block)
698
117k
        (*block)[0] = (JCOEF)s;
699
117k
    }
700
701
117k
    if (entropy->ac_needed[blkn] && block) {
702
703
479k
      for (k = 1; k < DCTSIZE2; k++) {
704
469k
        HUFF_DECODE_FAST(s, l, actbl);
705
469k
        r = s >> 4;
706
469k
        s &= 15;
707
708
469k
        if (s) {
709
355k
          k += r;
710
355k
          FILL_BIT_BUFFER_FAST
711
355k
          r = GET_BITS(s);
712
355k
          s = HUFF_EXTEND(r, s);
713
355k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
355k
        } else {
715
114k
          if (r != 15) break;
716
6.70k
          k += 15;
717
6.70k
        }
718
469k
      }
719
720
117k
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
117k
  }
738
739
71.1k
  if (cinfo->unread_marker != 0) {
740
6.23k
    cinfo->unread_marker = 0;
741
6.23k
    return FALSE;
742
6.23k
  }
743
744
64.9k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
64.9k
  br_state.next_input_byte = buffer;
746
64.9k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
64.9k
  entropy->saved = state;
748
64.9k
  return TRUE;
749
71.1k
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
13.6M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
13.6M
{
772
13.6M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
13.6M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
13.6M
  if (cinfo->restart_interval) {
777
4.51M
    if (entropy->restarts_to_go == 0)
778
32.1k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
4.51M
    usefast = 0;
781
4.51M
  }
782
783
13.6M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
9.06M
      cinfo->unread_marker != 0)
785
13.5M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
13.6M
  if (!entropy->pub.insufficient_data) {
791
792
129k
    if (usefast) {
793
71.1k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
71.1k
    } else {
795
64.7k
use_slow:
796
64.7k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
64.7k
    }
798
799
129k
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
13.6M
  if (cinfo->restart_interval)
803
4.51M
    entropy->restarts_to_go--;
804
805
13.6M
  return TRUE;
806
13.6M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
1.22k
{
816
1.22k
  huff_entropy_ptr entropy;
817
1.22k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
1.22k
  std_huff_tables((j_common_ptr)cinfo);
824
825
1.22k
  entropy = (huff_entropy_ptr)
826
1.22k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
1.22k
                                sizeof(huff_entropy_decoder));
828
1.22k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
1.22k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
1.22k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
6.13k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
4.90k
  }
836
1.22k
}