Coverage Report

Created: 2025-12-05 06:42

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.main/src/jcdctmgr.c
Line
Count
Source
1
/*
2
 * jcdctmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 1999-2006, MIYASAKA Masaru.
8
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
9
 * Copyright (C) 2011, 2014-2015, 2022, 2024, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains the forward-DCT management logic.
14
 * This code selects a particular DCT implementation to be used,
15
 * and it performs related housekeeping chores including coefficient
16
 * quantization.
17
 */
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jdct.h"               /* Private declarations for DCT subsystem */
23
#include "jsimddct.h"
24
25
26
/* Private subobject for this module */
27
28
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
29
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
30
31
typedef void (*convsamp_method_ptr) (_JSAMPARRAY sample_data,
32
                                     JDIMENSION start_col,
33
                                     DCTELEM *workspace);
34
typedef void (*float_convsamp_method_ptr) (_JSAMPARRAY sample_data,
35
                                           JDIMENSION start_col,
36
                                           FAST_FLOAT *workspace);
37
38
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
39
                                     DCTELEM *workspace);
40
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
41
                                           FAST_FLOAT *divisors,
42
                                           FAST_FLOAT *workspace);
43
44
METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *);
45
46
typedef struct {
47
  struct jpeg_forward_dct pub;  /* public fields */
48
49
  /* Pointer to the DCT routine actually in use */
50
  forward_DCT_method_ptr dct;
51
  convsamp_method_ptr convsamp;
52
  quantize_method_ptr quantize;
53
54
  /* The actual post-DCT divisors --- not identical to the quant table
55
   * entries, because of scaling (especially for an unnormalized DCT).
56
   * Each table is given in normal array order.
57
   */
58
  DCTELEM *divisors[NUM_QUANT_TBLS];
59
60
  /* work area for FDCT subroutine */
61
  DCTELEM *workspace;
62
63
#ifdef DCT_FLOAT_SUPPORTED
64
  /* Same as above for the floating-point case. */
65
  float_DCT_method_ptr float_dct;
66
  float_convsamp_method_ptr float_convsamp;
67
  float_quantize_method_ptr float_quantize;
68
  FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
69
  FAST_FLOAT *float_workspace;
70
#endif
71
} my_fdct_controller;
72
73
typedef my_fdct_controller *my_fdct_ptr;
74
75
76
#if BITS_IN_JSAMPLE == 8
77
78
/*
79
 * Find the highest bit in an integer through binary search.
80
 */
81
82
LOCAL(int)
83
flss(UINT16 val)
84
1.72M
{
85
1.72M
  int bit;
86
87
1.72M
  bit = 16;
88
89
1.72M
  if (!val)
90
0
    return 0;
91
92
1.72M
  if (!(val & 0xff00)) {
93
1.05M
    bit -= 8;
94
1.05M
    val <<= 8;
95
1.05M
  }
96
1.72M
  if (!(val & 0xf000)) {
97
1.04M
    bit -= 4;
98
1.04M
    val <<= 4;
99
1.04M
  }
100
1.72M
  if (!(val & 0xc000)) {
101
869k
    bit -= 2;
102
869k
    val <<= 2;
103
869k
  }
104
1.72M
  if (!(val & 0x8000)) {
105
872k
    bit -= 1;
106
872k
    val <<= 1;
107
872k
  }
108
109
1.72M
  return bit;
110
1.72M
}
111
112
113
/*
114
 * Compute values to do a division using reciprocal.
115
 *
116
 * This implementation is based on an algorithm described in
117
 *   "Optimizing subroutines in assembly language:
118
 *   An optimization guide for x86 platforms" (https://agner.org/optimize).
119
 * More information about the basic algorithm can be found in
120
 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
121
 *
122
 * The basic idea is to replace x/d by x * d^-1. In order to store
123
 * d^-1 with enough precision we shift it left a few places. It turns
124
 * out that this algoright gives just enough precision, and also fits
125
 * into DCTELEM:
126
 *
127
 *   b = (the number of significant bits in divisor) - 1
128
 *   r = (word size) + b
129
 *   f = 2^r / divisor
130
 *
131
 * f will not be an integer for most cases, so we need to compensate
132
 * for the rounding error introduced:
133
 *
134
 *   no fractional part:
135
 *
136
 *       result = input >> r
137
 *
138
 *   fractional part of f < 0.5:
139
 *
140
 *       round f down to nearest integer
141
 *       result = ((input + 1) * f) >> r
142
 *
143
 *   fractional part of f > 0.5:
144
 *
145
 *       round f up to nearest integer
146
 *       result = (input * f) >> r
147
 *
148
 * This is the original algorithm that gives truncated results. But we
149
 * want properly rounded results, so we replace "input" with
150
 * "input + divisor/2".
151
 *
152
 * In order to allow SIMD implementations we also tweak the values to
153
 * allow the same calculation to be made at all times:
154
 *
155
 *   dctbl[0] = f rounded to nearest integer
156
 *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
157
 *   dctbl[2] = 1 << ((word size) * 2 - r)
158
 *   dctbl[3] = r - (word size)
159
 *
160
 * dctbl[2] is for stupid instruction sets where the shift operation
161
 * isn't member wise (e.g. MMX).
162
 *
163
 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
164
 * is that most SIMD implementations have a "multiply and store top
165
 * half" operation.
166
 *
167
 * Lastly, we store each of the values in their own table instead
168
 * of in a consecutive manner, yet again in order to allow SIMD
169
 * routines.
170
 */
171
172
LOCAL(int)
173
compute_reciprocal(UINT16 divisor, DCTELEM *dtbl)
174
1.72M
{
175
1.72M
  UDCTELEM2 fq, fr;
176
1.72M
  UDCTELEM c;
177
1.72M
  int b, r;
178
179
1.72M
  if (divisor == 1) {
180
    /* divisor == 1 means unquantized, so these reciprocal/correction/shift
181
     * values will cause the C quantization algorithm to act like the
182
     * identity function.  Since only the C quantization algorithm is used in
183
     * these cases, the scale value is irrelevant.
184
     */
185
0
    dtbl[DCTSIZE2 * 0] = (DCTELEM)1;                        /* reciprocal */
186
0
    dtbl[DCTSIZE2 * 1] = (DCTELEM)0;                        /* correction */
187
0
    dtbl[DCTSIZE2 * 2] = (DCTELEM)1;                        /* scale */
188
0
    dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8);   /* shift */
189
0
    return 0;
190
0
  }
191
192
1.72M
  b = flss(divisor) - 1;
193
1.72M
  r  = sizeof(DCTELEM) * 8 + b;
194
195
1.72M
  fq = ((UDCTELEM2)1 << r) / divisor;
196
1.72M
  fr = ((UDCTELEM2)1 << r) % divisor;
197
198
1.72M
  c = divisor / 2;                      /* for rounding */
199
200
1.72M
  if (fr == 0) {                        /* divisor is power of two */
201
    /* fq will be one bit too large to fit in DCTELEM, so adjust */
202
427k
    fq >>= 1;
203
427k
    r--;
204
1.29M
  } else if (fr <= (divisor / 2U)) {    /* fractional part is < 0.5 */
205
394k
    c++;
206
899k
  } else {                              /* fractional part is > 0.5 */
207
899k
    fq++;
208
899k
  }
209
210
1.72M
  dtbl[DCTSIZE2 * 0] = (DCTELEM)fq;     /* reciprocal */
211
1.72M
  dtbl[DCTSIZE2 * 1] = (DCTELEM)c;      /* correction + roundfactor */
212
1.72M
#ifdef WITH_SIMD
213
1.72M
  dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */
214
#else
215
  dtbl[DCTSIZE2 * 2] = 1;
216
#endif
217
1.72M
  dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */
218
219
1.72M
  if (r <= 16) return 0;
220
1.72M
  else return 1;
221
1.72M
}
222
223
#endif
224
225
226
/*
227
 * Initialize for a processing pass.
228
 * Verify that all referenced Q-tables are present, and set up
229
 * the divisor table for each one.
230
 * In the current implementation, DCT of all components is done during
231
 * the first pass, even if only some components will be output in the
232
 * first scan.  Hence all components should be examined here.
233
 */
234
235
METHODDEF(void)
236
start_pass_fdctmgr(j_compress_ptr cinfo)
237
11.3k
{
238
11.3k
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
239
11.3k
  int ci, qtblno, i;
240
11.3k
  jpeg_component_info *compptr;
241
11.3k
  JQUANT_TBL *qtbl;
242
11.3k
  DCTELEM *dtbl;
243
244
38.2k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245
26.8k
       ci++, compptr++) {
246
26.8k
    qtblno = compptr->quant_tbl_no;
247
    /* Make sure specified quantization table is present */
248
26.8k
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249
26.8k
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
250
0
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251
26.8k
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
252
    /* Compute divisors for this quant table */
253
    /* We may do this more than once for same table, but it's not a big deal */
254
26.8k
    switch (cinfo->dct_method) {
255
0
#ifdef DCT_ISLOW_SUPPORTED
256
21.0k
    case JDCT_ISLOW:
257
      /* For LL&M IDCT method, divisors are equal to raw quantization
258
       * coefficients multiplied by 8 (to counteract scaling).
259
       */
260
21.0k
      if (fdct->divisors[qtblno] == NULL) {
261
15.2k
        fdct->divisors[qtblno] = (DCTELEM *)
262
15.2k
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
263
15.2k
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
264
15.2k
      }
265
21.0k
      dtbl = fdct->divisors[qtblno];
266
1.37M
      for (i = 0; i < DCTSIZE2; i++) {
267
#if BITS_IN_JSAMPLE == 8
268
#ifdef WITH_SIMD
269
1.34M
        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
270
0
            fdct->quantize == jsimd_quantize)
271
0
          fdct->quantize = quantize;
272
#else
273
        compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]);
274
#endif
275
#else
276
        dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
277
#endif
278
1.34M
      }
279
21.0k
      break;
280
0
#endif
281
0
#ifdef DCT_IFAST_SUPPORTED
282
5.81k
    case JDCT_IFAST:
283
5.81k
      {
284
        /* For AA&N IDCT method, divisors are equal to quantization
285
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
286
         *   scalefactor[0] = 1
287
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
288
         * We apply a further scale factor of 8.
289
         */
290
5.81k
#define CONST_BITS  14
291
5.81k
        static const INT16 aanscales[DCTSIZE2] = {
292
          /* precomputed values scaled up by 14 bits */
293
5.81k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
294
5.81k
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
295
5.81k
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
296
5.81k
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
297
5.81k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
298
5.81k
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
299
5.81k
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
300
5.81k
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
301
5.81k
        };
302
5.81k
        SHIFT_TEMPS
303
304
5.81k
        if (fdct->divisors[qtblno] == NULL) {
305
3.87k
          fdct->divisors[qtblno] = (DCTELEM *)
306
3.87k
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
307
3.87k
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
308
3.87k
        }
309
5.81k
        dtbl = fdct->divisors[qtblno];
310
378k
        for (i = 0; i < DCTSIZE2; i++) {
311
#if BITS_IN_JSAMPLE == 8
312
#ifdef WITH_SIMD
313
372k
          if (!compute_reciprocal(
314
372k
                DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
315
372k
                                      (JLONG)aanscales[i]),
316
372k
                        CONST_BITS - 3), &dtbl[i]) &&
317
0
              fdct->quantize == jsimd_quantize)
318
0
            fdct->quantize = quantize;
319
#else
320
          compute_reciprocal(
321
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
322
                                  (JLONG)aanscales[i]),
323
                    CONST_BITS-3), &dtbl[i]);
324
#endif
325
#else
326
          dtbl[i] = (DCTELEM)
327
0
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
328
                                  (JLONG)aanscales[i]),
329
                    CONST_BITS - 3);
330
#endif
331
372k
        }
332
5.81k
      }
333
5.81k
      break;
334
0
#endif
335
0
#ifdef DCT_FLOAT_SUPPORTED
336
0
    case JDCT_FLOAT:
337
0
      {
338
        /* For float AA&N IDCT method, divisors are equal to quantization
339
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
340
         *   scalefactor[0] = 1
341
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
342
         * We apply a further scale factor of 8.
343
         * What's actually stored is 1/divisor so that the inner loop can
344
         * use a multiplication rather than a division.
345
         */
346
0
        FAST_FLOAT *fdtbl;
347
0
        int row, col;
348
0
        static const double aanscalefactor[DCTSIZE] = {
349
0
          1.0, 1.387039845, 1.306562965, 1.175875602,
350
0
          1.0, 0.785694958, 0.541196100, 0.275899379
351
0
        };
352
353
0
        if (fdct->float_divisors[qtblno] == NULL) {
354
0
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
355
0
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
356
0
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
357
0
        }
358
0
        fdtbl = fdct->float_divisors[qtblno];
359
0
        i = 0;
360
0
        for (row = 0; row < DCTSIZE; row++) {
361
0
          for (col = 0; col < DCTSIZE; col++) {
362
0
            fdtbl[i] = (FAST_FLOAT)
363
0
              (1.0 / (((double)qtbl->quantval[i] *
364
0
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
365
0
            i++;
366
0
          }
367
0
        }
368
0
      }
369
0
      break;
370
0
#endif
371
0
    default:
372
0
      ERREXIT(cinfo, JERR_NOT_COMPILED);
373
0
      break;
374
26.8k
    }
375
26.8k
  }
376
11.3k
}
jcdctmgr-8.c:start_pass_fdctmgr
Line
Count
Source
237
11.3k
{
238
11.3k
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
239
11.3k
  int ci, qtblno, i;
240
11.3k
  jpeg_component_info *compptr;
241
11.3k
  JQUANT_TBL *qtbl;
242
11.3k
  DCTELEM *dtbl;
243
244
38.2k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
245
26.8k
       ci++, compptr++) {
246
26.8k
    qtblno = compptr->quant_tbl_no;
247
    /* Make sure specified quantization table is present */
248
26.8k
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
249
26.8k
        cinfo->quant_tbl_ptrs[qtblno] == NULL)
250
0
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
251
26.8k
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
252
    /* Compute divisors for this quant table */
253
    /* We may do this more than once for same table, but it's not a big deal */
254
26.8k
    switch (cinfo->dct_method) {
255
0
#ifdef DCT_ISLOW_SUPPORTED
256
21.0k
    case JDCT_ISLOW:
257
      /* For LL&M IDCT method, divisors are equal to raw quantization
258
       * coefficients multiplied by 8 (to counteract scaling).
259
       */
260
21.0k
      if (fdct->divisors[qtblno] == NULL) {
261
15.2k
        fdct->divisors[qtblno] = (DCTELEM *)
262
15.2k
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
263
15.2k
                                      (DCTSIZE2 * 4) * sizeof(DCTELEM));
264
15.2k
      }
265
21.0k
      dtbl = fdct->divisors[qtblno];
266
1.37M
      for (i = 0; i < DCTSIZE2; i++) {
267
1.34M
#if BITS_IN_JSAMPLE == 8
268
1.34M
#ifdef WITH_SIMD
269
1.34M
        if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
270
0
            fdct->quantize == jsimd_quantize)
271
0
          fdct->quantize = quantize;
272
#else
273
        compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]);
274
#endif
275
#else
276
        dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3;
277
#endif
278
1.34M
      }
279
21.0k
      break;
280
0
#endif
281
0
#ifdef DCT_IFAST_SUPPORTED
282
5.81k
    case JDCT_IFAST:
283
5.81k
      {
284
        /* For AA&N IDCT method, divisors are equal to quantization
285
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
286
         *   scalefactor[0] = 1
287
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
288
         * We apply a further scale factor of 8.
289
         */
290
5.81k
#define CONST_BITS  14
291
5.81k
        static const INT16 aanscales[DCTSIZE2] = {
292
          /* precomputed values scaled up by 14 bits */
293
5.81k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
294
5.81k
          22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
295
5.81k
          21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
296
5.81k
          19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
297
5.81k
          16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
298
5.81k
          12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
299
5.81k
           8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
300
5.81k
           4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
301
5.81k
        };
302
5.81k
        SHIFT_TEMPS
303
304
5.81k
        if (fdct->divisors[qtblno] == NULL) {
305
3.87k
          fdct->divisors[qtblno] = (DCTELEM *)
306
3.87k
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
307
3.87k
                                        (DCTSIZE2 * 4) * sizeof(DCTELEM));
308
3.87k
        }
309
5.81k
        dtbl = fdct->divisors[qtblno];
310
378k
        for (i = 0; i < DCTSIZE2; i++) {
311
372k
#if BITS_IN_JSAMPLE == 8
312
372k
#ifdef WITH_SIMD
313
372k
          if (!compute_reciprocal(
314
372k
                DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
315
372k
                                      (JLONG)aanscales[i]),
316
372k
                        CONST_BITS - 3), &dtbl[i]) &&
317
0
              fdct->quantize == jsimd_quantize)
318
0
            fdct->quantize = quantize;
319
#else
320
          compute_reciprocal(
321
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
322
                                  (JLONG)aanscales[i]),
323
                    CONST_BITS-3), &dtbl[i]);
324
#endif
325
#else
326
          dtbl[i] = (DCTELEM)
327
            DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i],
328
                                  (JLONG)aanscales[i]),
329
                    CONST_BITS - 3);
330
#endif
331
372k
        }
332
5.81k
      }
333
5.81k
      break;
334
0
#endif
335
0
#ifdef DCT_FLOAT_SUPPORTED
336
0
    case JDCT_FLOAT:
337
0
      {
338
        /* For float AA&N IDCT method, divisors are equal to quantization
339
         * coefficients scaled by scalefactor[row]*scalefactor[col], where
340
         *   scalefactor[0] = 1
341
         *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
342
         * We apply a further scale factor of 8.
343
         * What's actually stored is 1/divisor so that the inner loop can
344
         * use a multiplication rather than a division.
345
         */
346
0
        FAST_FLOAT *fdtbl;
347
0
        int row, col;
348
0
        static const double aanscalefactor[DCTSIZE] = {
349
0
          1.0, 1.387039845, 1.306562965, 1.175875602,
350
0
          1.0, 0.785694958, 0.541196100, 0.275899379
351
0
        };
352
353
0
        if (fdct->float_divisors[qtblno] == NULL) {
354
0
          fdct->float_divisors[qtblno] = (FAST_FLOAT *)
355
0
            (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
356
0
                                        DCTSIZE2 * sizeof(FAST_FLOAT));
357
0
        }
358
0
        fdtbl = fdct->float_divisors[qtblno];
359
0
        i = 0;
360
0
        for (row = 0; row < DCTSIZE; row++) {
361
0
          for (col = 0; col < DCTSIZE; col++) {
362
0
            fdtbl[i] = (FAST_FLOAT)
363
0
              (1.0 / (((double)qtbl->quantval[i] *
364
0
                       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
365
0
            i++;
366
0
          }
367
0
        }
368
0
      }
369
0
      break;
370
0
#endif
371
0
    default:
372
0
      ERREXIT(cinfo, JERR_NOT_COMPILED);
373
0
      break;
374
26.8k
    }
375
26.8k
  }
376
11.3k
}
Unexecuted instantiation: jcdctmgr-12.c:start_pass_fdctmgr
377
378
379
/*
380
 * Load data into workspace, applying unsigned->signed conversion.
381
 */
382
383
METHODDEF(void)
384
convsamp(_JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
385
0
{
386
0
  register DCTELEM *workspaceptr;
387
0
  register _JSAMPROW elemptr;
388
0
  register int elemr;
389
390
0
  workspaceptr = workspace;
391
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
392
0
    elemptr = sample_data[elemr] + start_col;
393
394
0
#if DCTSIZE == 8                /* unroll the inner loop */
395
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
396
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
397
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
398
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
399
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
400
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
401
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
402
0
    *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
403
#else
404
    {
405
      register int elemc;
406
      for (elemc = DCTSIZE; elemc > 0; elemc--)
407
        *workspaceptr++ = (*elemptr++) - _CENTERJSAMPLE;
408
    }
409
#endif
410
0
  }
411
0
}
Unexecuted instantiation: jcdctmgr-8.c:convsamp
Unexecuted instantiation: jcdctmgr-12.c:convsamp
412
413
414
/*
415
 * Quantize/descale the coefficients, and store into coef_blocks[].
416
 */
417
418
METHODDEF(void)
419
quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
420
0
{
421
0
  int i;
422
0
  DCTELEM temp;
423
0
  JCOEFPTR output_ptr = coef_block;
424
425
#if BITS_IN_JSAMPLE == 8
426
427
  UDCTELEM recip, corr;
428
  int shift;
429
  UDCTELEM2 product;
430
431
0
  for (i = 0; i < DCTSIZE2; i++) {
432
0
    temp = workspace[i];
433
0
    recip = divisors[i + DCTSIZE2 * 0];
434
0
    corr =  divisors[i + DCTSIZE2 * 1];
435
0
    shift = divisors[i + DCTSIZE2 * 3];
436
437
0
    if (temp < 0) {
438
0
      temp = -temp;
439
0
      product = (UDCTELEM2)(temp + corr) * recip;
440
0
      product >>= shift + sizeof(DCTELEM) * 8;
441
0
      temp = (DCTELEM)product;
442
0
      temp = -temp;
443
0
    } else {
444
0
      product = (UDCTELEM2)(temp + corr) * recip;
445
0
      product >>= shift + sizeof(DCTELEM) * 8;
446
0
      temp = (DCTELEM)product;
447
0
    }
448
0
    output_ptr[i] = (JCOEF)temp;
449
0
  }
450
451
#else
452
453
  register DCTELEM qval;
454
455
0
  for (i = 0; i < DCTSIZE2; i++) {
456
0
    qval = divisors[i];
457
0
    temp = workspace[i];
458
    /* Divide the coefficient value by qval, ensuring proper rounding.
459
     * Since C does not specify the direction of rounding for negative
460
     * quotients, we have to force the dividend positive for portability.
461
     *
462
     * In most files, at least half of the output values will be zero
463
     * (at default quantization settings, more like three-quarters...)
464
     * so we should ensure that this case is fast.  On many machines,
465
     * a comparison is enough cheaper than a divide to make a special test
466
     * a win.  Since both inputs will be nonnegative, we need only test
467
     * for a < b to discover whether a/b is 0.
468
     * If your machine's division is fast enough, define FAST_DIVIDE.
469
     */
470
#ifdef FAST_DIVIDE
471
#define DIVIDE_BY(a, b)  a /= b
472
#else
473
0
#define DIVIDE_BY(a, b)  if (a >= b) a /= b;  else a = 0
474
0
#endif
475
0
    if (temp < 0) {
476
0
      temp = -temp;
477
0
      temp += qval >> 1;        /* for rounding */
478
0
      DIVIDE_BY(temp, qval);
479
0
      temp = -temp;
480
0
    } else {
481
0
      temp += qval >> 1;        /* for rounding */
482
0
      DIVIDE_BY(temp, qval);
483
0
    }
484
0
    output_ptr[i] = (JCOEF)temp;
485
0
  }
486
487
#endif
488
489
0
}
Unexecuted instantiation: jcdctmgr-8.c:quantize
Unexecuted instantiation: jcdctmgr-12.c:quantize
490
491
492
/*
493
 * Perform forward DCT on one or more blocks of a component.
494
 *
495
 * The input samples are taken from the sample_data[] array starting at
496
 * position start_row/start_col, and moving to the right for any additional
497
 * blocks. The quantized coefficients are returned in coef_blocks[].
498
 */
499
500
METHODDEF(void)
501
forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr,
502
            _JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
503
            JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks)
504
/* This version is used for integer DCT implementations. */
505
12.2M
{
506
  /* This routine is heavily used, so it's worth coding it tightly. */
507
12.2M
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
508
12.2M
  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
509
12.2M
  DCTELEM *workspace;
510
12.2M
  JDIMENSION bi;
511
512
  /* Make sure the compiler doesn't look up these every pass */
513
12.2M
  forward_DCT_method_ptr do_dct = fdct->dct;
514
12.2M
  convsamp_method_ptr do_convsamp = fdct->convsamp;
515
12.2M
  quantize_method_ptr do_quantize = fdct->quantize;
516
12.2M
  workspace = fdct->workspace;
517
518
12.2M
  sample_data += start_row;     /* fold in the vertical offset once */
519
520
27.0M
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
521
    /* Load data into workspace, applying unsigned->signed conversion */
522
14.7M
    (*do_convsamp) (sample_data, start_col, workspace);
523
524
    /* Perform the DCT */
525
14.7M
    (*do_dct) (workspace);
526
527
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
528
14.7M
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
529
14.7M
  }
530
12.2M
}
jcdctmgr-8.c:forward_DCT
Line
Count
Source
505
12.2M
{
506
  /* This routine is heavily used, so it's worth coding it tightly. */
507
12.2M
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
508
12.2M
  DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
509
12.2M
  DCTELEM *workspace;
510
12.2M
  JDIMENSION bi;
511
512
  /* Make sure the compiler doesn't look up these every pass */
513
12.2M
  forward_DCT_method_ptr do_dct = fdct->dct;
514
12.2M
  convsamp_method_ptr do_convsamp = fdct->convsamp;
515
12.2M
  quantize_method_ptr do_quantize = fdct->quantize;
516
12.2M
  workspace = fdct->workspace;
517
518
12.2M
  sample_data += start_row;     /* fold in the vertical offset once */
519
520
27.0M
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
521
    /* Load data into workspace, applying unsigned->signed conversion */
522
14.7M
    (*do_convsamp) (sample_data, start_col, workspace);
523
524
    /* Perform the DCT */
525
14.7M
    (*do_dct) (workspace);
526
527
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
528
14.7M
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
529
14.7M
  }
530
12.2M
}
Unexecuted instantiation: jcdctmgr-12.c:forward_DCT
531
532
533
#ifdef DCT_FLOAT_SUPPORTED
534
535
METHODDEF(void)
536
convsamp_float(_JSAMPARRAY sample_data, JDIMENSION start_col,
537
               FAST_FLOAT *workspace)
538
0
{
539
0
  register FAST_FLOAT *workspaceptr;
540
0
  register _JSAMPROW elemptr;
541
0
  register int elemr;
542
543
0
  workspaceptr = workspace;
544
0
  for (elemr = 0; elemr < DCTSIZE; elemr++) {
545
0
    elemptr = sample_data[elemr] + start_col;
546
0
#if DCTSIZE == 8                /* unroll the inner loop */
547
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
548
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
549
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
550
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
551
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
552
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
553
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
554
0
    *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
555
#else
556
    {
557
      register int elemc;
558
      for (elemc = DCTSIZE; elemc > 0; elemc--)
559
        *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - _CENTERJSAMPLE);
560
    }
561
#endif
562
0
  }
563
0
}
Unexecuted instantiation: jcdctmgr-8.c:convsamp_float
Unexecuted instantiation: jcdctmgr-12.c:convsamp_float
564
565
566
METHODDEF(void)
567
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
568
               FAST_FLOAT *workspace)
569
0
{
570
0
  register FAST_FLOAT temp;
571
0
  register int i;
572
0
  register JCOEFPTR output_ptr = coef_block;
573
574
0
  for (i = 0; i < DCTSIZE2; i++) {
575
    /* Apply the quantization and scaling factor */
576
0
    temp = workspace[i] * divisors[i];
577
578
    /* Round to nearest integer.
579
     * Since C does not specify the direction of rounding for negative
580
     * quotients, we have to force the dividend positive for portability.
581
     * The maximum coefficient size is +-16K (for 12-bit data), so this
582
     * code should work for either 16-bit or 32-bit ints.
583
     */
584
0
    output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384);
585
0
  }
586
0
}
Unexecuted instantiation: jcdctmgr-8.c:quantize_float
Unexecuted instantiation: jcdctmgr-12.c:quantize_float
587
588
589
METHODDEF(void)
590
forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr,
591
                  _JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
592
                  JDIMENSION start_row, JDIMENSION start_col,
593
                  JDIMENSION num_blocks)
594
/* This version is used for floating-point DCT implementations. */
595
0
{
596
  /* This routine is heavily used, so it's worth coding it tightly. */
597
0
  my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct;
598
0
  FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
599
0
  FAST_FLOAT *workspace;
600
0
  JDIMENSION bi;
601
602
603
  /* Make sure the compiler doesn't look up these every pass */
604
0
  float_DCT_method_ptr do_dct = fdct->float_dct;
605
0
  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
606
0
  float_quantize_method_ptr do_quantize = fdct->float_quantize;
607
0
  workspace = fdct->float_workspace;
608
609
0
  sample_data += start_row;     /* fold in the vertical offset once */
610
611
0
  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
612
    /* Load data into workspace, applying unsigned->signed conversion */
613
0
    (*do_convsamp) (sample_data, start_col, workspace);
614
615
    /* Perform the DCT */
616
0
    (*do_dct) (workspace);
617
618
    /* Quantize/descale the coefficients, and store into coef_blocks[] */
619
0
    (*do_quantize) (coef_blocks[bi], divisors, workspace);
620
0
  }
621
0
}
Unexecuted instantiation: jcdctmgr-8.c:forward_DCT_float
Unexecuted instantiation: jcdctmgr-12.c:forward_DCT_float
622
623
#endif /* DCT_FLOAT_SUPPORTED */
624
625
626
/*
627
 * Initialize FDCT manager.
628
 */
629
630
GLOBAL(void)
631
_jinit_forward_dct(j_compress_ptr cinfo)
632
11.3k
{
633
11.3k
  my_fdct_ptr fdct;
634
11.3k
  int i;
635
636
11.3k
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
637
0
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
638
639
11.3k
  fdct = (my_fdct_ptr)
640
11.3k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
641
11.3k
                                sizeof(my_fdct_controller));
642
11.3k
  cinfo->fdct = (struct jpeg_forward_dct *)fdct;
643
11.3k
  fdct->pub.start_pass = start_pass_fdctmgr;
644
645
  /* First determine the DCT... */
646
11.3k
  switch (cinfo->dct_method) {
647
0
#ifdef DCT_ISLOW_SUPPORTED
648
9.44k
  case JDCT_ISLOW:
649
9.44k
    fdct->pub._forward_DCT = forward_DCT;
650
#ifdef WITH_SIMD
651
9.44k
    if (jsimd_can_fdct_islow())
652
9.44k
      fdct->dct = jsimd_fdct_islow;
653
0
    else
654
0
#endif
655
0
      fdct->dct = _jpeg_fdct_islow;
656
9.44k
    break;
657
0
#endif
658
0
#ifdef DCT_IFAST_SUPPORTED
659
1.93k
  case JDCT_IFAST:
660
1.93k
    fdct->pub._forward_DCT = forward_DCT;
661
#ifdef WITH_SIMD
662
1.93k
    if (jsimd_can_fdct_ifast())
663
1.93k
      fdct->dct = jsimd_fdct_ifast;
664
0
    else
665
0
#endif
666
0
      fdct->dct = _jpeg_fdct_ifast;
667
1.93k
    break;
668
0
#endif
669
0
#ifdef DCT_FLOAT_SUPPORTED
670
0
  case JDCT_FLOAT:
671
0
    fdct->pub._forward_DCT = forward_DCT_float;
672
#ifdef WITH_SIMD
673
0
    if (jsimd_can_fdct_float())
674
0
      fdct->float_dct = jsimd_fdct_float;
675
0
    else
676
0
#endif
677
0
      fdct->float_dct = jpeg_fdct_float;
678
0
    break;
679
0
#endif
680
0
  default:
681
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
682
0
    break;
683
11.3k
  }
684
685
  /* ...then the supporting stages. */
686
11.3k
  switch (cinfo->dct_method) {
687
0
#ifdef DCT_ISLOW_SUPPORTED
688
9.44k
  case JDCT_ISLOW:
689
9.44k
#endif
690
9.44k
#ifdef DCT_IFAST_SUPPORTED
691
11.3k
  case JDCT_IFAST:
692
11.3k
#endif
693
11.3k
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
694
#ifdef WITH_SIMD
695
11.3k
    if (jsimd_can_convsamp())
696
11.3k
      fdct->convsamp = jsimd_convsamp;
697
0
    else
698
0
#endif
699
0
      fdct->convsamp = convsamp;
700
#ifdef WITH_SIMD
701
11.3k
    if (jsimd_can_quantize())
702
11.3k
      fdct->quantize = jsimd_quantize;
703
0
    else
704
0
#endif
705
0
      fdct->quantize = quantize;
706
11.3k
    break;
707
0
#endif
708
0
#ifdef DCT_FLOAT_SUPPORTED
709
0
  case JDCT_FLOAT:
710
#ifdef WITH_SIMD
711
0
    if (jsimd_can_convsamp_float())
712
0
      fdct->float_convsamp = jsimd_convsamp_float;
713
0
    else
714
0
#endif
715
0
      fdct->float_convsamp = convsamp_float;
716
#ifdef WITH_SIMD
717
0
    if (jsimd_can_quantize_float())
718
0
      fdct->float_quantize = jsimd_quantize_float;
719
0
    else
720
0
#endif
721
0
      fdct->float_quantize = quantize_float;
722
0
    break;
723
0
#endif
724
0
  default:
725
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
726
0
    break;
727
11.3k
  }
728
729
  /* Allocate workspace memory */
730
11.3k
#ifdef DCT_FLOAT_SUPPORTED
731
11.3k
  if (cinfo->dct_method == JDCT_FLOAT)
732
0
    fdct->float_workspace = (FAST_FLOAT *)
733
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
734
0
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
735
11.3k
  else
736
11.3k
#endif
737
11.3k
    fdct->workspace = (DCTELEM *)
738
11.3k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
739
11.3k
                                  sizeof(DCTELEM) * DCTSIZE2);
740
741
  /* Mark divisor tables unallocated */
742
56.9k
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
743
45.5k
    fdct->divisors[i] = NULL;
744
45.5k
#ifdef DCT_FLOAT_SUPPORTED
745
    fdct->float_divisors[i] = NULL;
746
45.5k
#endif
747
45.5k
  }
748
11.3k
}
jinit_forward_dct
Line
Count
Source
632
11.3k
{
633
11.3k
  my_fdct_ptr fdct;
634
11.3k
  int i;
635
636
11.3k
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
637
0
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
638
639
11.3k
  fdct = (my_fdct_ptr)
640
11.3k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
641
11.3k
                                sizeof(my_fdct_controller));
642
11.3k
  cinfo->fdct = (struct jpeg_forward_dct *)fdct;
643
11.3k
  fdct->pub.start_pass = start_pass_fdctmgr;
644
645
  /* First determine the DCT... */
646
11.3k
  switch (cinfo->dct_method) {
647
0
#ifdef DCT_ISLOW_SUPPORTED
648
9.44k
  case JDCT_ISLOW:
649
9.44k
    fdct->pub._forward_DCT = forward_DCT;
650
9.44k
#ifdef WITH_SIMD
651
9.44k
    if (jsimd_can_fdct_islow())
652
9.44k
      fdct->dct = jsimd_fdct_islow;
653
0
    else
654
0
#endif
655
0
      fdct->dct = _jpeg_fdct_islow;
656
9.44k
    break;
657
0
#endif
658
0
#ifdef DCT_IFAST_SUPPORTED
659
1.93k
  case JDCT_IFAST:
660
1.93k
    fdct->pub._forward_DCT = forward_DCT;
661
1.93k
#ifdef WITH_SIMD
662
1.93k
    if (jsimd_can_fdct_ifast())
663
1.93k
      fdct->dct = jsimd_fdct_ifast;
664
0
    else
665
0
#endif
666
0
      fdct->dct = _jpeg_fdct_ifast;
667
1.93k
    break;
668
0
#endif
669
0
#ifdef DCT_FLOAT_SUPPORTED
670
0
  case JDCT_FLOAT:
671
0
    fdct->pub._forward_DCT = forward_DCT_float;
672
0
#ifdef WITH_SIMD
673
0
    if (jsimd_can_fdct_float())
674
0
      fdct->float_dct = jsimd_fdct_float;
675
0
    else
676
0
#endif
677
0
      fdct->float_dct = jpeg_fdct_float;
678
0
    break;
679
0
#endif
680
0
  default:
681
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
682
0
    break;
683
11.3k
  }
684
685
  /* ...then the supporting stages. */
686
11.3k
  switch (cinfo->dct_method) {
687
0
#ifdef DCT_ISLOW_SUPPORTED
688
9.44k
  case JDCT_ISLOW:
689
9.44k
#endif
690
9.44k
#ifdef DCT_IFAST_SUPPORTED
691
11.3k
  case JDCT_IFAST:
692
11.3k
#endif
693
11.3k
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
694
11.3k
#ifdef WITH_SIMD
695
11.3k
    if (jsimd_can_convsamp())
696
11.3k
      fdct->convsamp = jsimd_convsamp;
697
0
    else
698
0
#endif
699
0
      fdct->convsamp = convsamp;
700
11.3k
#ifdef WITH_SIMD
701
11.3k
    if (jsimd_can_quantize())
702
11.3k
      fdct->quantize = jsimd_quantize;
703
0
    else
704
0
#endif
705
0
      fdct->quantize = quantize;
706
11.3k
    break;
707
0
#endif
708
0
#ifdef DCT_FLOAT_SUPPORTED
709
0
  case JDCT_FLOAT:
710
0
#ifdef WITH_SIMD
711
0
    if (jsimd_can_convsamp_float())
712
0
      fdct->float_convsamp = jsimd_convsamp_float;
713
0
    else
714
0
#endif
715
0
      fdct->float_convsamp = convsamp_float;
716
0
#ifdef WITH_SIMD
717
0
    if (jsimd_can_quantize_float())
718
0
      fdct->float_quantize = jsimd_quantize_float;
719
0
    else
720
0
#endif
721
0
      fdct->float_quantize = quantize_float;
722
0
    break;
723
0
#endif
724
0
  default:
725
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
726
0
    break;
727
11.3k
  }
728
729
  /* Allocate workspace memory */
730
11.3k
#ifdef DCT_FLOAT_SUPPORTED
731
11.3k
  if (cinfo->dct_method == JDCT_FLOAT)
732
0
    fdct->float_workspace = (FAST_FLOAT *)
733
0
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
734
0
                                  sizeof(FAST_FLOAT) * DCTSIZE2);
735
11.3k
  else
736
11.3k
#endif
737
11.3k
    fdct->workspace = (DCTELEM *)
738
11.3k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
739
11.3k
                                  sizeof(DCTELEM) * DCTSIZE2);
740
741
  /* Mark divisor tables unallocated */
742
56.9k
  for (i = 0; i < NUM_QUANT_TBLS; i++) {
743
45.5k
    fdct->divisors[i] = NULL;
744
45.5k
#ifdef DCT_FLOAT_SUPPORTED
745
    fdct->float_divisors[i] = NULL;
746
45.5k
#endif
747
45.5k
  }
748
11.3k
}
Unexecuted instantiation: j12init_forward_dct