Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.2.0.x/jcsample.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcsample.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
8
 * Copyright (C) 2014, MIPS Technologies, Inc., California.
9
 * Copyright (C) 2015, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains downsampling routines.
14
 *
15
 * Downsampling input data is counted in "row groups".  A row group
16
 * is defined to be max_v_samp_factor pixel rows of each component,
17
 * from which the downsampler produces v_samp_factor sample rows.
18
 * A single row group is processed in each call to the downsampler module.
19
 *
20
 * The downsampler is responsible for edge-expansion of its output data
21
 * to fill an integral number of DCT blocks horizontally.  The source buffer
22
 * may be modified if it is helpful for this purpose (the source buffer is
23
 * allocated wide enough to correspond to the desired output width).
24
 * The caller (the prep controller) is responsible for vertical padding.
25
 *
26
 * The downsampler may request "context rows" by setting need_context_rows
27
 * during startup.  In this case, the input arrays will contain at least
28
 * one row group's worth of pixels above and below the passed-in data;
29
 * the caller will create dummy rows at image top and bottom by replicating
30
 * the first or last real pixel row.
31
 *
32
 * An excellent reference for image resampling is
33
 *   Digital Image Warping, George Wolberg, 1990.
34
 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
35
 *
36
 * The downsampling algorithm used here is a simple average of the source
37
 * pixels covered by the output pixel.  The hi-falutin sampling literature
38
 * refers to this as a "box filter".  In general the characteristics of a box
39
 * filter are not very good, but for the specific cases we normally use (1:1
40
 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
41
 * nearly so bad.  If you intend to use other sampling ratios, you'd be well
42
 * advised to improve this code.
43
 *
44
 * A simple input-smoothing capability is provided.  This is mainly intended
45
 * for cleaning up color-dithered GIF input files (if you find it inadequate,
46
 * we suggest using an external filtering program such as pnmconvol).  When
47
 * enabled, each input pixel P is replaced by a weighted sum of itself and its
48
 * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
49
 * where SF = (smoothing_factor / 1024).
50
 * Currently, smoothing is only supported for 2h2v sampling factors.
51
 */
52
53
#define JPEG_INTERNALS
54
#include "jinclude.h"
55
#include "jpeglib.h"
56
#include "jsimd.h"
57
58
59
/* Pointer to routine to downsample a single component */
60
typedef void (*downsample1_ptr) (j_compress_ptr cinfo,
61
                                 jpeg_component_info *compptr,
62
                                 JSAMPARRAY input_data,
63
                                 JSAMPARRAY output_data);
64
65
/* Private subobject */
66
67
typedef struct {
68
  struct jpeg_downsampler pub;  /* public fields */
69
70
  /* Downsampling method pointers, one per component */
71
  downsample1_ptr methods[MAX_COMPONENTS];
72
} my_downsampler;
73
74
typedef my_downsampler *my_downsample_ptr;
75
76
77
/*
78
 * Initialize for a downsampling pass.
79
 */
80
81
METHODDEF(void)
82
start_pass_downsample(j_compress_ptr cinfo)
83
71.5k
{
84
  /* no work for now */
85
71.5k
}
86
87
88
/*
89
 * Expand a component horizontally from width input_cols to width output_cols,
90
 * by duplicating the rightmost samples.
91
 */
92
93
LOCAL(void)
94
expand_right_edge(JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols,
95
                  JDIMENSION output_cols)
96
630M
{
97
630M
  register JSAMPROW ptr;
98
630M
  register JSAMPLE pixval;
99
630M
  register int count;
100
630M
  int row;
101
630M
  int numcols = (int)(output_cols - input_cols);
102
103
630M
  if (numcols > 0) {
104
1.24G
    for (row = 0; row < num_rows; row++) {
105
702M
      ptr = image_data[row] + input_cols;
106
702M
      pixval = ptr[-1];         /* don't need GETJSAMPLE() here */
107
8.63G
      for (count = numcols; count > 0; count--)
108
7.92G
        *ptr++ = pixval;
109
702M
    }
110
546M
  }
111
630M
}
112
113
114
/*
115
 * Do downsampling for a whole row group (all components).
116
 *
117
 * In this version we simply downsample each component independently.
118
 */
119
120
METHODDEF(void)
121
sep_downsample(j_compress_ptr cinfo, JSAMPIMAGE input_buf,
122
               JDIMENSION in_row_index, JSAMPIMAGE output_buf,
123
               JDIMENSION out_row_group_index)
124
296M
{
125
296M
  my_downsample_ptr downsample = (my_downsample_ptr)cinfo->downsample;
126
296M
  int ci;
127
296M
  jpeg_component_info *compptr;
128
296M
  JSAMPARRAY in_ptr, out_ptr;
129
130
1.02G
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
131
725M
       ci++, compptr++) {
132
725M
    in_ptr = input_buf[ci] + in_row_index;
133
725M
    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
134
725M
    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
135
725M
  }
136
296M
}
137
138
139
/*
140
 * Downsample pixel values of a single component.
141
 * One row group is processed per call.
142
 * This version handles arbitrary integral sampling ratios, without smoothing.
143
 * Note that this version is not actually used for customary sampling ratios.
144
 */
145
146
METHODDEF(void)
147
int_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
148
               JSAMPARRAY input_data, JSAMPARRAY output_data)
149
52.5M
{
150
52.5M
  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
151
52.5M
  JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */
152
52.5M
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
153
52.5M
  JSAMPROW inptr, outptr;
154
52.5M
  JLONG outvalue;
155
156
52.5M
  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
157
52.5M
  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
158
52.5M
  numpix = h_expand * v_expand;
159
52.5M
  numpix2 = numpix / 2;
160
161
  /* Expand input data enough to let all the output samples be generated
162
   * by the standard loop.  Special-casing padded output would be more
163
   * efficient.
164
   */
165
52.5M
  expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
166
52.5M
                    output_cols * h_expand);
167
168
52.5M
  inrow = 0;
169
111M
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
170
58.6M
    outptr = output_data[outrow];
171
662M
    for (outcol = 0, outcol_h = 0; outcol < output_cols;
172
604M
         outcol++, outcol_h += h_expand) {
173
604M
      outvalue = 0;
174
1.39G
      for (v = 0; v < v_expand; v++) {
175
795M
        inptr = input_data[inrow + v] + outcol_h;
176
2.82G
        for (h = 0; h < h_expand; h++) {
177
2.03G
          outvalue += (JLONG)GETJSAMPLE(*inptr++);
178
2.03G
        }
179
795M
      }
180
604M
      *outptr++ = (JSAMPLE)((outvalue + numpix2) / numpix);
181
604M
    }
182
58.6M
    inrow += v_expand;
183
58.6M
  }
184
52.5M
}
185
186
187
/*
188
 * Downsample pixel values of a single component.
189
 * This version handles the special case of a full-size component,
190
 * without smoothing.
191
 */
192
193
METHODDEF(void)
194
fullsize_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
195
                    JSAMPARRAY input_data, JSAMPARRAY output_data)
196
133M
{
197
  /* Copy the data */
198
133M
  jcopy_sample_rows(input_data, 0, output_data, 0, cinfo->max_v_samp_factor,
199
133M
                    cinfo->image_width);
200
  /* Edge-expand */
201
133M
  expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
202
133M
                    compptr->width_in_blocks * DCTSIZE);
203
133M
}
204
205
206
/*
207
 * Downsample pixel values of a single component.
208
 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
209
 * without smoothing.
210
 *
211
 * A note about the "bias" calculations: when rounding fractional values to
212
 * integer, we do not want to always round 0.5 up to the next integer.
213
 * If we did that, we'd introduce a noticeable bias towards larger values.
214
 * Instead, this code is arranged so that 0.5 will be rounded up or down at
215
 * alternate pixel locations (a simple ordered dither pattern).
216
 */
217
218
METHODDEF(void)
219
h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
220
                JSAMPARRAY input_data, JSAMPARRAY output_data)
221
{
222
  int outrow;
223
  JDIMENSION outcol;
224
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
225
  register JSAMPROW inptr, outptr;
226
  register int bias;
227
228
  /* Expand input data enough to let all the output samples be generated
229
   * by the standard loop.  Special-casing padded output would be more
230
   * efficient.
231
   */
232
  expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
233
                    output_cols * 2);
234
235
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
236
    outptr = output_data[outrow];
237
    inptr = input_data[outrow];
238
    bias = 0;                   /* bias = 0,1,0,1,... for successive samples */
239
    for (outcol = 0; outcol < output_cols; outcol++) {
240
      *outptr++ =
241
        (JSAMPLE)((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) + bias) >> 1);
242
      bias ^= 1;                /* 0=>1, 1=>0 */
243
      inptr += 2;
244
    }
245
  }
246
}
247
248
249
/*
250
 * Downsample pixel values of a single component.
251
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
252
 * without smoothing.
253
 */
254
255
METHODDEF(void)
256
h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
257
                JSAMPARRAY input_data, JSAMPARRAY output_data)
258
{
259
  int inrow, outrow;
260
  JDIMENSION outcol;
261
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
262
  register JSAMPROW inptr0, inptr1, outptr;
263
  register int bias;
264
265
  /* Expand input data enough to let all the output samples be generated
266
   * by the standard loop.  Special-casing padded output would be more
267
   * efficient.
268
   */
269
  expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
270
                    output_cols * 2);
271
272
  inrow = 0;
273
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
274
    outptr = output_data[outrow];
275
    inptr0 = input_data[inrow];
276
    inptr1 = input_data[inrow + 1];
277
    bias = 1;                   /* bias = 1,2,1,2,... for successive samples */
278
    for (outcol = 0; outcol < output_cols; outcol++) {
279
      *outptr++ =
280
        (JSAMPLE)((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
281
                   GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) + bias) >> 2);
282
      bias ^= 3;                /* 1=>2, 2=>1 */
283
      inptr0 += 2;  inptr1 += 2;
284
    }
285
    inrow += 2;
286
  }
287
}
288
289
290
#ifdef INPUT_SMOOTHING_SUPPORTED
291
292
/*
293
 * Downsample pixel values of a single component.
294
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
295
 * with smoothing.  One row of context is required.
296
 */
297
298
METHODDEF(void)
299
h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
300
                       JSAMPARRAY input_data, JSAMPARRAY output_data)
301
12.1M
{
302
12.1M
  int inrow, outrow;
303
12.1M
  JDIMENSION colctr;
304
12.1M
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
305
12.1M
  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
306
12.1M
  JLONG membersum, neighsum, memberscale, neighscale;
307
308
  /* Expand input data enough to let all the output samples be generated
309
   * by the standard loop.  Special-casing padded output would be more
310
   * efficient.
311
   */
312
12.1M
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
313
12.1M
                    cinfo->image_width, output_cols * 2);
314
315
  /* We don't bother to form the individual "smoothed" input pixel values;
316
   * we can directly compute the output which is the average of the four
317
   * smoothed values.  Each of the four member pixels contributes a fraction
318
   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
319
   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
320
   * output.  The four corner-adjacent neighbor pixels contribute a fraction
321
   * SF to just one smoothed pixel, or SF/4 to the final output; while the
322
   * eight edge-adjacent neighbors contribute SF to each of two smoothed
323
   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
324
   * factors are scaled by 2^16 = 65536.
325
   * Also recall that SF = smoothing_factor / 1024.
326
   */
327
328
12.1M
  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
329
12.1M
  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
330
331
12.1M
  inrow = 0;
332
24.3M
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
333
12.1M
    outptr = output_data[outrow];
334
12.1M
    inptr0 = input_data[inrow];
335
12.1M
    inptr1 = input_data[inrow + 1];
336
12.1M
    above_ptr = input_data[inrow - 1];
337
12.1M
    below_ptr = input_data[inrow + 2];
338
339
    /* Special case for first column: pretend column -1 is same as column 0 */
340
12.1M
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
341
12.1M
                GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
342
12.1M
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
343
12.1M
               GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
344
12.1M
               GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
345
12.1M
               GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
346
12.1M
    neighsum += neighsum;
347
12.1M
    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
348
12.1M
                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
349
12.1M
    membersum = membersum * memberscale + neighsum * neighscale;
350
12.1M
    *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
351
12.1M
    inptr0 += 2;  inptr1 += 2;  above_ptr += 2;  below_ptr += 2;
352
353
200M
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
354
      /* sum of pixels directly mapped to this output element */
355
188M
      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
356
188M
                  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
357
      /* sum of edge-neighbor pixels */
358
188M
      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
359
188M
                 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
360
188M
                 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
361
188M
                 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
362
      /* The edge-neighbors count twice as much as corner-neighbors */
363
188M
      neighsum += neighsum;
364
      /* Add in the corner-neighbors */
365
188M
      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
366
188M
                  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
367
      /* form final output scaled up by 2^16 */
368
188M
      membersum = membersum * memberscale + neighsum * neighscale;
369
      /* round, descale and output it */
370
188M
      *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
371
188M
      inptr0 += 2;  inptr1 += 2;  above_ptr += 2;  below_ptr += 2;
372
188M
    }
373
374
    /* Special case for last column */
375
12.1M
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
376
12.1M
                GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
377
12.1M
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
378
12.1M
               GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
379
12.1M
               GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
380
12.1M
               GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
381
12.1M
    neighsum += neighsum;
382
12.1M
    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
383
12.1M
                GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
384
12.1M
    membersum = membersum * memberscale + neighsum * neighscale;
385
12.1M
    *outptr = (JSAMPLE)((membersum + 32768) >> 16);
386
387
12.1M
    inrow += 2;
388
12.1M
  }
389
12.1M
}
390
391
392
/*
393
 * Downsample pixel values of a single component.
394
 * This version handles the special case of a full-size component,
395
 * with smoothing.  One row of context is required.
396
 */
397
398
METHODDEF(void)
399
fullsize_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
400
                           JSAMPARRAY input_data, JSAMPARRAY output_data)
401
6.08M
{
402
6.08M
  int outrow;
403
6.08M
  JDIMENSION colctr;
404
6.08M
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
405
6.08M
  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
406
6.08M
  JLONG membersum, neighsum, memberscale, neighscale;
407
6.08M
  int colsum, lastcolsum, nextcolsum;
408
409
  /* Expand input data enough to let all the output samples be generated
410
   * by the standard loop.  Special-casing padded output would be more
411
   * efficient.
412
   */
413
6.08M
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
414
6.08M
                    cinfo->image_width, output_cols);
415
416
  /* Each of the eight neighbor pixels contributes a fraction SF to the
417
   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
418
   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
419
   * Also recall that SF = smoothing_factor / 1024.
420
   */
421
422
6.08M
  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
423
6.08M
  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
424
425
18.2M
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
426
12.1M
    outptr = output_data[outrow];
427
12.1M
    inptr = input_data[outrow];
428
12.1M
    above_ptr = input_data[outrow - 1];
429
12.1M
    below_ptr = input_data[outrow + 1];
430
431
    /* Special case for first column */
432
12.1M
    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
433
12.1M
             GETJSAMPLE(*inptr);
434
12.1M
    membersum = GETJSAMPLE(*inptr++);
435
12.1M
    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
436
12.1M
                 GETJSAMPLE(*inptr);
437
12.1M
    neighsum = colsum + (colsum - membersum) + nextcolsum;
438
12.1M
    membersum = membersum * memberscale + neighsum * neighscale;
439
12.1M
    *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
440
12.1M
    lastcolsum = colsum;  colsum = nextcolsum;
441
442
322M
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
443
310M
      membersum = GETJSAMPLE(*inptr++);
444
310M
      above_ptr++;  below_ptr++;
445
310M
      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
446
310M
                   GETJSAMPLE(*inptr);
447
310M
      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
448
310M
      membersum = membersum * memberscale + neighsum * neighscale;
449
310M
      *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
450
310M
      lastcolsum = colsum;  colsum = nextcolsum;
451
310M
    }
452
453
    /* Special case for last column */
454
12.1M
    membersum = GETJSAMPLE(*inptr);
455
12.1M
    neighsum = lastcolsum + (colsum - membersum) + colsum;
456
12.1M
    membersum = membersum * memberscale + neighsum * neighscale;
457
12.1M
    *outptr = (JSAMPLE)((membersum + 32768) >> 16);
458
459
12.1M
  }
460
6.08M
}
461
462
#endif /* INPUT_SMOOTHING_SUPPORTED */
463
464
465
/*
466
 * Module initialization routine for downsampling.
467
 * Note that we must select a routine for each component.
468
 */
469
470
GLOBAL(void)
471
jinit_downsampler(j_compress_ptr cinfo)
472
43.8k
{
473
43.8k
  my_downsample_ptr downsample;
474
43.8k
  int ci;
475
43.8k
  jpeg_component_info *compptr;
476
43.8k
  boolean smoothok = TRUE;
477
478
43.8k
  downsample = (my_downsample_ptr)
479
43.8k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
480
43.8k
                                sizeof(my_downsampler));
481
43.8k
  cinfo->downsample = (struct jpeg_downsampler *)downsample;
482
43.8k
  downsample->pub.start_pass = start_pass_downsample;
483
43.8k
  downsample->pub.downsample = sep_downsample;
484
43.8k
  downsample->pub.need_context_rows = FALSE;
485
486
43.8k
  if (cinfo->CCIR601_sampling)
487
0
    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
488
489
  /* Verify we can handle the sampling factors, and set up method pointers */
490
154k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
491
110k
       ci++, compptr++) {
492
110k
    if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
493
110k
        compptr->v_samp_factor == cinfo->max_v_samp_factor) {
494
53.1k
#ifdef INPUT_SMOOTHING_SUPPORTED
495
53.1k
      if (cinfo->smoothing_factor) {
496
3.88k
        downsample->methods[ci] = fullsize_smooth_downsample;
497
3.88k
        downsample->pub.need_context_rows = TRUE;
498
3.88k
      } else
499
49.2k
#endif
500
49.2k
        downsample->methods[ci] = fullsize_downsample;
501
56.9k
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
502
56.9k
               compptr->v_samp_factor == cinfo->max_v_samp_factor) {
503
15.0k
      smoothok = FALSE;
504
15.0k
      if (jsimd_can_h2v1_downsample())
505
15.0k
        downsample->methods[ci] = jsimd_h2v1_downsample;
506
0
      else
507
0
        downsample->methods[ci] = h2v1_downsample;
508
41.8k
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
509
41.8k
               compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
510
18.9k
#ifdef INPUT_SMOOTHING_SUPPORTED
511
18.9k
      if (cinfo->smoothing_factor) {
512
#if defined(__mips__)
513
        if (jsimd_can_h2v2_smooth_downsample())
514
          downsample->methods[ci] = jsimd_h2v2_smooth_downsample;
515
        else
516
#endif
517
7.77k
          downsample->methods[ci] = h2v2_smooth_downsample;
518
7.77k
        downsample->pub.need_context_rows = TRUE;
519
7.77k
      } else
520
11.1k
#endif
521
11.1k
      {
522
11.1k
        if (jsimd_can_h2v2_downsample())
523
11.1k
          downsample->methods[ci] = jsimd_h2v2_downsample;
524
0
        else
525
0
          downsample->methods[ci] = h2v2_downsample;
526
11.1k
      }
527
22.9k
    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
528
22.9k
               (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
529
22.9k
      smoothok = FALSE;
530
22.9k
      downsample->methods[ci] = int_downsample;
531
22.9k
    } else
532
0
      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
533
110k
  }
534
535
43.8k
#ifdef INPUT_SMOOTHING_SUPPORTED
536
43.8k
  if (cinfo->smoothing_factor && !smoothok)
537
0
    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
538
43.8k
#endif
539
43.8k
}