Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.2.1.x/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
85.9k
{
79
85.9k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
85.9k
  int ci, blkn, dctbl, actbl;
81
85.9k
  d_derived_tbl **pdtbl;
82
85.9k
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
85.9k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
85.9k
      cinfo->Ah != 0 || cinfo->Al != 0)
90
78.1k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
216k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
130k
    compptr = cinfo->cur_comp_info[ci];
94
130k
    dctbl = compptr->dc_tbl_no;
95
130k
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
130k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
130k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
130k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
130k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
130k
    entropy->saved.last_dc_val[ci] = 0;
104
130k
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
297k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
211k
    ci = cinfo->MCU_membership[blkn];
109
211k
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
211k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
211k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
211k
    if (compptr->component_needed) {
115
209k
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
209k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
209k
    } else {
119
1.70k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
1.70k
    }
121
211k
  }
122
123
  /* Initialize bitread state variables */
124
85.9k
  entropy->bitstate.bits_left = 0;
125
85.9k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
85.9k
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
85.9k
  entropy->restarts_to_go = cinfo->restart_interval;
130
85.9k
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
207k
{
144
207k
  JHUFF_TBL *htbl;
145
207k
  d_derived_tbl *dtbl;
146
207k
  int p, i, l, si, numsymbols;
147
207k
  int lookbits, ctr;
148
207k
  char huffsize[257];
149
207k
  unsigned int huffcode[257];
150
207k
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
207k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
262
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
207k
  htbl =
160
207k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
207k
  if (htbl == NULL)
162
160
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
207k
  if (*pdtbl == NULL)
166
27.9k
    *pdtbl = (d_derived_tbl *)
167
27.9k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
27.9k
                                  sizeof(d_derived_tbl));
169
207k
  dtbl = *pdtbl;
170
207k
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
207k
  p = 0;
175
3.52M
  for (l = 1; l <= 16; l++) {
176
3.31M
    i = (int)htbl->bits[l];
177
3.31M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
13.1M
    while (i--)
180
9.80M
      huffsize[p++] = (char)l;
181
3.31M
  }
182
207k
  huffsize[p] = 0;
183
207k
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
207k
  code = 0;
189
207k
  si = huffsize[0];
190
207k
  p = 0;
191
2.01M
  while (huffsize[p]) {
192
11.6M
    while (((int)huffsize[p]) == si) {
193
9.80M
      huffcode[p++] = code;
194
9.80M
      code++;
195
9.80M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
1.80M
    if (((JLONG)code) >= (((JLONG)1) << si))
200
44
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
1.80M
    code <<= 1;
202
1.80M
    si++;
203
1.80M
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
207k
  p = 0;
208
3.52M
  for (l = 1; l <= 16; l++) {
209
3.31M
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
1.64M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
1.64M
      p += htbl->bits[l];
215
1.64M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
1.67M
    } else {
217
1.67M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
1.67M
    }
219
3.31M
  }
220
207k
  dtbl->valoffset[17] = 0;
221
207k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
53.2M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
53.0M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
207k
  p = 0;
234
1.86M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
4.03M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
2.38M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
51.5M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
49.1M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
49.1M
        lookbits++;
242
49.1M
      }
243
2.38M
    }
244
1.65M
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
207k
  if (isDC) {
253
999k
    for (i = 0; i < numsymbols; i++) {
254
894k
      int sym = htbl->huffval[i];
255
894k
      if (sym < 0 || sym > 15)
256
123
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
894k
    }
258
105k
  }
259
207k
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
129M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
69.1M
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
69.1M
  register const JOCTET *next_input_byte = state->next_input_byte;
292
69.1M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
69.1M
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
69.1M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
7.46M
    while (bits_left < MIN_GET_BITS) {
301
6.60M
      register int c;
302
303
      /* Attempt to read a byte */
304
6.60M
      if (bytes_in_buffer == 0) {
305
12.3k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
12.3k
        next_input_byte = cinfo->src->next_input_byte;
308
12.3k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
12.3k
      }
310
6.60M
      bytes_in_buffer--;
311
6.60M
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
6.60M
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
611k
        do {
321
611k
          if (bytes_in_buffer == 0) {
322
433
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
433
            next_input_byte = cinfo->src->next_input_byte;
325
433
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
433
          }
327
611k
          bytes_in_buffer--;
328
611k
          c = *next_input_byte++;
329
611k
        } while (c == 0xFF);
330
331
357k
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
182k
          c = 0xFF;
334
182k
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
175k
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
175k
          goto no_more_bytes;
346
175k
        }
347
357k
      }
348
349
      /* OK, load c into get_buffer */
350
6.42M
      get_buffer = (get_buffer << 8) | c;
351
6.42M
      bits_left += 8;
352
6.42M
    } /* end while */
353
68.1M
  } else {
354
68.3M
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
68.3M
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
60.8M
      if (!cinfo->entropy->insufficient_data) {
366
178k
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
178k
        cinfo->entropy->insufficient_data = TRUE;
368
178k
      }
369
      /* Fill the buffer with zero bits */
370
60.8M
      get_buffer <<= MIN_GET_BITS - bits_left;
371
60.8M
      bits_left = MIN_GET_BITS;
372
60.8M
    }
373
68.3M
  }
374
375
  /* Unload the local registers */
376
69.1M
  state->next_input_byte = next_input_byte;
377
69.1M
  state->bytes_in_buffer = bytes_in_buffer;
378
69.1M
  state->get_buffer = get_buffer;
379
69.1M
  state->bits_left = bits_left;
380
381
69.1M
  return TRUE;
382
69.1M
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
22.7M
#define GET_BYTE { \
390
22.7M
  register int c0, c1; \
391
22.7M
  c0 = *buffer++; \
392
22.7M
  c1 = *buffer; \
393
22.7M
  /* Pre-execute most common case */ \
394
22.7M
  get_buffer = (get_buffer << 8) | c0; \
395
22.7M
  bits_left += 8; \
396
22.7M
  if (c0 == 0xFF) { \
397
1.99M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
1.99M
    buffer++; \
399
1.99M
    if (c1 != 0) { \
400
1.44M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
1.44M
      cinfo->unread_marker = c1; \
402
1.44M
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
1.44M
      buffer -= 2; \
404
1.44M
      get_buffer &= ~0xFF; \
405
1.44M
    } \
406
1.99M
  } \
407
22.7M
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
66.3M
  if (bits_left <= 16) { \
414
3.78M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
3.78M
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
7.79M
{
438
7.79M
  register int l = min_bits;
439
7.79M
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
7.79M
  CHECK_BIT_BUFFER(*state, l, return -1);
445
7.79M
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
13.6M
  while (code > htbl->maxcode[l]) {
451
5.84M
    code <<= 1;
452
5.84M
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
5.84M
    code |= GET_BITS(1);
454
5.84M
    l++;
455
5.84M
  }
456
457
  /* Unload the local registers */
458
7.79M
  state->get_buffer = get_buffer;
459
7.79M
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
7.79M
  if (l > 16) {
464
170k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
170k
    return 0;                   /* fake a zero as the safest result */
466
170k
  }
467
468
7.62M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
7.79M
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
39.7M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
39.7M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
1.52M
{
512
1.52M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
1.52M
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
1.52M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
1.52M
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
1.52M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
3.53M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
2.00M
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
1.52M
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
1.52M
  if (cinfo->unread_marker == 0)
537
18.3k
    entropy->pub.insufficient_data = FALSE;
538
539
1.52M
  return TRUE;
540
1.52M
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
817k
{
552
817k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
817k
  BITREAD_STATE_VARS;
554
817k
  int blkn;
555
817k
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
817k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
817k
  state = entropy->saved;
561
562
1.92M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
1.10M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
1.10M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
1.10M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
1.10M
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
1.10M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
1.10M
    if (s) {
573
524k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
524k
      r = GET_BITS(s);
575
524k
      s = HUFF_EXTEND(r, s);
576
524k
    }
577
578
1.10M
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
1.09M
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
1.09M
      s += state.last_dc_val[ci];
590
1.09M
      state.last_dc_val[ci] = s;
591
1.09M
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
1.09M
        (*block)[0] = (JCOEF)s;
594
1.09M
      }
595
1.09M
    }
596
597
1.10M
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
11.1M
      for (k = 1; k < DCTSIZE2; k++) {
602
10.8M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
10.8M
        r = s >> 4;
605
10.8M
        s &= 15;
606
607
10.8M
        if (s) {
608
9.64M
          k += r;
609
9.64M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
9.64M
          r = GET_BITS(s);
611
9.64M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
9.64M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
9.64M
        } else {
618
1.20M
          if (r != 15)
619
819k
            break;
620
380k
          k += 15;
621
380k
        }
622
10.8M
      }
623
624
1.09M
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
150k
      for (k = 1; k < DCTSIZE2; k++) {
629
146k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
146k
        r = s >> 4;
632
146k
        s &= 15;
633
634
146k
        if (s) {
635
128k
          k += r;
636
128k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
128k
          DROP_BITS(s);
638
128k
        } else {
639
18.6k
          if (r != 15)
640
9.64k
            break;
641
9.01k
          k += 15;
642
9.01k
        }
643
146k
      }
644
13.8k
    }
645
1.10M
  }
646
647
  /* Completed MCU, so update state */
648
817k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
817k
  entropy->saved = state;
650
817k
  return TRUE;
651
817k
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
3.60M
{
663
3.60M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
3.60M
  BITREAD_STATE_VARS;
665
3.60M
  JOCTET *buffer;
666
3.60M
  int blkn;
667
3.60M
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
3.60M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
3.60M
  buffer = (JOCTET *)br_state.next_input_byte;
673
3.60M
  state = entropy->saved;
674
675
7.64M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
4.03M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
4.03M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
4.03M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
4.03M
    register int s, k, r, l;
680
681
4.03M
    HUFF_DECODE_FAST(s, l, dctbl);
682
4.03M
    if (s) {
683
2.43M
      FILL_BIT_BUFFER_FAST
684
2.43M
      r = GET_BITS(s);
685
2.43M
      s = HUFF_EXTEND(r, s);
686
2.43M
    }
687
688
4.03M
    if (entropy->dc_needed[blkn]) {
689
4.02M
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
4.02M
      s += state.last_dc_val[ci];
694
4.02M
      state.last_dc_val[ci] = s;
695
4.02M
      if (block)
696
4.02M
        (*block)[0] = (JCOEF)s;
697
4.02M
    }
698
699
4.03M
    if (entropy->ac_needed[blkn] && block) {
700
701
33.6M
      for (k = 1; k < DCTSIZE2; k++) {
702
32.5M
        HUFF_DECODE_FAST(s, l, actbl);
703
32.5M
        r = s >> 4;
704
32.5M
        s &= 15;
705
706
32.5M
        if (s) {
707
27.0M
          k += r;
708
27.0M
          FILL_BIT_BUFFER_FAST
709
27.0M
          r = GET_BITS(s);
710
27.0M
          s = HUFF_EXTEND(r, s);
711
27.0M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
27.0M
        } else {
713
5.47M
          if (r != 15) break;
714
2.52M
          k += 15;
715
2.52M
        }
716
32.5M
      }
717
718
4.02M
    } else {
719
720
121k
      for (k = 1; k < DCTSIZE2; k++) {
721
118k
        HUFF_DECODE_FAST(s, l, actbl);
722
118k
        r = s >> 4;
723
118k
        s &= 15;
724
725
118k
        if (s) {
726
109k
          k += r;
727
109k
          FILL_BIT_BUFFER_FAST
728
109k
          DROP_BITS(s);
729
109k
        } else {
730
8.21k
          if (r != 15) break;
731
3.26k
          k += 15;
732
3.26k
        }
733
118k
      }
734
8.00k
    }
735
4.03M
  }
736
737
3.60M
  if (cinfo->unread_marker != 0) {
738
112k
    cinfo->unread_marker = 0;
739
112k
    return FALSE;
740
112k
  }
741
742
3.49M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
3.49M
  br_state.next_input_byte = buffer;
744
3.49M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
3.49M
  entropy->saved = state;
746
3.49M
  return TRUE;
747
3.60M
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
123M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
123M
{
770
123M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
123M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
123M
  if (cinfo->restart_interval) {
775
28.3M
    if (entropy->restarts_to_go == 0)
776
1.52M
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
28.3M
    usefast = 0;
779
28.3M
  }
780
781
123M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
123M
      cinfo->unread_marker != 0)
783
119M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
123M
  if (!entropy->pub.insufficient_data) {
789
790
4.31M
    if (usefast) {
791
3.60M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
3.60M
    } else {
793
817k
use_slow:
794
817k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
817k
    }
796
797
4.31M
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
123M
  if (cinfo->restart_interval)
801
28.3M
    entropy->restarts_to_go--;
802
803
123M
  return TRUE;
804
123M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
15.0k
{
814
15.0k
  huff_entropy_ptr entropy;
815
15.0k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
15.0k
  std_huff_tables((j_common_ptr)cinfo);
822
823
15.0k
  entropy = (huff_entropy_ptr)
824
15.0k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
15.0k
                                sizeof(huff_entropy_decoder));
826
15.0k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
15.0k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
15.0k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
75.0k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
60.0k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
60.0k
  }
834
15.0k
}