Coverage Report

Created: 2023-06-07 06:03

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
85.9k
{
81
85.9k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
85.9k
  int ci, blkn, dctbl, actbl;
83
85.9k
  d_derived_tbl **pdtbl;
84
85.9k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
85.9k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
85.9k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
78.1k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
216k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
130k
    compptr = cinfo->cur_comp_info[ci];
96
130k
    dctbl = compptr->dc_tbl_no;
97
130k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
130k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
130k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
130k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
130k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
130k
    entropy->saved.last_dc_val[ci] = 0;
106
130k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
297k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
211k
    ci = cinfo->MCU_membership[blkn];
111
211k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
211k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
211k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
211k
    if (compptr->component_needed) {
117
209k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
209k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
209k
    } else {
121
1.70k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
1.70k
    }
123
211k
  }
124
125
  /* Initialize bitread state variables */
126
85.9k
  entropy->bitstate.bits_left = 0;
127
85.9k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
85.9k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
85.9k
  entropy->restarts_to_go = cinfo->restart_interval;
132
85.9k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
122k
{
146
122k
  JHUFF_TBL *htbl;
147
122k
  d_derived_tbl *dtbl;
148
122k
  int p, i, l, si, numsymbols;
149
122k
  int lookbits, ctr;
150
122k
  char huffsize[257];
151
122k
  unsigned int huffcode[257];
152
122k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
122k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
156
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
122k
  htbl =
162
122k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
122k
  if (htbl == NULL)
164
67
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
122k
  if (*pdtbl == NULL)
168
16.0k
    *pdtbl = (d_derived_tbl *)
169
16.0k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
16.0k
                                  sizeof(d_derived_tbl));
171
122k
  dtbl = *pdtbl;
172
122k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
122k
  p = 0;
177
2.08M
  for (l = 1; l <= 16; l++) {
178
1.95M
    i = (int)htbl->bits[l];
179
1.95M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
6.64M
    while (i--)
182
4.68M
      huffsize[p++] = (char)l;
183
1.95M
  }
184
122k
  huffsize[p] = 0;
185
122k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
122k
  code = 0;
191
122k
  si = huffsize[0];
192
122k
  p = 0;
193
1.22M
  while (huffsize[p]) {
194
5.78M
    while (((int)huffsize[p]) == si) {
195
4.68M
      huffcode[p++] = code;
196
4.68M
      code++;
197
4.68M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
1.10M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
13
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
1.10M
    code <<= 1;
204
1.10M
    si++;
205
1.10M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
122k
  p = 0;
210
2.08M
  for (l = 1; l <= 16; l++) {
211
1.95M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
890k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
890k
      p += htbl->bits[l];
217
890k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
1.06M
    } else {
219
1.06M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
1.06M
    }
221
1.95M
  }
222
122k
  dtbl->valoffset[17] = 0;
223
122k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
31.4M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
31.3M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
122k
  p = 0;
236
1.10M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
2.17M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
1.19M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
29.3M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
28.1M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
28.1M
        lookbits++;
244
28.1M
      }
245
1.19M
    }
246
979k
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
122k
  if (isDC) {
255
618k
    for (i = 0; i < numsymbols; i++) {
256
550k
      int sym = htbl->huffval[i];
257
550k
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
44
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
550k
    }
260
67.3k
  }
261
122k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
129M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
69.1M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
69.1M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
69.1M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
69.1M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
69.1M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
7.46M
    while (bits_left < MIN_GET_BITS) {
303
6.60M
      register int c;
304
305
      /* Attempt to read a byte */
306
6.60M
      if (bytes_in_buffer == 0) {
307
12.3k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
12.3k
        next_input_byte = cinfo->src->next_input_byte;
310
12.3k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
12.3k
      }
312
6.60M
      bytes_in_buffer--;
313
6.60M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
6.60M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
611k
        do {
323
611k
          if (bytes_in_buffer == 0) {
324
433
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
433
            next_input_byte = cinfo->src->next_input_byte;
327
433
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
433
          }
329
611k
          bytes_in_buffer--;
330
611k
          c = *next_input_byte++;
331
611k
        } while (c == 0xFF);
332
333
357k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
182k
          c = 0xFF;
336
182k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
175k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
175k
          goto no_more_bytes;
348
175k
        }
349
357k
      }
350
351
      /* OK, load c into get_buffer */
352
6.42M
      get_buffer = (get_buffer << 8) | c;
353
6.42M
      bits_left += 8;
354
6.42M
    } /* end while */
355
68.1M
  } else {
356
68.3M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
68.3M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
60.8M
      if (!cinfo->entropy->insufficient_data) {
368
178k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
178k
        cinfo->entropy->insufficient_data = TRUE;
370
178k
      }
371
      /* Fill the buffer with zero bits */
372
60.8M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
60.8M
      bits_left = MIN_GET_BITS;
374
60.8M
    }
375
68.3M
  }
376
377
  /* Unload the local registers */
378
69.1M
  state->next_input_byte = next_input_byte;
379
69.1M
  state->bytes_in_buffer = bytes_in_buffer;
380
69.1M
  state->get_buffer = get_buffer;
381
69.1M
  state->bits_left = bits_left;
382
383
69.1M
  return TRUE;
384
69.1M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
22.7M
#define GET_BYTE { \
392
22.7M
  register int c0, c1; \
393
22.7M
  c0 = *buffer++; \
394
22.7M
  c1 = *buffer; \
395
22.7M
  /* Pre-execute most common case */ \
396
22.7M
  get_buffer = (get_buffer << 8) | c0; \
397
22.7M
  bits_left += 8; \
398
22.7M
  if (c0 == 0xFF) { \
399
1.99M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.99M
    buffer++; \
401
1.99M
    if (c1 != 0) { \
402
1.44M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
1.44M
      cinfo->unread_marker = c1; \
404
1.44M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
1.44M
      buffer -= 2; \
406
1.44M
      get_buffer &= ~0xFF; \
407
1.44M
    } \
408
1.99M
  } \
409
22.7M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
66.3M
  if (bits_left <= 16) { \
416
3.78M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
3.78M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
7.79M
{
440
7.79M
  register int l = min_bits;
441
7.79M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
7.79M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
7.79M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
13.6M
  while (code > htbl->maxcode[l]) {
453
5.84M
    code <<= 1;
454
5.84M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
5.84M
    code |= GET_BITS(1);
456
5.84M
    l++;
457
5.84M
  }
458
459
  /* Unload the local registers */
460
7.79M
  state->get_buffer = get_buffer;
461
7.79M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
7.79M
  if (l > 16) {
466
170k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
170k
    return 0;                   /* fake a zero as the safest result */
468
170k
  }
469
470
7.62M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
7.79M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
39.7M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
39.7M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.52M
{
514
1.52M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.52M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.52M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.52M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.52M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
3.53M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
2.00M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.52M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.52M
  if (cinfo->unread_marker == 0)
539
18.3k
    entropy->pub.insufficient_data = FALSE;
540
541
1.52M
  return TRUE;
542
1.52M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
817k
{
554
817k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
817k
  BITREAD_STATE_VARS;
556
817k
  int blkn;
557
817k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
817k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
817k
  state = entropy->saved;
563
564
1.92M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.10M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.10M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.10M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.10M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.10M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.10M
    if (s) {
575
524k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
524k
      r = GET_BITS(s);
577
524k
      s = HUFF_EXTEND(r, s);
578
524k
    }
579
580
1.10M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.09M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.09M
      s += state.last_dc_val[ci];
592
1.09M
      state.last_dc_val[ci] = s;
593
1.09M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.09M
        (*block)[0] = (JCOEF)s;
596
1.09M
      }
597
1.09M
    }
598
599
1.10M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
11.1M
      for (k = 1; k < DCTSIZE2; k++) {
604
10.8M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
10.8M
        r = s >> 4;
607
10.8M
        s &= 15;
608
609
10.8M
        if (s) {
610
9.64M
          k += r;
611
9.64M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
9.64M
          r = GET_BITS(s);
613
9.64M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
9.64M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
9.64M
        } else {
620
1.20M
          if (r != 15)
621
819k
            break;
622
380k
          k += 15;
623
380k
        }
624
10.8M
      }
625
626
1.09M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
150k
      for (k = 1; k < DCTSIZE2; k++) {
631
146k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
146k
        r = s >> 4;
634
146k
        s &= 15;
635
636
146k
        if (s) {
637
128k
          k += r;
638
128k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
128k
          DROP_BITS(s);
640
128k
        } else {
641
18.6k
          if (r != 15)
642
9.64k
            break;
643
9.01k
          k += 15;
644
9.01k
        }
645
146k
      }
646
13.8k
    }
647
1.10M
  }
648
649
  /* Completed MCU, so update state */
650
817k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
817k
  entropy->saved = state;
652
817k
  return TRUE;
653
817k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
3.60M
{
665
3.60M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
3.60M
  BITREAD_STATE_VARS;
667
3.60M
  JOCTET *buffer;
668
3.60M
  int blkn;
669
3.60M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
3.60M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
3.60M
  buffer = (JOCTET *)br_state.next_input_byte;
675
3.60M
  state = entropy->saved;
676
677
7.64M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
4.03M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
4.03M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
4.03M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
4.03M
    register int s, k, r, l;
682
683
4.03M
    HUFF_DECODE_FAST(s, l, dctbl);
684
4.03M
    if (s) {
685
2.43M
      FILL_BIT_BUFFER_FAST
686
2.43M
      r = GET_BITS(s);
687
2.43M
      s = HUFF_EXTEND(r, s);
688
2.43M
    }
689
690
4.03M
    if (entropy->dc_needed[blkn]) {
691
4.02M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
4.02M
      s += state.last_dc_val[ci];
696
4.02M
      state.last_dc_val[ci] = s;
697
4.02M
      if (block)
698
4.02M
        (*block)[0] = (JCOEF)s;
699
4.02M
    }
700
701
4.03M
    if (entropy->ac_needed[blkn] && block) {
702
703
33.6M
      for (k = 1; k < DCTSIZE2; k++) {
704
32.5M
        HUFF_DECODE_FAST(s, l, actbl);
705
32.5M
        r = s >> 4;
706
32.5M
        s &= 15;
707
708
32.5M
        if (s) {
709
27.0M
          k += r;
710
27.0M
          FILL_BIT_BUFFER_FAST
711
27.0M
          r = GET_BITS(s);
712
27.0M
          s = HUFF_EXTEND(r, s);
713
27.0M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
27.0M
        } else {
715
5.47M
          if (r != 15) break;
716
2.52M
          k += 15;
717
2.52M
        }
718
32.5M
      }
719
720
4.02M
    } else {
721
722
121k
      for (k = 1; k < DCTSIZE2; k++) {
723
118k
        HUFF_DECODE_FAST(s, l, actbl);
724
118k
        r = s >> 4;
725
118k
        s &= 15;
726
727
118k
        if (s) {
728
109k
          k += r;
729
109k
          FILL_BIT_BUFFER_FAST
730
109k
          DROP_BITS(s);
731
109k
        } else {
732
8.21k
          if (r != 15) break;
733
3.26k
          k += 15;
734
3.26k
        }
735
118k
      }
736
8.00k
    }
737
4.03M
  }
738
739
3.60M
  if (cinfo->unread_marker != 0) {
740
112k
    cinfo->unread_marker = 0;
741
112k
    return FALSE;
742
112k
  }
743
744
3.49M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
3.49M
  br_state.next_input_byte = buffer;
746
3.49M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
3.49M
  entropy->saved = state;
748
3.49M
  return TRUE;
749
3.60M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
123M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
123M
{
772
123M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
123M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
123M
  if (cinfo->restart_interval) {
777
28.3M
    if (entropy->restarts_to_go == 0)
778
1.52M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
28.3M
    usefast = 0;
781
28.3M
  }
782
783
123M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
123M
      cinfo->unread_marker != 0)
785
119M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
123M
  if (!entropy->pub.insufficient_data) {
791
792
4.31M
    if (usefast) {
793
3.60M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
3.60M
    } else {
795
817k
use_slow:
796
817k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
817k
    }
798
799
4.31M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
123M
  if (cinfo->restart_interval)
803
28.3M
    entropy->restarts_to_go--;
804
805
123M
  return TRUE;
806
123M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
15.0k
{
816
15.0k
  huff_entropy_ptr entropy;
817
15.0k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
15.0k
  std_huff_tables((j_common_ptr)cinfo);
824
825
15.0k
  entropy = (huff_entropy_ptr)
826
15.0k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
15.0k
                                sizeof(huff_entropy_decoder));
828
15.0k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
15.0k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
15.0k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
75.0k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
60.0k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
60.0k
  }
836
15.0k
}