Coverage Report

Created: 2025-07-01 06:27

/src/libjpeg-turbo.3.0.x/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
113k
{
81
113k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
113k
  int ci, blkn, dctbl, actbl;
83
113k
  d_derived_tbl **pdtbl;
84
113k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
113k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
113k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
101k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
306k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
192k
    compptr = cinfo->cur_comp_info[ci];
96
192k
    dctbl = compptr->dc_tbl_no;
97
192k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
192k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
192k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
192k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
192k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
192k
    entropy->saved.last_dc_val[ci] = 0;
106
192k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
534k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
420k
    ci = cinfo->MCU_membership[blkn];
111
420k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
420k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
420k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
420k
    if (compptr->component_needed) {
117
418k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
418k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
418k
    } else {
121
2.85k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
2.85k
    }
123
420k
  }
124
125
  /* Initialize bitread state variables */
126
113k
  entropy->bitstate.bits_left = 0;
127
113k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
113k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
113k
  entropy->restarts_to_go = cinfo->restart_interval;
132
113k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
437k
{
146
437k
  JHUFF_TBL *htbl;
147
437k
  d_derived_tbl *dtbl;
148
437k
  int p, i, l, si, numsymbols;
149
437k
  int lookbits, ctr;
150
437k
  char huffsize[257];
151
437k
  unsigned int huffcode[257];
152
437k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
437k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
333
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
437k
  htbl =
162
437k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
437k
  if (htbl == NULL)
164
265
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
437k
  if (*pdtbl == NULL)
168
47.1k
    *pdtbl = (d_derived_tbl *)
169
47.1k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
47.1k
                                  sizeof(d_derived_tbl));
171
437k
  dtbl = *pdtbl;
172
437k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
437k
  p = 0;
177
7.43M
  for (l = 1; l <= 16; l++) {
178
6.99M
    i = (int)htbl->bits[l];
179
6.99M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
25.2M
    while (i--)
182
18.2M
      huffsize[p++] = (char)l;
183
6.99M
  }
184
437k
  huffsize[p] = 0;
185
437k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
437k
  code = 0;
191
437k
  si = huffsize[0];
192
437k
  p = 0;
193
4.81M
  while (huffsize[p]) {
194
22.6M
    while (((int)huffsize[p]) == si) {
195
18.2M
      huffcode[p++] = code;
196
18.2M
      code++;
197
18.2M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
4.38M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
686
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
4.38M
    code <<= 1;
204
4.38M
    si++;
205
4.38M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
437k
  p = 0;
210
7.42M
  for (l = 1; l <= 16; l++) {
211
6.98M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
3.17M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
3.17M
      p += htbl->bits[l];
217
3.17M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
3.80M
    } else {
219
3.80M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
3.80M
    }
221
6.98M
  }
222
437k
  dtbl->valoffset[17] = 0;
223
437k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
112M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
111M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
437k
  p = 0;
236
3.92M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
7.82M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
4.32M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
104M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
100M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
100M
        lookbits++;
244
100M
      }
245
4.32M
    }
246
3.49M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
437k
  if (isDC) {
255
2.10M
    for (i = 0; i < numsymbols; i++) {
256
1.88M
      int sym = htbl->huffval[i];
257
1.88M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
1.06k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
1.88M
    }
260
227k
  }
261
437k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
529M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
281M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
281M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
281M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
281M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
281M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
7.30M
    while (bits_left < MIN_GET_BITS) {
303
6.44M
      register int c;
304
305
      /* Attempt to read a byte */
306
6.44M
      if (bytes_in_buffer == 0) {
307
12.5k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
12.5k
        next_input_byte = cinfo->src->next_input_byte;
310
12.5k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
12.5k
      }
312
6.44M
      bytes_in_buffer--;
313
6.44M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
6.44M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
657k
        do {
323
657k
          if (bytes_in_buffer == 0) {
324
361
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
361
            next_input_byte = cinfo->src->next_input_byte;
327
361
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
361
          }
329
657k
          bytes_in_buffer--;
330
657k
          c = *next_input_byte++;
331
657k
        } while (c == 0xFF);
332
333
405k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
200k
          c = 0xFF;
336
205k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
205k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
205k
          goto no_more_bytes;
348
205k
        }
349
405k
      }
350
351
      /* OK, load c into get_buffer */
352
6.23M
      get_buffer = (get_buffer << 8) | c;
353
6.23M
      bits_left += 8;
354
6.23M
    } /* end while */
355
280M
  } else {
356
281M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
281M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
261M
      if (!cinfo->entropy->insufficient_data) {
368
195k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
195k
        cinfo->entropy->insufficient_data = TRUE;
370
195k
      }
371
      /* Fill the buffer with zero bits */
372
261M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
261M
      bits_left = MIN_GET_BITS;
374
261M
    }
375
281M
  }
376
377
  /* Unload the local registers */
378
281M
  state->next_input_byte = next_input_byte;
379
281M
  state->bytes_in_buffer = bytes_in_buffer;
380
281M
  state->get_buffer = get_buffer;
381
281M
  state->bits_left = bits_left;
382
383
281M
  return TRUE;
384
281M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
10.7M
#define GET_BYTE { \
392
10.7M
  register int c0, c1; \
393
10.7M
  c0 = *buffer++; \
394
10.7M
  c1 = *buffer; \
395
10.7M
  /* Pre-execute most common case */ \
396
10.7M
  get_buffer = (get_buffer << 8) | c0; \
397
10.7M
  bits_left += 8; \
398
10.7M
  if (c0 == 0xFF) { \
399
1.70M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.70M
    buffer++; \
401
1.70M
    if (c1 != 0) { \
402
1.51M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
1.51M
      cinfo->unread_marker = c1; \
404
1.51M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
1.51M
      buffer -= 2; \
406
1.51M
      get_buffer &= ~0xFF; \
407
1.51M
    } \
408
1.70M
  } \
409
10.7M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
35.1M
  if (bits_left <= 16) { \
416
1.78M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
1.78M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
65.6M
{
440
65.6M
  register int l = min_bits;
441
65.6M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
65.6M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
65.6M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
571M
  while (code > htbl->maxcode[l]) {
453
506M
    code <<= 1;
454
506M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
506M
    code |= GET_BITS(1);
456
506M
    l++;
457
506M
  }
458
459
  /* Unload the local registers */
460
65.6M
  state->get_buffer = get_buffer;
461
65.6M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
65.6M
  if (l > 16) {
466
49.8M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
49.8M
    return 0;                   /* fake a zero as the safest result */
468
49.8M
  }
469
470
15.8M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
65.6M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
26.1M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
26.1M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
563k
{
514
563k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
563k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
563k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
563k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
563k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
1.39M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
833k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
563k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
563k
  if (cinfo->unread_marker == 0)
539
15.3k
    entropy->pub.insufficient_data = FALSE;
540
541
563k
  return TRUE;
542
563k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
794k
{
554
794k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
794k
  BITREAD_STATE_VARS;
556
794k
  int blkn;
557
794k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
794k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
794k
  state = entropy->saved;
563
564
2.13M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.34M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.34M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.34M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.34M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.34M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.34M
    if (s) {
575
562k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
562k
      r = GET_BITS(s);
577
562k
      s = HUFF_EXTEND(r, s);
578
562k
    }
579
580
1.34M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.32M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.32M
      s += state.last_dc_val[ci];
592
1.32M
      state.last_dc_val[ci] = s;
593
1.32M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.32M
        (*block)[0] = (JCOEF)s;
596
1.32M
      }
597
1.32M
    }
598
599
1.34M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
12.5M
      for (k = 1; k < DCTSIZE2; k++) {
604
12.2M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
12.2M
        r = s >> 4;
607
12.2M
        s &= 15;
608
609
12.2M
        if (s) {
610
11.2M
          k += r;
611
11.2M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
11.2M
          r = GET_BITS(s);
613
11.2M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
11.2M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
11.2M
        } else {
620
974k
          if (r != 15)
621
936k
            break;
622
38.0k
          k += 15;
623
38.0k
        }
624
12.2M
      }
625
626
1.32M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
200k
      for (k = 1; k < DCTSIZE2; k++) {
631
196k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
196k
        r = s >> 4;
634
196k
        s &= 15;
635
636
196k
        if (s) {
637
178k
          k += r;
638
178k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
178k
          DROP_BITS(s);
640
178k
        } else {
641
17.4k
          if (r != 15)
642
16.0k
            break;
643
1.46k
          k += 15;
644
1.46k
        }
645
196k
      }
646
20.5k
    }
647
1.34M
  }
648
649
  /* Completed MCU, so update state */
650
794k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
794k
  entropy->saved = state;
652
794k
  return TRUE;
653
794k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
1.15M
{
665
1.15M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
1.15M
  BITREAD_STATE_VARS;
667
1.15M
  JOCTET *buffer;
668
1.15M
  int blkn;
669
1.15M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
1.15M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
1.15M
  buffer = (JOCTET *)br_state.next_input_byte;
675
1.15M
  state = entropy->saved;
676
677
3.52M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
2.37M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
2.37M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
2.37M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
2.37M
    register int s, k, r, l;
682
683
2.37M
    HUFF_DECODE_FAST(s, l, dctbl);
684
2.37M
    if (s) {
685
1.49M
      FILL_BIT_BUFFER_FAST
686
1.49M
      r = GET_BITS(s);
687
1.49M
      s = HUFF_EXTEND(r, s);
688
1.49M
    }
689
690
2.37M
    if (entropy->dc_needed[blkn]) {
691
2.30M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
2.30M
      s += state.last_dc_val[ci];
696
2.30M
      state.last_dc_val[ci] = s;
697
2.30M
      if (block)
698
2.30M
        (*block)[0] = (JCOEF)s;
699
2.30M
    }
700
701
2.37M
    if (entropy->ac_needed[blkn] && block) {
702
703
15.2M
      for (k = 1; k < DCTSIZE2; k++) {
704
15.0M
        HUFF_DECODE_FAST(s, l, actbl);
705
15.0M
        r = s >> 4;
706
15.0M
        s &= 15;
707
708
15.0M
        if (s) {
709
12.9M
          k += r;
710
12.9M
          FILL_BIT_BUFFER_FAST
711
12.9M
          r = GET_BITS(s);
712
12.9M
          s = HUFF_EXTEND(r, s);
713
12.9M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
12.9M
        } else {
715
2.13M
          if (r != 15) break;
716
57.9k
          k += 15;
717
57.9k
        }
718
15.0M
      }
719
720
2.30M
    } else {
721
722
1.71M
      for (k = 1; k < DCTSIZE2; k++) {
723
1.70M
        HUFF_DECODE_FAST(s, l, actbl);
724
1.70M
        r = s >> 4;
725
1.70M
        s &= 15;
726
727
1.70M
        if (s) {
728
1.63M
          k += r;
729
1.63M
          FILL_BIT_BUFFER_FAST
730
1.63M
          DROP_BITS(s);
731
1.63M
        } else {
732
74.0k
          if (r != 15) break;
733
1.51k
          k += 15;
734
1.51k
        }
735
1.70M
      }
736
76.5k
    }
737
2.37M
  }
738
739
1.15M
  if (cinfo->unread_marker != 0) {
740
86.9k
    cinfo->unread_marker = 0;
741
86.9k
    return FALSE;
742
86.9k
  }
743
744
1.06M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
1.06M
  br_state.next_input_byte = buffer;
746
1.06M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
1.06M
  entropy->saved = state;
748
1.06M
  return TRUE;
749
1.15M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
180M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
180M
{
772
180M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
180M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
180M
  if (cinfo->restart_interval) {
777
80.0M
    if (entropy->restarts_to_go == 0)
778
563k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
80.0M
    usefast = 0;
781
80.0M
  }
782
783
180M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
180M
      cinfo->unread_marker != 0)
785
179M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
180M
  if (!entropy->pub.insufficient_data) {
791
792
1.85M
    if (usefast) {
793
1.15M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
1.15M
    } else {
795
794k
use_slow:
796
794k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
794k
    }
798
799
1.85M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
180M
  if (cinfo->restart_interval)
803
80.0M
    entropy->restarts_to_go--;
804
805
180M
  return TRUE;
806
180M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
17.6k
{
816
17.6k
  huff_entropy_ptr entropy;
817
17.6k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
17.6k
  std_huff_tables((j_common_ptr)cinfo);
824
825
17.6k
  entropy = (huff_entropy_ptr)
826
17.6k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
17.6k
                                sizeof(huff_entropy_decoder));
828
17.6k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
17.6k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
17.6k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
88.4k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
70.7k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
70.7k
  }
836
17.6k
}