/src/libjpeg-turbo.3.0.x/jidctred.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jidctred.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1998, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 2015, 2022, D. R. Commander. |
8 | | * For conditions of distribution and use, see the accompanying README.ijg |
9 | | * file. |
10 | | * |
11 | | * This file contains inverse-DCT routines that produce reduced-size output: |
12 | | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. |
13 | | * |
14 | | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) |
15 | | * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step |
16 | | * with an 8-to-4 step that produces the four averages of two adjacent outputs |
17 | | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). |
18 | | * These steps were derived by computing the corresponding values at the end |
19 | | * of the normal LL&M code, then simplifying as much as possible. |
20 | | * |
21 | | * 1x1 is trivial: just take the DC coefficient divided by 8. |
22 | | * |
23 | | * See jidctint.c for additional comments. |
24 | | */ |
25 | | |
26 | | #define JPEG_INTERNALS |
27 | | #include "jinclude.h" |
28 | | #include "jpeglib.h" |
29 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
30 | | |
31 | | #ifdef IDCT_SCALING_SUPPORTED |
32 | | |
33 | | |
34 | | /* |
35 | | * This module is specialized to the case DCTSIZE = 8. |
36 | | */ |
37 | | |
38 | | #if DCTSIZE != 8 |
39 | | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
40 | | #endif |
41 | | |
42 | | |
43 | | /* Scaling is the same as in jidctint.c. */ |
44 | | |
45 | | #if BITS_IN_JSAMPLE == 8 |
46 | | #define CONST_BITS 13 |
47 | | #define PASS1_BITS 2 |
48 | | #else |
49 | | #define CONST_BITS 13 |
50 | | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
51 | | #endif |
52 | | |
53 | | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
54 | | * causing a lot of useless floating-point operations at run time. |
55 | | * To get around this we use the following pre-calculated constants. |
56 | | * If you change CONST_BITS you may want to add appropriate values. |
57 | | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
58 | | */ |
59 | | |
60 | | #if CONST_BITS == 13 |
61 | | #define FIX_0_211164243 ((JLONG)1730) /* FIX(0.211164243) */ |
62 | | #define FIX_0_509795579 ((JLONG)4176) /* FIX(0.509795579) */ |
63 | | #define FIX_0_601344887 ((JLONG)4926) /* FIX(0.601344887) */ |
64 | | #define FIX_0_720959822 ((JLONG)5906) /* FIX(0.720959822) */ |
65 | | #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */ |
66 | | #define FIX_0_850430095 ((JLONG)6967) /* FIX(0.850430095) */ |
67 | | #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */ |
68 | | #define FIX_1_061594337 ((JLONG)8697) /* FIX(1.061594337) */ |
69 | | #define FIX_1_272758580 ((JLONG)10426) /* FIX(1.272758580) */ |
70 | | #define FIX_1_451774981 ((JLONG)11893) /* FIX(1.451774981) */ |
71 | | #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */ |
72 | | #define FIX_2_172734803 ((JLONG)17799) /* FIX(2.172734803) */ |
73 | | #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */ |
74 | | #define FIX_3_624509785 ((JLONG)29692) /* FIX(3.624509785) */ |
75 | | #else |
76 | | #define FIX_0_211164243 FIX(0.211164243) |
77 | | #define FIX_0_509795579 FIX(0.509795579) |
78 | | #define FIX_0_601344887 FIX(0.601344887) |
79 | | #define FIX_0_720959822 FIX(0.720959822) |
80 | | #define FIX_0_765366865 FIX(0.765366865) |
81 | | #define FIX_0_850430095 FIX(0.850430095) |
82 | | #define FIX_0_899976223 FIX(0.899976223) |
83 | | #define FIX_1_061594337 FIX(1.061594337) |
84 | | #define FIX_1_272758580 FIX(1.272758580) |
85 | | #define FIX_1_451774981 FIX(1.451774981) |
86 | | #define FIX_1_847759065 FIX(1.847759065) |
87 | | #define FIX_2_172734803 FIX(2.172734803) |
88 | | #define FIX_2_562915447 FIX(2.562915447) |
89 | | #define FIX_3_624509785 FIX(3.624509785) |
90 | | #endif |
91 | | |
92 | | |
93 | | /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result. |
94 | | * For 8-bit samples with the recommended scaling, all the variable |
95 | | * and constant values involved are no more than 16 bits wide, so a |
96 | | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
97 | | * For 12-bit samples, a full 32-bit multiplication will be needed. |
98 | | */ |
99 | | |
100 | | #if BITS_IN_JSAMPLE == 8 |
101 | 0 | #define MULTIPLY(var, const) MULTIPLY16C16(var, const) |
102 | | #else |
103 | 126M | #define MULTIPLY(var, const) ((var) * (const)) |
104 | | #endif |
105 | | |
106 | | |
107 | | /* Dequantize a coefficient by multiplying it by the multiplier-table |
108 | | * entry; produce an int result. In this module, both inputs and result |
109 | | * are 16 bits or less, so either int or short multiply will work. |
110 | | */ |
111 | | |
112 | 33.6M | #define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval)) |
113 | | |
114 | | |
115 | | /* |
116 | | * Perform dequantization and inverse DCT on one block of coefficients, |
117 | | * producing a reduced-size 4x4 output block. |
118 | | */ |
119 | | |
120 | | GLOBAL(void) |
121 | | _jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
122 | | JCOEFPTR coef_block, _JSAMPARRAY output_buf, |
123 | | JDIMENSION output_col) |
124 | 5.63M | { |
125 | 5.63M | JLONG tmp0, tmp2, tmp10, tmp12; |
126 | 5.63M | JLONG z1, z2, z3, z4; |
127 | 5.63M | JCOEFPTR inptr; |
128 | 5.63M | ISLOW_MULT_TYPE *quantptr; |
129 | 5.63M | int *wsptr; |
130 | 5.63M | _JSAMPROW outptr; |
131 | 5.63M | _JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
132 | 5.63M | int ctr; |
133 | 5.63M | int workspace[DCTSIZE * 4]; /* buffers data between passes */ |
134 | | SHIFT_TEMPS |
135 | | |
136 | | /* Pass 1: process columns from input, store into work array. */ |
137 | | |
138 | 5.63M | inptr = coef_block; |
139 | 5.63M | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; |
140 | 5.63M | wsptr = workspace; |
141 | 50.7M | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
142 | | /* Don't bother to process column 4, because second pass won't use it */ |
143 | 45.0M | if (ctr == DCTSIZE - 4) |
144 | 5.63M | continue; |
145 | 39.4M | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && |
146 | 39.4M | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 && |
147 | 39.4M | inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { |
148 | | /* AC terms all zero; we need not examine term 4 for 4x4 output */ |
149 | 34.6M | int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], |
150 | 34.6M | quantptr[DCTSIZE * 0]), PASS1_BITS); |
151 | | |
152 | 34.6M | wsptr[DCTSIZE * 0] = dcval; |
153 | 34.6M | wsptr[DCTSIZE * 1] = dcval; |
154 | 34.6M | wsptr[DCTSIZE * 2] = dcval; |
155 | 34.6M | wsptr[DCTSIZE * 3] = dcval; |
156 | | |
157 | 34.6M | continue; |
158 | 34.6M | } |
159 | | |
160 | | /* Even part */ |
161 | | |
162 | 4.81M | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
163 | 4.81M | tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1); |
164 | | |
165 | 4.81M | z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); |
166 | 4.81M | z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); |
167 | | |
168 | 4.81M | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865); |
169 | | |
170 | 4.81M | tmp10 = tmp0 + tmp2; |
171 | 4.81M | tmp12 = tmp0 - tmp2; |
172 | | |
173 | | /* Odd part */ |
174 | | |
175 | 4.81M | z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); |
176 | 4.81M | z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); |
177 | 4.81M | z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); |
178 | 4.81M | z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); |
179 | | |
180 | 4.81M | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ |
181 | 4.81M | MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ |
182 | 4.81M | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ |
183 | 4.81M | MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ |
184 | | |
185 | 4.81M | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ |
186 | 4.81M | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ |
187 | 4.81M | MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ |
188 | 4.81M | MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
189 | | |
190 | | /* Final output stage */ |
191 | | |
192 | 4.81M | wsptr[DCTSIZE * 0] = |
193 | 4.81M | (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1); |
194 | 4.81M | wsptr[DCTSIZE * 3] = |
195 | 4.81M | (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1); |
196 | 4.81M | wsptr[DCTSIZE * 1] = |
197 | 4.81M | (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1); |
198 | 4.81M | wsptr[DCTSIZE * 2] = |
199 | 4.81M | (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1); |
200 | 4.81M | } |
201 | | |
202 | | /* Pass 2: process 4 rows from work array, store into output array. */ |
203 | | |
204 | 5.63M | wsptr = workspace; |
205 | 28.1M | for (ctr = 0; ctr < 4; ctr++) { |
206 | 22.5M | outptr = output_buf[ctr] + output_col; |
207 | | /* It's not clear whether a zero row test is worthwhile here ... */ |
208 | | |
209 | 22.5M | #ifndef NO_ZERO_ROW_TEST |
210 | 22.5M | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && |
211 | 22.5M | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
212 | | /* AC terms all zero */ |
213 | 14.7M | _JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], |
214 | 14.7M | PASS1_BITS + 3) & RANGE_MASK]; |
215 | | |
216 | 14.7M | outptr[0] = dcval; |
217 | 14.7M | outptr[1] = dcval; |
218 | 14.7M | outptr[2] = dcval; |
219 | 14.7M | outptr[3] = dcval; |
220 | | |
221 | 14.7M | wsptr += DCTSIZE; /* advance pointer to next row */ |
222 | 14.7M | continue; |
223 | 14.7M | } |
224 | 7.80M | #endif |
225 | | |
226 | | /* Even part */ |
227 | | |
228 | 7.80M | tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1); |
229 | | |
230 | 7.80M | tmp2 = MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) + |
231 | 7.80M | MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865); |
232 | | |
233 | 7.80M | tmp10 = tmp0 + tmp2; |
234 | 7.80M | tmp12 = tmp0 - tmp2; |
235 | | |
236 | | /* Odd part */ |
237 | | |
238 | 7.80M | z1 = (JLONG)wsptr[7]; |
239 | 7.80M | z2 = (JLONG)wsptr[5]; |
240 | 7.80M | z3 = (JLONG)wsptr[3]; |
241 | 7.80M | z4 = (JLONG)wsptr[1]; |
242 | | |
243 | 7.80M | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ |
244 | 7.80M | MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ |
245 | 7.80M | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ |
246 | 7.80M | MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ |
247 | | |
248 | 7.80M | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ |
249 | 7.80M | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ |
250 | 7.80M | MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ |
251 | 7.80M | MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ |
252 | | |
253 | | /* Final output stage */ |
254 | | |
255 | 7.80M | outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2, |
256 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & |
257 | 7.80M | RANGE_MASK]; |
258 | 7.80M | outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2, |
259 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & |
260 | 7.80M | RANGE_MASK]; |
261 | 7.80M | outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0, |
262 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & |
263 | 7.80M | RANGE_MASK]; |
264 | 7.80M | outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0, |
265 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & |
266 | 7.80M | RANGE_MASK]; |
267 | | |
268 | 7.80M | wsptr += DCTSIZE; /* advance pointer to next row */ |
269 | 7.80M | } |
270 | 5.63M | } Line | Count | Source | 124 | 5.63M | { | 125 | 5.63M | JLONG tmp0, tmp2, tmp10, tmp12; | 126 | 5.63M | JLONG z1, z2, z3, z4; | 127 | 5.63M | JCOEFPTR inptr; | 128 | 5.63M | ISLOW_MULT_TYPE *quantptr; | 129 | 5.63M | int *wsptr; | 130 | 5.63M | _JSAMPROW outptr; | 131 | 5.63M | _JSAMPLE *range_limit = IDCT_range_limit(cinfo); | 132 | 5.63M | int ctr; | 133 | 5.63M | int workspace[DCTSIZE * 4]; /* buffers data between passes */ | 134 | | SHIFT_TEMPS | 135 | | | 136 | | /* Pass 1: process columns from input, store into work array. */ | 137 | | | 138 | 5.63M | inptr = coef_block; | 139 | 5.63M | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; | 140 | 5.63M | wsptr = workspace; | 141 | 50.7M | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | 142 | | /* Don't bother to process column 4, because second pass won't use it */ | 143 | 45.0M | if (ctr == DCTSIZE - 4) | 144 | 5.63M | continue; | 145 | 39.4M | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && | 146 | 39.4M | inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 && | 147 | 39.4M | inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { | 148 | | /* AC terms all zero; we need not examine term 4 for 4x4 output */ | 149 | 34.6M | int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], | 150 | 34.6M | quantptr[DCTSIZE * 0]), PASS1_BITS); | 151 | | | 152 | 34.6M | wsptr[DCTSIZE * 0] = dcval; | 153 | 34.6M | wsptr[DCTSIZE * 1] = dcval; | 154 | 34.6M | wsptr[DCTSIZE * 2] = dcval; | 155 | 34.6M | wsptr[DCTSIZE * 3] = dcval; | 156 | | | 157 | 34.6M | continue; | 158 | 34.6M | } | 159 | | | 160 | | /* Even part */ | 161 | | | 162 | 4.81M | tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); | 163 | 4.81M | tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1); | 164 | | | 165 | 4.81M | z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); | 166 | 4.81M | z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); | 167 | | | 168 | 4.81M | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865); | 169 | | | 170 | 4.81M | tmp10 = tmp0 + tmp2; | 171 | 4.81M | tmp12 = tmp0 - tmp2; | 172 | | | 173 | | /* Odd part */ | 174 | | | 175 | 4.81M | z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); | 176 | 4.81M | z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); | 177 | 4.81M | z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); | 178 | 4.81M | z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); | 179 | | | 180 | 4.81M | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ | 181 | 4.81M | MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ | 182 | 4.81M | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ | 183 | 4.81M | MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ | 184 | | | 185 | 4.81M | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ | 186 | 4.81M | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ | 187 | 4.81M | MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ | 188 | 4.81M | MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | 189 | | | 190 | | /* Final output stage */ | 191 | | | 192 | 4.81M | wsptr[DCTSIZE * 0] = | 193 | 4.81M | (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1); | 194 | 4.81M | wsptr[DCTSIZE * 3] = | 195 | 4.81M | (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1); | 196 | 4.81M | wsptr[DCTSIZE * 1] = | 197 | 4.81M | (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1); | 198 | 4.81M | wsptr[DCTSIZE * 2] = | 199 | 4.81M | (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1); | 200 | 4.81M | } | 201 | | | 202 | | /* Pass 2: process 4 rows from work array, store into output array. */ | 203 | | | 204 | 5.63M | wsptr = workspace; | 205 | 28.1M | for (ctr = 0; ctr < 4; ctr++) { | 206 | 22.5M | outptr = output_buf[ctr] + output_col; | 207 | | /* It's not clear whether a zero row test is worthwhile here ... */ | 208 | | | 209 | 22.5M | #ifndef NO_ZERO_ROW_TEST | 210 | 22.5M | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && | 211 | 22.5M | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 212 | | /* AC terms all zero */ | 213 | 14.7M | _JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], | 214 | 14.7M | PASS1_BITS + 3) & RANGE_MASK]; | 215 | | | 216 | 14.7M | outptr[0] = dcval; | 217 | 14.7M | outptr[1] = dcval; | 218 | 14.7M | outptr[2] = dcval; | 219 | 14.7M | outptr[3] = dcval; | 220 | | | 221 | 14.7M | wsptr += DCTSIZE; /* advance pointer to next row */ | 222 | 14.7M | continue; | 223 | 14.7M | } | 224 | 7.80M | #endif | 225 | | | 226 | | /* Even part */ | 227 | | | 228 | 7.80M | tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1); | 229 | | | 230 | 7.80M | tmp2 = MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) + | 231 | 7.80M | MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865); | 232 | | | 233 | 7.80M | tmp10 = tmp0 + tmp2; | 234 | 7.80M | tmp12 = tmp0 - tmp2; | 235 | | | 236 | | /* Odd part */ | 237 | | | 238 | 7.80M | z1 = (JLONG)wsptr[7]; | 239 | 7.80M | z2 = (JLONG)wsptr[5]; | 240 | 7.80M | z3 = (JLONG)wsptr[3]; | 241 | 7.80M | z4 = (JLONG)wsptr[1]; | 242 | | | 243 | 7.80M | tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ | 244 | 7.80M | MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ | 245 | 7.80M | MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ | 246 | 7.80M | MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ | 247 | | | 248 | 7.80M | tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ | 249 | 7.80M | MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ | 250 | 7.80M | MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ | 251 | 7.80M | MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | 252 | | | 253 | | /* Final output stage */ | 254 | | | 255 | 7.80M | outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2, | 256 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & | 257 | 7.80M | RANGE_MASK]; | 258 | 7.80M | outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2, | 259 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & | 260 | 7.80M | RANGE_MASK]; | 261 | 7.80M | outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0, | 262 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & | 263 | 7.80M | RANGE_MASK]; | 264 | 7.80M | outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0, | 265 | 7.80M | CONST_BITS + PASS1_BITS + 3 + 1) & | 266 | 7.80M | RANGE_MASK]; | 267 | | | 268 | 7.80M | wsptr += DCTSIZE; /* advance pointer to next row */ | 269 | 7.80M | } | 270 | 5.63M | } |
Unexecuted instantiation: jpeg_idct_4x4 |
271 | | |
272 | | |
273 | | /* |
274 | | * Perform dequantization and inverse DCT on one block of coefficients, |
275 | | * producing a reduced-size 2x2 output block. |
276 | | */ |
277 | | |
278 | | GLOBAL(void) |
279 | | _jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
280 | | JCOEFPTR coef_block, _JSAMPARRAY output_buf, |
281 | | JDIMENSION output_col) |
282 | 0 | { |
283 | 0 | JLONG tmp0, tmp10, z1; |
284 | 0 | JCOEFPTR inptr; |
285 | 0 | ISLOW_MULT_TYPE *quantptr; |
286 | 0 | int *wsptr; |
287 | 0 | _JSAMPROW outptr; |
288 | 0 | _JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
289 | 0 | int ctr; |
290 | 0 | int workspace[DCTSIZE * 2]; /* buffers data between passes */ |
291 | | SHIFT_TEMPS |
292 | | |
293 | | /* Pass 1: process columns from input, store into work array. */ |
294 | |
|
295 | 0 | inptr = coef_block; |
296 | 0 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; |
297 | 0 | wsptr = workspace; |
298 | 0 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { |
299 | | /* Don't bother to process columns 2,4,6 */ |
300 | 0 | if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6) |
301 | 0 | continue; |
302 | 0 | if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 && |
303 | 0 | inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) { |
304 | | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ |
305 | 0 | int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], |
306 | 0 | quantptr[DCTSIZE * 0]), PASS1_BITS); |
307 | |
|
308 | 0 | wsptr[DCTSIZE * 0] = dcval; |
309 | 0 | wsptr[DCTSIZE * 1] = dcval; |
310 | |
|
311 | 0 | continue; |
312 | 0 | } |
313 | | |
314 | | /* Even part */ |
315 | | |
316 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); |
317 | 0 | tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2); |
318 | | |
319 | | /* Odd part */ |
320 | |
|
321 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); |
322 | 0 | tmp0 = MULTIPLY(z1, -FIX_0_720959822); /* sqrt(2) * ( c7-c5+c3-c1) */ |
323 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); |
324 | 0 | tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ |
325 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); |
326 | 0 | tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ |
327 | 0 | z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); |
328 | 0 | tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */ |
329 | | |
330 | | /* Final output stage */ |
331 | |
|
332 | 0 | wsptr[DCTSIZE * 0] = |
333 | 0 | (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2); |
334 | 0 | wsptr[DCTSIZE * 1] = |
335 | 0 | (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2); |
336 | 0 | } |
337 | | |
338 | | /* Pass 2: process 2 rows from work array, store into output array. */ |
339 | |
|
340 | 0 | wsptr = workspace; |
341 | 0 | for (ctr = 0; ctr < 2; ctr++) { |
342 | 0 | outptr = output_buf[ctr] + output_col; |
343 | | /* It's not clear whether a zero row test is worthwhile here ... */ |
344 | |
|
345 | 0 | #ifndef NO_ZERO_ROW_TEST |
346 | 0 | if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { |
347 | | /* AC terms all zero */ |
348 | 0 | _JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], |
349 | 0 | PASS1_BITS + 3) & RANGE_MASK]; |
350 | |
|
351 | 0 | outptr[0] = dcval; |
352 | 0 | outptr[1] = dcval; |
353 | |
|
354 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
355 | 0 | continue; |
356 | 0 | } |
357 | 0 | #endif |
358 | | |
359 | | /* Even part */ |
360 | | |
361 | 0 | tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2); |
362 | | |
363 | | /* Odd part */ |
364 | |
|
365 | 0 | tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */ |
366 | 0 | MULTIPLY((JLONG)wsptr[5], FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */ |
367 | 0 | MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */ |
368 | 0 | MULTIPLY((JLONG)wsptr[1], FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */ |
369 | | |
370 | | /* Final output stage */ |
371 | |
|
372 | 0 | outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0, |
373 | 0 | CONST_BITS + PASS1_BITS + 3 + 2) & |
374 | 0 | RANGE_MASK]; |
375 | 0 | outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0, |
376 | 0 | CONST_BITS + PASS1_BITS + 3 + 2) & |
377 | 0 | RANGE_MASK]; |
378 | |
|
379 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
380 | 0 | } |
381 | 0 | } Unexecuted instantiation: jpeg12_idct_2x2 Unexecuted instantiation: jpeg_idct_2x2 |
382 | | |
383 | | |
384 | | /* |
385 | | * Perform dequantization and inverse DCT on one block of coefficients, |
386 | | * producing a reduced-size 1x1 output block. |
387 | | */ |
388 | | |
389 | | GLOBAL(void) |
390 | | _jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr, |
391 | | JCOEFPTR coef_block, _JSAMPARRAY output_buf, |
392 | | JDIMENSION output_col) |
393 | 0 | { |
394 | 0 | int dcval; |
395 | 0 | ISLOW_MULT_TYPE *quantptr; |
396 | 0 | _JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
397 | 0 | SHIFT_TEMPS |
398 | | |
399 | | /* We hardly need an inverse DCT routine for this: just take the |
400 | | * average pixel value, which is one-eighth of the DC coefficient. |
401 | | */ |
402 | 0 | quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; |
403 | 0 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
404 | 0 | dcval = (int)DESCALE((JLONG)dcval, 3); |
405 | |
|
406 | 0 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
407 | 0 | } Unexecuted instantiation: jpeg12_idct_1x1 Unexecuted instantiation: jpeg_idct_1x1 |
408 | | |
409 | | #endif /* IDCT_SCALING_SUPPORTED */ |