Coverage Report

Created: 2025-07-11 07:03

/src/libjpeg-turbo.3.0.x/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
110k
{
81
110k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
110k
  int ci, blkn, dctbl, actbl;
83
110k
  d_derived_tbl **pdtbl;
84
110k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
110k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
110k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
97.5k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
294k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
184k
    compptr = cinfo->cur_comp_info[ci];
96
184k
    dctbl = compptr->dc_tbl_no;
97
184k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
184k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
184k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
184k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
184k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
184k
    entropy->saved.last_dc_val[ci] = 0;
106
184k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
506k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
396k
    ci = cinfo->MCU_membership[blkn];
111
396k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
396k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
396k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
396k
    if (compptr->component_needed) {
117
393k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
393k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
393k
    } else {
121
3.00k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
3.00k
    }
123
396k
  }
124
125
  /* Initialize bitread state variables */
126
110k
  entropy->bitstate.bits_left = 0;
127
110k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
110k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
110k
  entropy->restarts_to_go = cinfo->restart_interval;
132
110k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
421k
{
146
421k
  JHUFF_TBL *htbl;
147
421k
  d_derived_tbl *dtbl;
148
421k
  int p, i, l, si, numsymbols;
149
421k
  int lookbits, ctr;
150
421k
  char huffsize[257];
151
421k
  unsigned int huffcode[257];
152
421k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
421k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
332
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
421k
  htbl =
162
421k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
421k
  if (htbl == NULL)
164
256
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
421k
  if (*pdtbl == NULL)
168
46.8k
    *pdtbl = (d_derived_tbl *)
169
46.8k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
46.8k
                                  sizeof(d_derived_tbl));
171
421k
  dtbl = *pdtbl;
172
421k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
421k
  p = 0;
177
7.16M
  for (l = 1; l <= 16; l++) {
178
6.74M
    i = (int)htbl->bits[l];
179
6.74M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
24.5M
    while (i--)
182
17.7M
      huffsize[p++] = (char)l;
183
6.74M
  }
184
421k
  huffsize[p] = 0;
185
421k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
421k
  code = 0;
191
421k
  si = huffsize[0];
192
421k
  p = 0;
193
4.61M
  while (huffsize[p]) {
194
21.9M
    while (((int)huffsize[p]) == si) {
195
17.7M
      huffcode[p++] = code;
196
17.7M
      code++;
197
17.7M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
4.19M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
678
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
4.19M
    code <<= 1;
204
4.19M
    si++;
205
4.19M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
421k
  p = 0;
210
7.15M
  for (l = 1; l <= 16; l++) {
211
6.73M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
3.07M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
3.07M
      p += htbl->bits[l];
217
3.07M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
3.65M
    } else {
219
3.65M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
3.65M
    }
221
6.73M
  }
222
421k
  dtbl->valoffset[17] = 0;
223
421k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
108M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
107M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
421k
  p = 0;
236
3.78M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
7.56M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
4.20M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
101M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
97.1M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
97.1M
        lookbits++;
244
97.1M
      }
245
4.20M
    }
246
3.36M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
421k
  if (isDC) {
255
2.04M
    for (i = 0; i < numsymbols; i++) {
256
1.82M
      int sym = htbl->huffval[i];
257
1.82M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
1.05k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
1.82M
    }
260
219k
  }
261
421k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
551M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
292M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
292M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
292M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
292M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
292M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
7.25M
    while (bits_left < MIN_GET_BITS) {
303
6.40M
      register int c;
304
305
      /* Attempt to read a byte */
306
6.40M
      if (bytes_in_buffer == 0) {
307
12.4k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
12.4k
        next_input_byte = cinfo->src->next_input_byte;
310
12.4k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
12.4k
      }
312
6.40M
      bytes_in_buffer--;
313
6.40M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
6.40M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
626k
        do {
323
626k
          if (bytes_in_buffer == 0) {
324
355
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
355
            next_input_byte = cinfo->src->next_input_byte;
327
355
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
355
          }
329
626k
          bytes_in_buffer--;
330
626k
          c = *next_input_byte++;
331
626k
        } while (c == 0xFF);
332
333
387k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
186k
          c = 0xFF;
336
200k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
200k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
200k
          goto no_more_bytes;
348
200k
        }
349
387k
      }
350
351
      /* OK, load c into get_buffer */
352
6.19M
      get_buffer = (get_buffer << 8) | c;
353
6.19M
      bits_left += 8;
354
6.19M
    } /* end while */
355
291M
  } else {
356
291M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
291M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
272M
      if (!cinfo->entropy->insufficient_data) {
368
190k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
190k
        cinfo->entropy->insufficient_data = TRUE;
370
190k
      }
371
      /* Fill the buffer with zero bits */
372
272M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
272M
      bits_left = MIN_GET_BITS;
374
272M
    }
375
291M
  }
376
377
  /* Unload the local registers */
378
292M
  state->next_input_byte = next_input_byte;
379
292M
  state->bytes_in_buffer = bytes_in_buffer;
380
292M
  state->get_buffer = get_buffer;
381
292M
  state->bits_left = bits_left;
382
383
292M
  return TRUE;
384
292M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
10.6M
#define GET_BYTE { \
392
10.6M
  register int c0, c1; \
393
10.6M
  c0 = *buffer++; \
394
10.6M
  c1 = *buffer; \
395
10.6M
  /* Pre-execute most common case */ \
396
10.6M
  get_buffer = (get_buffer << 8) | c0; \
397
10.6M
  bits_left += 8; \
398
10.6M
  if (c0 == 0xFF) { \
399
1.67M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.67M
    buffer++; \
401
1.67M
    if (c1 != 0) { \
402
1.48M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
1.48M
      cinfo->unread_marker = c1; \
404
1.48M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
1.48M
      buffer -= 2; \
406
1.48M
      get_buffer &= ~0xFF; \
407
1.48M
    } \
408
1.67M
  } \
409
10.6M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
34.7M
  if (bits_left <= 16) { \
416
1.77M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
1.77M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
65.9M
{
440
65.9M
  register int l = min_bits;
441
65.9M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
65.9M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
65.9M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
575M
  while (code > htbl->maxcode[l]) {
453
509M
    code <<= 1;
454
509M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
509M
    code |= GET_BITS(1);
456
509M
    l++;
457
509M
  }
458
459
  /* Unload the local registers */
460
65.9M
  state->get_buffer = get_buffer;
461
65.9M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
65.9M
  if (l > 16) {
466
50.1M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
50.1M
    return 0;                   /* fake a zero as the safest result */
468
50.1M
  }
469
470
15.8M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
65.9M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
25.5M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
25.5M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
474k
{
514
474k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
474k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
474k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
474k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
474k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
1.14M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
668k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
474k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
474k
  if (cinfo->unread_marker == 0)
539
14.9k
    entropy->pub.insufficient_data = FALSE;
540
541
474k
  return TRUE;
542
474k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
750k
{
554
750k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
750k
  BITREAD_STATE_VARS;
556
750k
  int blkn;
557
750k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
750k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
750k
  state = entropy->saved;
563
564
2.00M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.25M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.25M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.25M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.25M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.25M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.25M
    if (s) {
575
526k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
526k
      r = GET_BITS(s);
577
526k
      s = HUFF_EXTEND(r, s);
578
526k
    }
579
580
1.25M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.23M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.23M
      s += state.last_dc_val[ci];
592
1.23M
      state.last_dc_val[ci] = s;
593
1.23M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.23M
        (*block)[0] = (JCOEF)s;
596
1.23M
      }
597
1.23M
    }
598
599
1.25M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
12.0M
      for (k = 1; k < DCTSIZE2; k++) {
604
11.7M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
11.7M
        r = s >> 4;
607
11.7M
        s &= 15;
608
609
11.7M
        if (s) {
610
10.8M
          k += r;
611
10.8M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
10.8M
          r = GET_BITS(s);
613
10.8M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
10.8M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
10.8M
        } else {
620
914k
          if (r != 15)
621
878k
            break;
622
35.8k
          k += 15;
623
35.8k
        }
624
11.7M
      }
625
626
1.23M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
198k
      for (k = 1; k < DCTSIZE2; k++) {
631
194k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
194k
        r = s >> 4;
634
194k
        s &= 15;
635
636
194k
        if (s) {
637
177k
          k += r;
638
177k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
177k
          DROP_BITS(s);
640
177k
        } else {
641
17.0k
          if (r != 15)
642
15.5k
            break;
643
1.44k
          k += 15;
644
1.44k
        }
645
194k
      }
646
20.0k
    }
647
1.25M
  }
648
649
  /* Completed MCU, so update state */
650
750k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
750k
  entropy->saved = state;
652
750k
  return TRUE;
653
750k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
1.18M
{
665
1.18M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
1.18M
  BITREAD_STATE_VARS;
667
1.18M
  JOCTET *buffer;
668
1.18M
  int blkn;
669
1.18M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
1.18M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
1.18M
  buffer = (JOCTET *)br_state.next_input_byte;
675
1.18M
  state = entropy->saved;
676
677
3.55M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
2.37M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
2.37M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
2.37M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
2.37M
    register int s, k, r, l;
682
683
2.37M
    HUFF_DECODE_FAST(s, l, dctbl);
684
2.37M
    if (s) {
685
1.49M
      FILL_BIT_BUFFER_FAST
686
1.49M
      r = GET_BITS(s);
687
1.49M
      s = HUFF_EXTEND(r, s);
688
1.49M
    }
689
690
2.37M
    if (entropy->dc_needed[blkn]) {
691
2.29M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
2.29M
      s += state.last_dc_val[ci];
696
2.29M
      state.last_dc_val[ci] = s;
697
2.29M
      if (block)
698
2.29M
        (*block)[0] = (JCOEF)s;
699
2.29M
    }
700
701
2.37M
    if (entropy->ac_needed[blkn] && block) {
702
703
15.0M
      for (k = 1; k < DCTSIZE2; k++) {
704
14.8M
        HUFF_DECODE_FAST(s, l, actbl);
705
14.8M
        r = s >> 4;
706
14.8M
        s &= 15;
707
708
14.8M
        if (s) {
709
12.6M
          k += r;
710
12.6M
          FILL_BIT_BUFFER_FAST
711
12.6M
          r = GET_BITS(s);
712
12.6M
          s = HUFF_EXTEND(r, s);
713
12.6M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
12.6M
        } else {
715
2.13M
          if (r != 15) break;
716
60.7k
          k += 15;
717
60.7k
        }
718
14.8M
      }
719
720
2.29M
    } else {
721
722
1.72M
      for (k = 1; k < DCTSIZE2; k++) {
723
1.71M
        HUFF_DECODE_FAST(s, l, actbl);
724
1.71M
        r = s >> 4;
725
1.71M
        s &= 15;
726
727
1.71M
        if (s) {
728
1.64M
          k += r;
729
1.64M
          FILL_BIT_BUFFER_FAST
730
1.64M
          DROP_BITS(s);
731
1.64M
        } else {
732
75.2k
          if (r != 15) break;
733
1.56k
          k += 15;
734
1.56k
        }
735
1.71M
      }
736
77.8k
    }
737
2.37M
  }
738
739
1.18M
  if (cinfo->unread_marker != 0) {
740
86.4k
    cinfo->unread_marker = 0;
741
86.4k
    return FALSE;
742
86.4k
  }
743
744
1.09M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
1.09M
  br_state.next_input_byte = buffer;
746
1.09M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
1.09M
  entropy->saved = state;
748
1.09M
  return TRUE;
749
1.18M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
170M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
170M
{
772
170M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
170M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
170M
  if (cinfo->restart_interval) {
777
71.7M
    if (entropy->restarts_to_go == 0)
778
474k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
71.7M
    usefast = 0;
781
71.7M
  }
782
783
170M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
170M
      cinfo->unread_marker != 0)
785
168M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
170M
  if (!entropy->pub.insufficient_data) {
791
792
1.84M
    if (usefast) {
793
1.18M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
1.18M
    } else {
795
750k
use_slow:
796
750k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
750k
    }
798
799
1.84M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
170M
  if (cinfo->restart_interval)
803
71.7M
    entropy->restarts_to_go--;
804
805
170M
  return TRUE;
806
170M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
17.6k
{
816
17.6k
  huff_entropy_ptr entropy;
817
17.6k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
17.6k
  std_huff_tables((j_common_ptr)cinfo);
824
825
17.6k
  entropy = (huff_entropy_ptr)
826
17.6k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
17.6k
                                sizeof(huff_entropy_decoder));
828
17.6k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
17.6k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
17.6k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
88.1k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
70.5k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
70.5k
  }
836
17.6k
}