Coverage Report

Created: 2025-10-10 07:05

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.3.0.x/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
174k
{
81
174k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
174k
  int ci, blkn, dctbl, actbl;
83
174k
  d_derived_tbl **pdtbl;
84
174k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
174k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
30.1k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
150k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
457k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
282k
    compptr = cinfo->cur_comp_info[ci];
96
282k
    dctbl = compptr->dc_tbl_no;
97
282k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
282k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
282k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
282k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
282k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
282k
    entropy->saved.last_dc_val[ci] = 0;
106
282k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
735k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
561k
    ci = cinfo->MCU_membership[blkn];
111
561k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
561k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
561k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
561k
    if (compptr->component_needed) {
117
555k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
555k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
555k
    } else {
121
5.75k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
5.75k
    }
123
561k
  }
124
125
  /* Initialize bitread state variables */
126
174k
  entropy->bitstate.bits_left = 0;
127
174k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
174k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
174k
  entropy->restarts_to_go = cinfo->restart_interval;
132
174k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
660k
{
146
660k
  JHUFF_TBL *htbl;
147
660k
  d_derived_tbl *dtbl;
148
660k
  int p, i, l, si, numsymbols;
149
660k
  int lookbits, ctr;
150
660k
  char huffsize[257];
151
660k
  unsigned int huffcode[257];
152
660k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
660k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
509
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
660k
  htbl =
162
660k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
660k
  if (htbl == NULL)
164
316
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
660k
  if (*pdtbl == NULL)
168
68.3k
    *pdtbl = (d_derived_tbl *)
169
68.3k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
68.3k
                                  sizeof(d_derived_tbl));
171
660k
  dtbl = *pdtbl;
172
660k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
660k
  p = 0;
177
11.2M
  for (l = 1; l <= 16; l++) {
178
10.5M
    i = (int)htbl->bits[l];
179
10.5M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
37.6M
    while (i--)
182
27.1M
      huffsize[p++] = (char)l;
183
10.5M
  }
184
660k
  huffsize[p] = 0;
185
660k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
660k
  code = 0;
191
660k
  si = huffsize[0];
192
660k
  p = 0;
193
6.87M
  while (huffsize[p]) {
194
33.2M
    while (((int)huffsize[p]) == si) {
195
27.0M
      huffcode[p++] = code;
196
27.0M
      code++;
197
27.0M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
6.21M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
997
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
6.21M
    code <<= 1;
204
6.21M
    si++;
205
6.21M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
660k
  p = 0;
210
11.2M
  for (l = 1; l <= 16; l++) {
211
10.5M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
4.79M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
4.79M
      p += htbl->bits[l];
217
4.79M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
5.74M
    } else {
219
5.74M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
5.74M
    }
221
10.5M
  }
222
660k
  dtbl->valoffset[17] = 0;
223
660k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
169M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
168M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
660k
  p = 0;
236
5.93M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
12.0M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
6.76M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
158M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
152M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
152M
        lookbits++;
244
152M
      }
245
6.76M
    }
246
5.27M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
660k
  if (isDC) {
255
3.18M
    for (i = 0; i < numsymbols; i++) {
256
2.83M
      int sym = htbl->huffval[i];
257
2.83M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
1.59k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
2.83M
    }
260
347k
  }
261
660k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
384M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
216M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
216M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
216M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
216M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
216M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
11.7M
    while (bits_left < MIN_GET_BITS) {
303
10.4M
      register int c;
304
305
      /* Attempt to read a byte */
306
10.4M
      if (bytes_in_buffer == 0) {
307
18.0k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
18.0k
        next_input_byte = cinfo->src->next_input_byte;
310
18.0k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
18.0k
      }
312
10.4M
      bytes_in_buffer--;
313
10.4M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
10.4M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
1.02M
        do {
323
1.02M
          if (bytes_in_buffer == 0) {
324
531
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
531
            next_input_byte = cinfo->src->next_input_byte;
327
531
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
531
          }
329
1.02M
          bytes_in_buffer--;
330
1.02M
          c = *next_input_byte++;
331
1.02M
        } while (c == 0xFF);
332
333
600k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
256k
          c = 0xFF;
336
344k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
344k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
344k
          goto no_more_bytes;
348
344k
        }
349
600k
      }
350
351
      /* OK, load c into get_buffer */
352
10.0M
      get_buffer = (get_buffer << 8) | c;
353
10.0M
      bits_left += 8;
354
10.0M
    } /* end while */
355
214M
  } else {
356
215M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
215M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
186M
      if (!cinfo->entropy->insufficient_data) {
368
324k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
324k
        cinfo->entropy->insufficient_data = TRUE;
370
324k
      }
371
      /* Fill the buffer with zero bits */
372
186M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
186M
      bits_left = MIN_GET_BITS;
374
186M
    }
375
215M
  }
376
377
  /* Unload the local registers */
378
216M
  state->next_input_byte = next_input_byte;
379
216M
  state->bytes_in_buffer = bytes_in_buffer;
380
216M
  state->get_buffer = get_buffer;
381
216M
  state->bits_left = bits_left;
382
383
216M
  return TRUE;
384
216M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
17.2M
#define GET_BYTE { \
392
17.2M
  register int c0, c1; \
393
17.2M
  c0 = *buffer++; \
394
17.2M
  c1 = *buffer; \
395
17.2M
  /* Pre-execute most common case */ \
396
17.2M
  get_buffer = (get_buffer << 8) | c0; \
397
17.2M
  bits_left += 8; \
398
17.2M
  if (c0 == 0xFF) { \
399
2.47M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
2.47M
    buffer++; \
401
2.47M
    if (c1 != 0) { \
402
2.20M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
2.20M
      cinfo->unread_marker = c1; \
404
2.20M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
2.20M
      buffer -= 2; \
406
2.20M
      get_buffer &= ~0xFF; \
407
2.20M
    } \
408
2.47M
  } \
409
17.2M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
65.2M
  if (bits_left <= 16) { \
416
2.86M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
2.86M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
83.9M
{
440
83.9M
  register int l = min_bits;
441
83.9M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
83.9M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
83.9M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
691M
  while (code > htbl->maxcode[l]) {
453
607M
    code <<= 1;
454
607M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
607M
    code |= GET_BITS(1);
456
607M
    l++;
457
607M
  }
458
459
  /* Unload the local registers */
460
83.9M
  state->get_buffer = get_buffer;
461
83.9M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
83.9M
  if (l > 16) {
466
60.1M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
60.1M
    return 0;                   /* fake a zero as the safest result */
468
60.1M
  }
469
470
23.8M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
83.9M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
44.7M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
44.7M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.02M
{
514
1.02M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.02M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.02M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.02M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.02M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
2.28M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
1.26M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.02M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.02M
  if (cinfo->unread_marker == 0)
539
22.2k
    entropy->pub.insufficient_data = FALSE;
540
541
1.02M
  return TRUE;
542
1.02M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
1.11M
{
554
1.11M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
1.11M
  BITREAD_STATE_VARS;
556
1.11M
  int blkn;
557
1.11M
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
1.11M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
1.11M
  state = entropy->saved;
563
564
2.91M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.79M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.79M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.79M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.79M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.79M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.79M
    if (s) {
575
769k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
769k
      r = GET_BITS(s);
577
769k
      s = HUFF_EXTEND(r, s);
578
769k
    }
579
580
1.79M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.75M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.75M
      s += state.last_dc_val[ci];
592
1.75M
      state.last_dc_val[ci] = s;
593
1.75M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.75M
        (*block)[0] = (JCOEF)s;
596
1.75M
      }
597
1.75M
    }
598
599
1.79M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
17.4M
      for (k = 1; k < DCTSIZE2; k++) {
604
17.0M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
17.0M
        r = s >> 4;
607
17.0M
        s &= 15;
608
609
17.0M
        if (s) {
610
15.6M
          k += r;
611
15.6M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
15.6M
          r = GET_BITS(s);
613
15.6M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
15.6M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
15.6M
        } else {
620
1.34M
          if (r != 15)
621
1.28M
            break;
622
61.6k
          k += 15;
623
61.6k
        }
624
17.0M
      }
625
626
1.75M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
313k
      for (k = 1; k < DCTSIZE2; k++) {
631
308k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
308k
        r = s >> 4;
634
308k
        s &= 15;
635
636
308k
        if (s) {
637
262k
          k += r;
638
262k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
262k
          DROP_BITS(s);
640
262k
        } else {
641
45.2k
          if (r != 15)
642
43.3k
            break;
643
1.85k
          k += 15;
644
1.85k
        }
645
308k
      }
646
48.6k
    }
647
1.79M
  }
648
649
  /* Completed MCU, so update state */
650
1.11M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
1.11M
  entropy->saved = state;
652
1.11M
  return TRUE;
653
1.11M
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
1.88M
{
665
1.88M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
1.88M
  BITREAD_STATE_VARS;
667
1.88M
  JOCTET *buffer;
668
1.88M
  int blkn;
669
1.88M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
1.88M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
1.88M
  buffer = (JOCTET *)br_state.next_input_byte;
675
1.88M
  state = entropy->saved;
676
677
5.61M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
3.72M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
3.72M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
3.72M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
3.72M
    register int s, k, r, l;
682
683
3.72M
    HUFF_DECODE_FAST(s, l, dctbl);
684
3.72M
    if (s) {
685
2.16M
      FILL_BIT_BUFFER_FAST
686
2.16M
      r = GET_BITS(s);
687
2.16M
      s = HUFF_EXTEND(r, s);
688
2.16M
    }
689
690
3.72M
    if (entropy->dc_needed[blkn]) {
691
3.61M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
3.61M
      s += state.last_dc_val[ci];
696
3.61M
      state.last_dc_val[ci] = s;
697
3.61M
      if (block)
698
3.61M
        (*block)[0] = (JCOEF)s;
699
3.61M
    }
700
701
3.72M
    if (entropy->ac_needed[blkn] && block) {
702
703
29.9M
      for (k = 1; k < DCTSIZE2; k++) {
704
29.4M
        HUFF_DECODE_FAST(s, l, actbl);
705
29.4M
        r = s >> 4;
706
29.4M
        s &= 15;
707
708
29.4M
        if (s) {
709
26.1M
          k += r;
710
26.1M
          FILL_BIT_BUFFER_FAST
711
26.1M
          r = GET_BITS(s);
712
26.1M
          s = HUFF_EXTEND(r, s);
713
26.1M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
26.1M
        } else {
715
3.31M
          if (r != 15) break;
716
156k
          k += 15;
717
156k
        }
718
29.4M
      }
719
720
3.61M
    } else {
721
722
1.91M
      for (k = 1; k < DCTSIZE2; k++) {
723
1.90M
        HUFF_DECODE_FAST(s, l, actbl);
724
1.90M
        r = s >> 4;
725
1.90M
        s &= 15;
726
727
1.90M
        if (s) {
728
1.80M
          k += r;
729
1.80M
          FILL_BIT_BUFFER_FAST
730
1.80M
          DROP_BITS(s);
731
1.80M
        } else {
732
104k
          if (r != 15) break;
733
1.85k
          k += 15;
734
1.85k
        }
735
1.90M
      }
736
108k
    }
737
3.72M
  }
738
739
1.88M
  if (cinfo->unread_marker != 0) {
740
137k
    cinfo->unread_marker = 0;
741
137k
    return FALSE;
742
137k
  }
743
744
1.75M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
1.75M
  br_state.next_input_byte = buffer;
746
1.75M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
1.75M
  entropy->saved = state;
748
1.75M
  return TRUE;
749
1.88M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
256M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
256M
{
772
256M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
256M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
256M
  if (cinfo->restart_interval) {
777
86.3M
    if (entropy->restarts_to_go == 0)
778
1.02M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
86.3M
    usefast = 0;
781
86.3M
  }
782
783
256M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
166M
      cinfo->unread_marker != 0)
785
254M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
256M
  if (!entropy->pub.insufficient_data) {
791
792
2.86M
    if (usefast) {
793
1.88M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
1.88M
    } else {
795
1.11M
use_slow:
796
1.11M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
1.11M
    }
798
799
2.86M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
256M
  if (cinfo->restart_interval)
803
86.3M
    entropy->restarts_to_go--;
804
805
256M
  return TRUE;
806
256M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
25.9k
{
816
25.9k
  huff_entropy_ptr entropy;
817
25.9k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
25.9k
  std_huff_tables((j_common_ptr)cinfo);
824
825
25.9k
  entropy = (huff_entropy_ptr)
826
25.9k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
25.9k
                                sizeof(huff_entropy_decoder));
828
25.9k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
25.9k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
25.9k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
129k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
103k
  }
836
25.9k
}