Coverage Report

Created: 2025-11-24 06:37

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.3.0.x/jcarith.c
Line
Count
Source
1
/*
2
 * jcarith.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Developed 1997-2009 by Guido Vollbeding.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, 2018, 2021-2022, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains portable arithmetic entropy encoding routines for JPEG
12
 * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
13
 *
14
 * Both sequential and progressive modes are supported in this single module.
15
 *
16
 * Suspension is not currently supported in this module.
17
 *
18
 * NOTE: All referenced figures are from
19
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
20
 */
21
22
#define JPEG_INTERNALS
23
#include "jinclude.h"
24
#include "jpeglib.h"
25
26
27
/* Expanded entropy encoder object for arithmetic encoding. */
28
29
typedef struct {
30
  struct jpeg_entropy_encoder pub; /* public fields */
31
32
  JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */
33
  JLONG a;               /* A register, normalized size of coding interval */
34
  JLONG sc;        /* counter for stacked 0xFF values which might overflow */
35
  JLONG zc;          /* counter for pending 0x00 output values which might *
36
                          * be discarded at the end ("Pacman" termination) */
37
  int ct;  /* bit shift counter, determines when next byte will be written */
38
  int buffer;                /* buffer for most recent output byte != 0xFF */
39
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
42
43
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
44
  int next_restart_num;         /* next restart number to write (0-7) */
45
46
  /* Pointers to statistics areas (these workspaces have image lifespan) */
47
  unsigned char *dc_stats[NUM_ARITH_TBLS];
48
  unsigned char *ac_stats[NUM_ARITH_TBLS];
49
50
  /* Statistics bin for coding with fixed probability 0.5 */
51
  unsigned char fixed_bin[4];
52
} arith_entropy_encoder;
53
54
typedef arith_entropy_encoder *arith_entropy_ptr;
55
56
/* The following two definitions specify the allocation chunk size
57
 * for the statistics area.
58
 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
59
 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
60
 *
61
 * We use a compact representation with 1 byte per statistics bin,
62
 * thus the numbers directly represent byte sizes.
63
 * This 1 byte per statistics bin contains the meaning of the MPS
64
 * (more probable symbol) in the highest bit (mask 0x80), and the
65
 * index into the probability estimation state machine table
66
 * in the lower bits (mask 0x7F).
67
 */
68
69
6.37M
#define DC_STAT_BINS  64
70
11.1M
#define AC_STAT_BINS  256
71
72
/* NOTE: Uncomment the following #define if you want to use the
73
 * given formula for calculating the AC conditioning parameter Kx
74
 * for spectral selection progressive coding in section G.1.3.2
75
 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
76
 * Although the spec and P&M authors claim that this "has proven
77
 * to give good results for 8 bit precision samples", I'm not
78
 * convinced yet that this is really beneficial.
79
 * Early tests gave only very marginal compression enhancements
80
 * (a few - around 5 or so - bytes even for very large files),
81
 * which would turn out rather negative if we'd suppress the
82
 * DAC (Define Arithmetic Conditioning) marker segments for
83
 * the default parameters in the future.
84
 * Note that currently the marker writing module emits 12-byte
85
 * DAC segments for a full-component scan in a color image.
86
 * This is not worth worrying about IMHO. However, since the
87
 * spec defines the default values to be used if the tables
88
 * are omitted (unlike Huffman tables, which are required
89
 * anyway), one might optimize this behaviour in the future,
90
 * and then it would be disadvantageous to use custom tables if
91
 * they don't provide sufficient gain to exceed the DAC size.
92
 *
93
 * On the other hand, I'd consider it as a reasonable result
94
 * that the conditioning has no significant influence on the
95
 * compression performance. This means that the basic
96
 * statistical model is already rather stable.
97
 *
98
 * Thus, at the moment, we use the default conditioning values
99
 * anyway, and do not use the custom formula.
100
 *
101
#define CALCULATE_SPECTRAL_CONDITIONING
102
 */
103
104
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
105
 * We assume that int right shift is unsigned if JLONG right shift is,
106
 * which should be safe.
107
 */
108
109
#ifdef RIGHT_SHIFT_IS_UNSIGNED
110
#define ISHIFT_TEMPS    int ishift_temp;
111
#define IRIGHT_SHIFT(x, shft) \
112
  ((ishift_temp = (x)) < 0 ? \
113
   (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \
114
   (ishift_temp >> (shft)))
115
#else
116
#define ISHIFT_TEMPS
117
54.3M
#define IRIGHT_SHIFT(x, shft)   ((x) >> (shft))
118
#endif
119
120
121
LOCAL(void)
122
emit_byte(int val, j_compress_ptr cinfo)
123
/* Write next output byte; we do not support suspension in this module. */
124
319M
{
125
319M
  struct jpeg_destination_mgr *dest = cinfo->dest;
126
127
319M
  *dest->next_output_byte++ = (JOCTET)val;
128
319M
  if (--dest->free_in_buffer == 0)
129
6.69k
    if (!(*dest->empty_output_buffer) (cinfo))
130
0
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
131
319M
}
132
133
134
/*
135
 * Finish up at the end of an arithmetic-compressed scan.
136
 */
137
138
METHODDEF(void)
139
finish_pass(j_compress_ptr cinfo)
140
9.61M
{
141
9.61M
  arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
142
9.61M
  JLONG temp;
143
144
  /* Section D.1.8: Termination of encoding */
145
146
  /* Find the e->c in the coding interval with the largest
147
   * number of trailing zero bits */
148
9.61M
  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c)
149
1.99M
    e->c = temp + 0x8000L;
150
7.62M
  else
151
7.62M
    e->c = temp;
152
  /* Send remaining bytes to output */
153
9.61M
  e->c <<= e->ct;
154
9.61M
  if (e->c & 0xF8000000UL) {
155
    /* One final overflow has to be handled */
156
240k
    if (e->buffer >= 0) {
157
240k
      if (e->zc)
158
20.3k
        do emit_byte(0x00, cinfo);
159
20.3k
        while (--e->zc);
160
240k
      emit_byte(e->buffer + 1, cinfo);
161
240k
      if (e->buffer + 1 == 0xFF)
162
2.87k
        emit_byte(0x00, cinfo);
163
240k
    }
164
240k
    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
165
240k
    e->sc = 0;
166
9.37M
  } else {
167
9.37M
    if (e->buffer == 0)
168
56.3k
      ++e->zc;
169
9.31M
    else if (e->buffer >= 0) {
170
5.29M
      if (e->zc)
171
65.7k
        do emit_byte(0x00, cinfo);
172
65.7k
        while (--e->zc);
173
5.29M
      emit_byte(e->buffer, cinfo);
174
5.29M
    }
175
9.37M
    if (e->sc) {
176
47.7k
      if (e->zc)
177
3.70k
        do emit_byte(0x00, cinfo);
178
3.70k
        while (--e->zc);
179
56.1k
      do {
180
56.1k
        emit_byte(0xFF, cinfo);
181
56.1k
        emit_byte(0x00, cinfo);
182
56.1k
      } while (--e->sc);
183
47.7k
    }
184
9.37M
  }
185
  /* Output final bytes only if they are not 0x00 */
186
9.61M
  if (e->c & 0x7FFF800L) {
187
9.21M
    if (e->zc)  /* output final pending zero bytes */
188
86.4k
      do emit_byte(0x00, cinfo);
189
86.4k
      while (--e->zc);
190
9.21M
    emit_byte((e->c >> 19) & 0xFF, cinfo);
191
9.21M
    if (((e->c >> 19) & 0xFF) == 0xFF)
192
32.0k
      emit_byte(0x00, cinfo);
193
9.21M
    if (e->c & 0x7F800L) {
194
1.25M
      emit_byte((e->c >> 11) & 0xFF, cinfo);
195
1.25M
      if (((e->c >> 11) & 0xFF) == 0xFF)
196
0
        emit_byte(0x00, cinfo);
197
1.25M
    }
198
9.21M
  }
199
9.61M
}
200
201
202
/*
203
 * The core arithmetic encoding routine (common in JPEG and JBIG).
204
 * This needs to go as fast as possible.
205
 * Machine-dependent optimization facilities
206
 * are not utilized in this portable implementation.
207
 * However, this code should be fairly efficient and
208
 * may be a good base for further optimizations anyway.
209
 *
210
 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
211
 *
212
 * Note: I've added full "Pacman" termination support to the
213
 * byte output routines, which is equivalent to the optional
214
 * Discard_final_zeros procedure (Figure D.15) in the spec.
215
 * Thus, we always produce the shortest possible output
216
 * stream compliant to the spec (no trailing zero bytes,
217
 * except for FF stuffing).
218
 *
219
 * I've also introduced a new scheme for accessing
220
 * the probability estimation state machine table,
221
 * derived from Markus Kuhn's JBIG implementation.
222
 */
223
224
LOCAL(void)
225
arith_encode(j_compress_ptr cinfo, unsigned char *st, int val)
226
4.06G
{
227
4.06G
  register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
228
4.06G
  register unsigned char nl, nm;
229
4.06G
  register JLONG qe, temp;
230
4.06G
  register int sv;
231
232
  /* Fetch values from our compact representation of Table D.2:
233
   * Qe values and probability estimation state machine
234
   */
235
4.06G
  sv = *st;
236
4.06G
  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
237
4.06G
  nl = qe & 0xFF;  qe >>= 8;    /* Next_Index_LPS + Switch_MPS */
238
4.06G
  nm = qe & 0xFF;  qe >>= 8;    /* Next_Index_MPS */
239
240
  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
241
4.06G
  e->a -= qe;
242
4.06G
  if (val != (sv >> 7)) {
243
    /* Encode the less probable symbol */
244
890M
    if (e->a >= qe) {
245
      /* If the interval size (qe) for the less probable symbol (LPS)
246
       * is larger than the interval size for the MPS, then exchange
247
       * the two symbols for coding efficiency, otherwise code the LPS
248
       * as usual: */
249
663M
      e->c += e->a;
250
663M
      e->a = qe;
251
663M
    }
252
890M
    *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */
253
3.17G
  } else {
254
    /* Encode the more probable symbol */
255
3.17G
    if (e->a >= 0x8000L)
256
2.22G
      return;  /* A >= 0x8000 -> ready, no renormalization required */
257
951M
    if (e->a < qe) {
258
      /* If the interval size (qe) for the less probable symbol (LPS)
259
       * is larger than the interval size for the MPS, then exchange
260
       * the two symbols for coding efficiency: */
261
250M
      e->c += e->a;
262
250M
      e->a = qe;
263
250M
    }
264
951M
    *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */
265
951M
  }
266
267
  /* Renormalization & data output per section D.1.6 */
268
2.33G
  do {
269
2.33G
    e->a <<= 1;
270
2.33G
    e->c <<= 1;
271
2.33G
    if (--e->ct == 0) {
272
      /* Another byte is ready for output */
273
286M
      temp = e->c >> 19;
274
286M
      if (temp > 0xFF) {
275
        /* Handle overflow over all stacked 0xFF bytes */
276
11.2M
        if (e->buffer >= 0) {
277
11.2M
          if (e->zc)
278
91.4k
            do emit_byte(0x00, cinfo);
279
91.4k
            while (--e->zc);
280
11.2M
          emit_byte(e->buffer + 1, cinfo);
281
11.2M
          if (e->buffer + 1 == 0xFF)
282
54.0k
            emit_byte(0x00, cinfo);
283
11.2M
        }
284
11.2M
        e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
285
11.2M
        e->sc = 0;
286
        /* Note: The 3 spacer bits in the C register guarantee
287
         * that the new buffer byte can't be 0xFF here
288
         * (see page 160 in the P&M JPEG book). */
289
11.2M
        e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
290
275M
      } else if (temp == 0xFF) {
291
3.11M
        ++e->sc;  /* stack 0xFF byte (which might overflow later) */
292
272M
      } else {
293
        /* Output all stacked 0xFF bytes, they will not overflow any more */
294
272M
        if (e->buffer == 0)
295
3.64M
          ++e->zc;
296
268M
        else if (e->buffer >= 0) {
297
263M
          if (e->zc)
298
3.42M
            do emit_byte(0x00, cinfo);
299
3.42M
            while (--e->zc);
300
263M
          emit_byte(e->buffer, cinfo);
301
263M
        }
302
272M
        if (e->sc) {
303
2.77M
          if (e->zc)
304
16.0k
            do emit_byte(0x00, cinfo);
305
16.0k
            while (--e->zc);
306
2.90M
          do {
307
2.90M
            emit_byte(0xFF, cinfo);
308
2.90M
            emit_byte(0x00, cinfo);
309
2.90M
          } while (--e->sc);
310
2.77M
        }
311
272M
        e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
312
272M
      }
313
286M
      e->c &= 0x7FFFFL;
314
286M
      e->ct += 8;
315
286M
    }
316
2.33G
  } while (e->a < 0x8000L);
317
1.84G
}
318
319
320
/*
321
 * Emit a restart marker & resynchronize predictions.
322
 */
323
324
LOCAL(void)
325
emit_restart(j_compress_ptr cinfo, int restart_num)
326
9.41M
{
327
9.41M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
328
9.41M
  int ci;
329
9.41M
  jpeg_component_info *compptr;
330
331
9.41M
  finish_pass(cinfo);
332
333
9.41M
  emit_byte(0xFF, cinfo);
334
9.41M
  emit_byte(JPEG_RST0 + restart_num, cinfo);
335
336
  /* Re-initialize statistics areas */
337
24.2M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
338
14.8M
    compptr = cinfo->cur_comp_info[ci];
339
    /* DC needs no table for refinement scan */
340
14.8M
    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
341
6.18M
      memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS);
342
      /* Reset DC predictions to 0 */
343
6.18M
      entropy->last_dc_val[ci] = 0;
344
6.18M
      entropy->dc_context[ci] = 0;
345
6.18M
    }
346
    /* AC needs no table when not present */
347
14.8M
    if (cinfo->progressive_mode == 0 || cinfo->Se) {
348
10.8M
      memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS);
349
10.8M
    }
350
14.8M
  }
351
352
  /* Reset arithmetic encoding variables */
353
9.41M
  entropy->c = 0;
354
9.41M
  entropy->a = 0x10000L;
355
9.41M
  entropy->sc = 0;
356
9.41M
  entropy->zc = 0;
357
9.41M
  entropy->ct = 11;
358
9.41M
  entropy->buffer = -1;  /* empty */
359
9.41M
}
360
361
362
/*
363
 * MCU encoding for DC initial scan (either spectral selection,
364
 * or first pass of successive approximation).
365
 */
366
367
METHODDEF(boolean)
368
encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
369
9.06M
{
370
9.06M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
371
9.06M
  JBLOCKROW block;
372
9.06M
  unsigned char *st;
373
9.06M
  int blkn, ci, tbl;
374
9.06M
  int v, v2, m;
375
9.06M
  ISHIFT_TEMPS
376
377
  /* Emit restart marker if needed */
378
9.06M
  if (cinfo->restart_interval) {
379
2.67M
    if (entropy->restarts_to_go == 0) {
380
666k
      emit_restart(cinfo, entropy->next_restart_num);
381
666k
      entropy->restarts_to_go = cinfo->restart_interval;
382
666k
      entropy->next_restart_num++;
383
666k
      entropy->next_restart_num &= 7;
384
666k
    }
385
2.67M
    entropy->restarts_to_go--;
386
2.67M
  }
387
388
  /* Encode the MCU data blocks */
389
63.4M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
390
54.3M
    block = MCU_data[blkn];
391
54.3M
    ci = cinfo->MCU_membership[blkn];
392
54.3M
    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
393
394
    /* Compute the DC value after the required point transform by Al.
395
     * This is simply an arithmetic right shift.
396
     */
397
54.3M
    m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al);
398
399
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
400
401
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
402
54.3M
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
403
404
    /* Figure F.4: Encode_DC_DIFF */
405
54.3M
    if ((v = m - entropy->last_dc_val[ci]) == 0) {
406
47.5M
      arith_encode(cinfo, st, 0);
407
47.5M
      entropy->dc_context[ci] = 0;      /* zero diff category */
408
47.5M
    } else {
409
6.88M
      entropy->last_dc_val[ci] = m;
410
6.88M
      arith_encode(cinfo, st, 1);
411
      /* Figure F.6: Encoding nonzero value v */
412
      /* Figure F.7: Encoding the sign of v */
413
6.88M
      if (v > 0) {
414
3.23M
        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
415
3.23M
        st += 2;                        /* Table F.4: SP = S0 + 2 */
416
3.23M
        entropy->dc_context[ci] = 4;    /* small positive diff category */
417
3.64M
      } else {
418
3.64M
        v = -v;
419
3.64M
        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
420
3.64M
        st += 3;                        /* Table F.4: SN = S0 + 3 */
421
3.64M
        entropy->dc_context[ci] = 8;    /* small negative diff category */
422
3.64M
      }
423
      /* Figure F.8: Encoding the magnitude category of v */
424
6.88M
      m = 0;
425
6.88M
      if (v -= 1) {
426
6.14M
        arith_encode(cinfo, st, 1);
427
6.14M
        m = 1;
428
6.14M
        v2 = v;
429
6.14M
        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
430
27.9M
        while (v2 >>= 1) {
431
21.7M
          arith_encode(cinfo, st, 1);
432
21.7M
          m <<= 1;
433
21.7M
          st += 1;
434
21.7M
        }
435
6.14M
      }
436
6.88M
      arith_encode(cinfo, st, 0);
437
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
438
6.88M
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
439
0
        entropy->dc_context[ci] = 0;    /* zero diff category */
440
6.88M
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
441
5.60M
        entropy->dc_context[ci] += 8;   /* large diff category */
442
      /* Figure F.9: Encoding the magnitude bit pattern of v */
443
6.88M
      st += 14;
444
28.6M
      while (m >>= 1)
445
21.7M
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
446
6.88M
    }
447
54.3M
  }
448
449
9.06M
  return TRUE;
450
9.06M
}
451
452
453
/*
454
 * MCU encoding for AC initial scan (either spectral selection,
455
 * or first pass of successive approximation).
456
 */
457
458
METHODDEF(boolean)
459
encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
460
43.8M
{
461
43.8M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
462
43.8M
  JBLOCKROW block;
463
43.8M
  unsigned char *st;
464
43.8M
  int tbl, k, ke;
465
43.8M
  int v, v2, m;
466
467
  /* Emit restart marker if needed */
468
43.8M
  if (cinfo->restart_interval) {
469
13.4M
    if (entropy->restarts_to_go == 0) {
470
3.34M
      emit_restart(cinfo, entropy->next_restart_num);
471
3.34M
      entropy->restarts_to_go = cinfo->restart_interval;
472
3.34M
      entropy->next_restart_num++;
473
3.34M
      entropy->next_restart_num &= 7;
474
3.34M
    }
475
13.4M
    entropy->restarts_to_go--;
476
13.4M
  }
477
478
  /* Encode the MCU data block */
479
43.8M
  block = MCU_data[0];
480
43.8M
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
481
482
  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
483
484
  /* Establish EOB (end-of-block) index */
485
1.85G
  for (ke = cinfo->Se; ke > 0; ke--)
486
    /* We must apply the point transform by Al.  For AC coefficients this
487
     * is an integer division with rounding towards 0.  To do this portably
488
     * in C, we shift after obtaining the absolute value.
489
     */
490
1.81G
    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
491
1.79G
      if (v >>= cinfo->Al) break;
492
1.79G
    } else {
493
23.5M
      v = -v;
494
23.5M
      if (v >>= cinfo->Al) break;
495
23.5M
    }
496
497
  /* Figure F.5: Encode_AC_Coefficients */
498
115M
  for (k = cinfo->Ss; k <= ke; k++) {
499
71.6M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
500
71.6M
    arith_encode(cinfo, st, 0);         /* EOB decision */
501
180M
    for (;;) {
502
180M
      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
503
130M
        if (v >>= cinfo->Al) {
504
35.4M
          arith_encode(cinfo, st + 1, 1);
505
35.4M
          arith_encode(cinfo, entropy->fixed_bin, 0);
506
35.4M
          break;
507
35.4M
        }
508
130M
      } else {
509
49.8M
        v = -v;
510
49.8M
        if (v >>= cinfo->Al) {
511
36.2M
          arith_encode(cinfo, st + 1, 1);
512
36.2M
          arith_encode(cinfo, entropy->fixed_bin, 1);
513
36.2M
          break;
514
36.2M
        }
515
49.8M
      }
516
108M
      arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
517
108M
    }
518
71.6M
    st += 2;
519
    /* Figure F.8: Encoding the magnitude category of v */
520
71.6M
    m = 0;
521
71.6M
    if (v -= 1) {
522
49.1M
      arith_encode(cinfo, st, 1);
523
49.1M
      m = 1;
524
49.1M
      v2 = v;
525
49.1M
      if (v2 >>= 1) {
526
38.2M
        arith_encode(cinfo, st, 1);
527
38.2M
        m <<= 1;
528
38.2M
        st = entropy->ac_stats[tbl] +
529
38.2M
             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530
105M
        while (v2 >>= 1) {
531
67.1M
          arith_encode(cinfo, st, 1);
532
67.1M
          m <<= 1;
533
67.1M
          st += 1;
534
67.1M
        }
535
38.2M
      }
536
49.1M
    }
537
71.6M
    arith_encode(cinfo, st, 0);
538
    /* Figure F.9: Encoding the magnitude bit pattern of v */
539
71.6M
    st += 14;
540
177M
    while (m >>= 1)
541
105M
      arith_encode(cinfo, st, (m & v) ? 1 : 0);
542
71.6M
  }
543
  /* Encode EOB decision only if k <= cinfo->Se */
544
43.8M
  if (k <= cinfo->Se) {
545
41.1M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
546
41.1M
    arith_encode(cinfo, st, 1);
547
41.1M
  }
548
549
43.8M
  return TRUE;
550
43.8M
}
551
552
553
/*
554
 * MCU encoding for DC successive approximation refinement scan.
555
 */
556
557
METHODDEF(boolean)
558
encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
559
9.06M
{
560
9.06M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
561
9.06M
  unsigned char *st;
562
9.06M
  int Al, blkn;
563
564
  /* Emit restart marker if needed */
565
9.06M
  if (cinfo->restart_interval) {
566
2.67M
    if (entropy->restarts_to_go == 0) {
567
666k
      emit_restart(cinfo, entropy->next_restart_num);
568
666k
      entropy->restarts_to_go = cinfo->restart_interval;
569
666k
      entropy->next_restart_num++;
570
666k
      entropy->next_restart_num &= 7;
571
666k
    }
572
2.67M
    entropy->restarts_to_go--;
573
2.67M
  }
574
575
9.06M
  st = entropy->fixed_bin;      /* use fixed probability estimation */
576
9.06M
  Al = cinfo->Al;
577
578
  /* Encode the MCU data blocks */
579
63.4M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
580
    /* We simply emit the Al'th bit of the DC coefficient value. */
581
54.3M
    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
582
54.3M
  }
583
584
9.06M
  return TRUE;
585
9.06M
}
586
587
588
/*
589
 * MCU encoding for AC successive approximation refinement scan.
590
 */
591
592
METHODDEF(boolean)
593
encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
594
43.8M
{
595
43.8M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
596
43.8M
  JBLOCKROW block;
597
43.8M
  unsigned char *st;
598
43.8M
  int tbl, k, ke, kex;
599
43.8M
  int v;
600
601
  /* Emit restart marker if needed */
602
43.8M
  if (cinfo->restart_interval) {
603
13.4M
    if (entropy->restarts_to_go == 0) {
604
3.34M
      emit_restart(cinfo, entropy->next_restart_num);
605
3.34M
      entropy->restarts_to_go = cinfo->restart_interval;
606
3.34M
      entropy->next_restart_num++;
607
3.34M
      entropy->next_restart_num &= 7;
608
3.34M
    }
609
13.4M
    entropy->restarts_to_go--;
610
13.4M
  }
611
612
  /* Encode the MCU data block */
613
43.8M
  block = MCU_data[0];
614
43.8M
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
615
616
  /* Section G.1.3.3: Encoding of AC coefficients */
617
618
  /* Establish EOB (end-of-block) index */
619
2.31G
  for (ke = cinfo->Se; ke > 0; ke--)
620
    /* We must apply the point transform by Al.  For AC coefficients this
621
     * is an integer division with rounding towards 0.  To do this portably
622
     * in C, we shift after obtaining the absolute value.
623
     */
624
2.28G
    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
625
2.27G
      if (v >>= cinfo->Al) break;
626
2.27G
    } else {
627
11.8M
      v = -v;
628
11.8M
      if (v >>= cinfo->Al) break;
629
11.8M
    }
630
631
  /* Establish EOBx (previous stage end-of-block) index */
632
131M
  for (kex = ke; kex > 0; kex--)
633
100M
    if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
634
77.3M
      if (v >>= cinfo->Ah) break;
635
77.3M
    } else {
636
22.9M
      v = -v;
637
22.9M
      if (v >>= cinfo->Ah) break;
638
22.9M
    }
639
640
  /* Figure G.10: Encode_AC_Coefficients_SA */
641
266M
  for (k = cinfo->Ss; k <= ke; k++) {
642
223M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
643
223M
    if (k > kex)
644
24.0M
      arith_encode(cinfo, st, 0);       /* EOB decision */
645
484M
    for (;;) {
646
484M
      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
647
361M
        if (v >>= cinfo->Al) {
648
110M
          if (v >> 1)                   /* previously nonzero coef */
649
79.7M
            arith_encode(cinfo, st + 2, (v & 1));
650
30.9M
          else {                        /* newly nonzero coef */
651
30.9M
            arith_encode(cinfo, st + 1, 1);
652
30.9M
            arith_encode(cinfo, entropy->fixed_bin, 0);
653
30.9M
          }
654
110M
          break;
655
110M
        }
656
361M
      } else {
657
122M
        v = -v;
658
122M
        if (v >>= cinfo->Al) {
659
112M
          if (v >> 1)                   /* previously nonzero coef */
660
81.4M
            arith_encode(cinfo, st + 2, (v & 1));
661
30.8M
          else {                        /* newly nonzero coef */
662
30.8M
            arith_encode(cinfo, st + 1, 1);
663
30.8M
            arith_encode(cinfo, entropy->fixed_bin, 1);
664
30.8M
          }
665
112M
          break;
666
112M
        }
667
122M
      }
668
261M
      arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
669
261M
    }
670
223M
  }
671
  /* Encode EOB decision only if k <= cinfo->Se */
672
43.8M
  if (k <= cinfo->Se) {
673
42.4M
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
674
42.4M
    arith_encode(cinfo, st, 1);
675
42.4M
  }
676
677
43.8M
  return TRUE;
678
43.8M
}
679
680
681
/*
682
 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
683
 */
684
685
METHODDEF(boolean)
686
encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
687
41.4M
{
688
41.4M
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
689
41.4M
  jpeg_component_info *compptr;
690
41.4M
  JBLOCKROW block;
691
41.4M
  unsigned char *st;
692
41.4M
  int blkn, ci, tbl, k, ke;
693
41.4M
  int v, v2, m;
694
695
  /* Emit restart marker if needed */
696
41.4M
  if (cinfo->restart_interval) {
697
4.15M
    if (entropy->restarts_to_go == 0) {
698
1.39M
      emit_restart(cinfo, entropy->next_restart_num);
699
1.39M
      entropy->restarts_to_go = cinfo->restart_interval;
700
1.39M
      entropy->next_restart_num++;
701
1.39M
      entropy->next_restart_num &= 7;
702
1.39M
    }
703
4.15M
    entropy->restarts_to_go--;
704
4.15M
  }
705
706
  /* Encode the MCU data blocks */
707
130M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
708
89.5M
    block = MCU_data[blkn];
709
89.5M
    ci = cinfo->MCU_membership[blkn];
710
89.5M
    compptr = cinfo->cur_comp_info[ci];
711
712
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
713
714
89.5M
    tbl = compptr->dc_tbl_no;
715
716
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
717
89.5M
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
718
719
    /* Figure F.4: Encode_DC_DIFF */
720
89.5M
    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
721
66.0M
      arith_encode(cinfo, st, 0);
722
66.0M
      entropy->dc_context[ci] = 0;      /* zero diff category */
723
66.0M
    } else {
724
23.4M
      entropy->last_dc_val[ci] = (*block)[0];
725
23.4M
      arith_encode(cinfo, st, 1);
726
      /* Figure F.6: Encoding nonzero value v */
727
      /* Figure F.7: Encoding the sign of v */
728
23.4M
      if (v > 0) {
729
12.8M
        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
730
12.8M
        st += 2;                        /* Table F.4: SP = S0 + 2 */
731
12.8M
        entropy->dc_context[ci] = 4;    /* small positive diff category */
732
12.8M
      } else {
733
10.6M
        v = -v;
734
10.6M
        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
735
10.6M
        st += 3;                        /* Table F.4: SN = S0 + 3 */
736
10.6M
        entropy->dc_context[ci] = 8;    /* small negative diff category */
737
10.6M
      }
738
      /* Figure F.8: Encoding the magnitude category of v */
739
23.4M
      m = 0;
740
23.4M
      if (v -= 1) {
741
21.8M
        arith_encode(cinfo, st, 1);
742
21.8M
        m = 1;
743
21.8M
        v2 = v;
744
21.8M
        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
745
153M
        while (v2 >>= 1) {
746
131M
          arith_encode(cinfo, st, 1);
747
131M
          m <<= 1;
748
131M
          st += 1;
749
131M
        }
750
21.8M
      }
751
23.4M
      arith_encode(cinfo, st, 0);
752
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
753
23.4M
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
754
0
        entropy->dc_context[ci] = 0;    /* zero diff category */
755
23.4M
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
756
20.5M
        entropy->dc_context[ci] += 8;   /* large diff category */
757
      /* Figure F.9: Encoding the magnitude bit pattern of v */
758
23.4M
      st += 14;
759
155M
      while (m >>= 1)
760
131M
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
761
23.4M
    }
762
763
    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
764
765
89.5M
    tbl = compptr->ac_tbl_no;
766
767
    /* Establish EOB (end-of-block) index */
768
5.26G
    for (ke = DCTSIZE2 - 1; ke > 0; ke--)
769
5.19G
      if ((*block)[jpeg_natural_order[ke]]) break;
770
771
    /* Figure F.5: Encode_AC_Coefficients */
772
286M
    for (k = 1; k <= ke; k++) {
773
196M
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
774
196M
      arith_encode(cinfo, st, 0);       /* EOB decision */
775
464M
      while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
776
267M
        arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
777
267M
      }
778
196M
      arith_encode(cinfo, st + 1, 1);
779
      /* Figure F.6: Encoding nonzero value v */
780
      /* Figure F.7: Encoding the sign of v */
781
196M
      if (v > 0) {
782
98.2M
        arith_encode(cinfo, entropy->fixed_bin, 0);
783
98.5M
      } else {
784
98.5M
        v = -v;
785
98.5M
        arith_encode(cinfo, entropy->fixed_bin, 1);
786
98.5M
      }
787
196M
      st += 2;
788
      /* Figure F.8: Encoding the magnitude category of v */
789
196M
      m = 0;
790
196M
      if (v -= 1) {
791
152M
        arith_encode(cinfo, st, 1);
792
152M
        m = 1;
793
152M
        v2 = v;
794
152M
        if (v2 >>= 1) {
795
133M
          arith_encode(cinfo, st, 1);
796
133M
          m <<= 1;
797
133M
          st = entropy->ac_stats[tbl] +
798
133M
               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
799
432M
          while (v2 >>= 1) {
800
298M
            arith_encode(cinfo, st, 1);
801
298M
            m <<= 1;
802
298M
            st += 1;
803
298M
          }
804
133M
        }
805
152M
      }
806
196M
      arith_encode(cinfo, st, 0);
807
      /* Figure F.9: Encoding the magnitude bit pattern of v */
808
196M
      st += 14;
809
628M
      while (m >>= 1)
810
432M
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
811
196M
    }
812
    /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
813
89.5M
    if (k <= DCTSIZE2 - 1) {
814
88.3M
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
815
88.3M
      arith_encode(cinfo, st, 1);
816
88.3M
    }
817
89.5M
  }
818
819
41.4M
  return TRUE;
820
41.4M
}
821
822
823
/*
824
 * Initialize for an arithmetic-compressed scan.
825
 */
826
827
METHODDEF(void)
828
start_pass(j_compress_ptr cinfo, boolean gather_statistics)
829
198k
{
830
198k
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
831
198k
  int ci, tbl;
832
198k
  jpeg_component_info *compptr;
833
834
198k
  if (gather_statistics)
835
    /* Make sure to avoid that in the master control logic!
836
     * We are fully adaptive here and need no extra
837
     * statistics gathering pass!
838
     */
839
0
    ERREXIT(cinfo, JERR_NOTIMPL);
840
841
  /* We assume jcmaster.c already validated the progressive scan parameters. */
842
843
  /* Select execution routines */
844
198k
  if (cinfo->progressive_mode) {
845
175k
    if (cinfo->Ah == 0) {
846
87.5k
      if (cinfo->Ss == 0)
847
17.5k
        entropy->pub.encode_mcu = encode_mcu_DC_first;
848
70.0k
      else
849
70.0k
        entropy->pub.encode_mcu = encode_mcu_AC_first;
850
87.5k
    } else {
851
87.5k
      if (cinfo->Ss == 0)
852
17.5k
        entropy->pub.encode_mcu = encode_mcu_DC_refine;
853
70.0k
      else
854
70.0k
        entropy->pub.encode_mcu = encode_mcu_AC_refine;
855
87.5k
    }
856
175k
  } else
857
23.4k
    entropy->pub.encode_mcu = encode_mcu;
858
859
  /* Allocate & initialize requested statistics areas */
860
504k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
861
305k
    compptr = cinfo->cur_comp_info[ci];
862
    /* DC needs no table for refinement scan */
863
305k
    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
864
113k
      tbl = compptr->dc_tbl_no;
865
113k
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
866
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
867
113k
      if (entropy->dc_stats[tbl] == NULL)
868
76.6k
        entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
869
76.6k
          ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS);
870
113k
      memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS);
871
      /* Initialize DC predictions to 0 */
872
113k
      entropy->last_dc_val[ci] = 0;
873
113k
      entropy->dc_context[ci] = 0;
874
113k
    }
875
    /* AC needs no table when not present */
876
305k
    if (cinfo->progressive_mode == 0 || cinfo->Se) {
877
200k
      tbl = compptr->ac_tbl_no;
878
200k
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
879
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
880
200k
      if (entropy->ac_stats[tbl] == NULL)
881
76.6k
        entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
882
76.6k
          ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS);
883
200k
      memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS);
884
#ifdef CALCULATE_SPECTRAL_CONDITIONING
885
      if (cinfo->progressive_mode)
886
        /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
887
        cinfo->arith_ac_K[tbl] = cinfo->Ss +
888
                                 ((8 + cinfo->Se - cinfo->Ss) >> 4);
889
#endif
890
200k
    }
891
305k
  }
892
893
  /* Initialize arithmetic encoding variables */
894
198k
  entropy->c = 0;
895
198k
  entropy->a = 0x10000L;
896
198k
  entropy->sc = 0;
897
198k
  entropy->zc = 0;
898
198k
  entropy->ct = 11;
899
198k
  entropy->buffer = -1;  /* empty */
900
901
  /* Initialize restart stuff */
902
198k
  entropy->restarts_to_go = cinfo->restart_interval;
903
198k
  entropy->next_restart_num = 0;
904
198k
}
905
906
907
/*
908
 * Module initialization routine for arithmetic entropy encoding.
909
 */
910
911
GLOBAL(void)
912
jinit_arith_encoder(j_compress_ptr cinfo)
913
41.4k
{
914
41.4k
  arith_entropy_ptr entropy;
915
41.4k
  int i;
916
917
41.4k
  entropy = (arith_entropy_ptr)
918
41.4k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
919
41.4k
                                sizeof(arith_entropy_encoder));
920
41.4k
  cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
921
41.4k
  entropy->pub.start_pass = start_pass;
922
41.4k
  entropy->pub.finish_pass = finish_pass;
923
924
  /* Mark tables unallocated */
925
704k
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
926
663k
    entropy->dc_stats[i] = NULL;
927
663k
    entropy->ac_stats[i] = NULL;
928
663k
  }
929
930
  /* Initialize index for fixed probability estimation */
931
41.4k
  entropy->fixed_bin[0] = 113;
932
41.4k
}