Coverage Report

Created: 2026-01-25 06:04

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo.3.0.x/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
316k
{
81
316k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
316k
  int ci, blkn, dctbl, actbl;
83
316k
  d_derived_tbl **pdtbl;
84
316k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
316k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
33.2k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
294k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
804k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
488k
    compptr = cinfo->cur_comp_info[ci];
96
488k
    dctbl = compptr->dc_tbl_no;
97
488k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
488k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
488k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
488k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
488k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
488k
    entropy->saved.last_dc_val[ci] = 0;
106
488k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
1.29M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
974k
    ci = cinfo->MCU_membership[blkn];
111
974k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
974k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
974k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
974k
    if (compptr->component_needed) {
117
949k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
949k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
949k
    } else {
121
24.7k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
24.7k
    }
123
974k
  }
124
125
  /* Initialize bitread state variables */
126
316k
  entropy->bitstate.bits_left = 0;
127
316k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
316k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
316k
  entropy->restarts_to_go = cinfo->restart_interval;
132
316k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
1.26M
{
146
1.26M
  JHUFF_TBL *htbl;
147
1.26M
  d_derived_tbl *dtbl;
148
1.26M
  int p, i, l, si, numsymbols;
149
1.26M
  int lookbits, ctr;
150
1.26M
  char huffsize[257];
151
1.26M
  unsigned int huffcode[257];
152
1.26M
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
1.26M
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
839
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
1.26M
  htbl =
162
1.26M
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
1.26M
  if (htbl == NULL)
164
568
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
1.26M
  if (*pdtbl == NULL)
168
136k
    *pdtbl = (d_derived_tbl *)
169
136k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
136k
                                  sizeof(d_derived_tbl));
171
1.26M
  dtbl = *pdtbl;
172
1.26M
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
1.26M
  p = 0;
177
21.4M
  for (l = 1; l <= 16; l++) {
178
20.1M
    i = (int)htbl->bits[l];
179
20.1M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
62.7M
    while (i--)
182
42.6M
      huffsize[p++] = (char)l;
183
20.1M
  }
184
1.26M
  huffsize[p] = 0;
185
1.26M
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
1.26M
  code = 0;
191
1.26M
  si = huffsize[0];
192
1.26M
  p = 0;
193
12.1M
  while (huffsize[p]) {
194
53.4M
    while (((int)huffsize[p]) == si) {
195
42.5M
      huffcode[p++] = code;
196
42.5M
      code++;
197
42.5M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
10.9M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
1.40k
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
10.9M
    code <<= 1;
204
10.9M
    si++;
205
10.9M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
1.26M
  p = 0;
210
21.4M
  for (l = 1; l <= 16; l++) {
211
20.1M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
8.18M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
8.18M
      p += htbl->bits[l];
217
8.18M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
11.9M
    } else {
219
11.9M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
11.9M
    }
221
20.1M
  }
222
1.26M
  dtbl->valoffset[17] = 0;
223
1.26M
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
323M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
322M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
1.26M
  p = 0;
236
11.3M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
22.0M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
11.9M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
290M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
278M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
278M
        lookbits++;
244
278M
      }
245
11.9M
    }
246
10.0M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
1.26M
  if (isDC) {
255
5.51M
    for (i = 0; i < numsymbols; i++) {
256
4.83M
      int sym = htbl->huffval[i];
257
4.83M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
2.62k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
4.83M
    }
260
682k
  }
261
1.26M
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
755M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
439M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
439M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
439M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
439M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
439M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
26.3M
    while (bits_left < MIN_GET_BITS) {
303
23.2M
      register int c;
304
305
      /* Attempt to read a byte */
306
23.2M
      if (bytes_in_buffer == 0) {
307
36.3k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
36.3k
        next_input_byte = cinfo->src->next_input_byte;
310
36.3k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
36.3k
      }
312
23.2M
      bytes_in_buffer--;
313
23.2M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
23.2M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
1.75M
        do {
323
1.75M
          if (bytes_in_buffer == 0) {
324
1.07k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
1.07k
            next_input_byte = cinfo->src->next_input_byte;
327
1.07k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
1.07k
          }
329
1.75M
          bytes_in_buffer--;
330
1.75M
          c = *next_input_byte++;
331
1.75M
        } while (c == 0xFF);
332
333
1.14M
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
439k
          c = 0xFF;
336
702k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
702k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
702k
          goto no_more_bytes;
348
702k
        }
349
1.14M
      }
350
351
      /* OK, load c into get_buffer */
352
22.5M
      get_buffer = (get_buffer << 8) | c;
353
22.5M
      bits_left += 8;
354
22.5M
    } /* end while */
355
435M
  } else {
356
436M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
436M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
364M
      if (!cinfo->entropy->insufficient_data) {
368
699k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
699k
        cinfo->entropy->insufficient_data = TRUE;
370
699k
      }
371
      /* Fill the buffer with zero bits */
372
364M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
364M
      bits_left = MIN_GET_BITS;
374
364M
    }
375
436M
  }
376
377
  /* Unload the local registers */
378
439M
  state->next_input_byte = next_input_byte;
379
439M
  state->bytes_in_buffer = bytes_in_buffer;
380
439M
  state->get_buffer = get_buffer;
381
439M
  state->bits_left = bits_left;
382
383
439M
  return TRUE;
384
439M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
32.4M
#define GET_BYTE { \
392
32.4M
  register int c0, c1; \
393
32.4M
  c0 = *buffer++; \
394
32.4M
  c1 = *buffer; \
395
32.4M
  /* Pre-execute most common case */ \
396
32.4M
  get_buffer = (get_buffer << 8) | c0; \
397
32.4M
  bits_left += 8; \
398
32.4M
  if (c0 == 0xFF) { \
399
4.44M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
4.44M
    buffer++; \
401
4.44M
    if (c1 != 0) { \
402
4.01M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
4.01M
      cinfo->unread_marker = c1; \
404
4.01M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
4.01M
      buffer -= 2; \
406
4.01M
      get_buffer &= ~0xFF; \
407
4.01M
    } \
408
4.44M
  } \
409
32.4M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
100M
  if (bits_left <= 16) { \
416
5.41M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
5.41M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
212M
{
440
212M
  register int l = min_bits;
441
212M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
212M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
212M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
1.76G
  while (code > htbl->maxcode[l]) {
453
1.55G
    code <<= 1;
454
1.55G
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
1.55G
    code |= GET_BITS(1);
456
1.55G
    l++;
457
1.55G
  }
458
459
  /* Unload the local registers */
460
212M
  state->get_buffer = get_buffer;
461
212M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
212M
  if (l > 16) {
466
149M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
149M
    return 0;                   /* fake a zero as the safest result */
468
149M
  }
469
470
63.1M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
212M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
71.3M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
71.3M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
3.51M
{
514
3.51M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
3.51M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
3.51M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
3.51M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
3.51M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
7.54M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
4.02M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
3.51M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
3.51M
  if (cinfo->unread_marker == 0)
539
55.5k
    entropy->pub.insufficient_data = FALSE;
540
541
3.51M
  return TRUE;
542
3.51M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
1.91M
{
554
1.91M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
1.91M
  BITREAD_STATE_VARS;
556
1.91M
  int blkn;
557
1.91M
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
1.91M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
1.91M
  state = entropy->saved;
563
564
5.06M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
3.14M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
3.14M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
3.14M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
3.14M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
3.14M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
3.14M
    if (s) {
575
1.44M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
1.44M
      r = GET_BITS(s);
577
1.44M
      s = HUFF_EXTEND(r, s);
578
1.44M
    }
579
580
3.14M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
3.04M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
3.04M
      s += state.last_dc_val[ci];
592
3.04M
      state.last_dc_val[ci] = s;
593
3.04M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
3.00M
        (*block)[0] = (JCOEF)s;
596
3.00M
      }
597
3.04M
    }
598
599
3.14M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
30.3M
      for (k = 1; k < DCTSIZE2; k++) {
604
29.5M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
29.5M
        r = s >> 4;
607
29.5M
        s &= 15;
608
609
29.5M
        if (s) {
610
27.3M
          k += r;
611
27.3M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
27.3M
          r = GET_BITS(s);
613
27.3M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
27.3M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
27.3M
        } else {
620
2.19M
          if (r != 15)
621
2.07M
            break;
622
116k
          k += 15;
623
116k
        }
624
29.5M
      }
625
626
2.89M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
2.43M
      for (k = 1; k < DCTSIZE2; k++) {
631
2.36M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
2.36M
        r = s >> 4;
634
2.36M
        s &= 15;
635
636
2.36M
        if (s) {
637
2.15M
          k += r;
638
2.15M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
2.15M
          DROP_BITS(s);
640
2.15M
        } else {
641
212k
          if (r != 15)
642
194k
            break;
643
18.3k
          k += 15;
644
18.3k
        }
645
2.36M
      }
646
258k
    }
647
3.14M
  }
648
649
  /* Completed MCU, so update state */
650
1.91M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
1.91M
  entropy->saved = state;
652
1.91M
  return TRUE;
653
1.91M
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
3.42M
{
665
3.42M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
3.42M
  BITREAD_STATE_VARS;
667
3.42M
  JOCTET *buffer;
668
3.42M
  int blkn;
669
3.42M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
3.42M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
3.42M
  buffer = (JOCTET *)br_state.next_input_byte;
675
3.42M
  state = entropy->saved;
676
677
9.11M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
5.68M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
5.68M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
5.68M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
5.68M
    register int s, k, r, l;
682
683
5.68M
    HUFF_DECODE_FAST(s, l, dctbl);
684
5.68M
    if (s) {
685
3.49M
      FILL_BIT_BUFFER_FAST
686
3.49M
      r = GET_BITS(s);
687
3.49M
      s = HUFF_EXTEND(r, s);
688
3.49M
    }
689
690
5.68M
    if (entropy->dc_needed[blkn]) {
691
5.50M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
5.50M
      s += state.last_dc_val[ci];
696
5.50M
      state.last_dc_val[ci] = s;
697
5.50M
      if (block)
698
5.38M
        (*block)[0] = (JCOEF)s;
699
5.50M
    }
700
701
5.68M
    if (entropy->ac_needed[blkn] && block) {
702
703
44.4M
      for (k = 1; k < DCTSIZE2; k++) {
704
43.7M
        HUFF_DECODE_FAST(s, l, actbl);
705
43.7M
        r = s >> 4;
706
43.7M
        s &= 15;
707
708
43.7M
        if (s) {
709
39.0M
          k += r;
710
39.0M
          FILL_BIT_BUFFER_FAST
711
39.0M
          r = GET_BITS(s);
712
39.0M
          s = HUFF_EXTEND(r, s);
713
39.0M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
39.0M
        } else {
715
4.70M
          if (r != 15) break;
716
95.7k
          k += 15;
717
95.7k
        }
718
43.7M
      }
719
720
5.24M
    } else {
721
722
4.65M
      for (k = 1; k < DCTSIZE2; k++) {
723
4.59M
        HUFF_DECODE_FAST(s, l, actbl);
724
4.59M
        r = s >> 4;
725
4.59M
        s &= 15;
726
727
4.59M
        if (s) {
728
4.21M
          k += r;
729
4.21M
          FILL_BIT_BUFFER_FAST
730
4.21M
          DROP_BITS(s);
731
4.21M
        } else {
732
388k
          if (r != 15) break;
733
10.8k
          k += 15;
734
10.8k
        }
735
4.59M
      }
736
436k
    }
737
5.68M
  }
738
739
3.42M
  if (cinfo->unread_marker != 0) {
740
218k
    cinfo->unread_marker = 0;
741
218k
    return FALSE;
742
218k
  }
743
744
3.20M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
3.20M
  br_state.next_input_byte = buffer;
746
3.20M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
3.20M
  entropy->saved = state;
748
3.20M
  return TRUE;
749
3.42M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
438M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
438M
{
772
438M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
438M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
438M
  if (cinfo->restart_interval) {
777
152M
    if (entropy->restarts_to_go == 0)
778
3.51M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
152M
    usefast = 0;
781
152M
  }
782
783
438M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
292M
      cinfo->unread_marker != 0)
785
434M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
438M
  if (!entropy->pub.insufficient_data) {
791
792
5.12M
    if (usefast) {
793
3.42M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
3.42M
    } else {
795
1.91M
use_slow:
796
1.91M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
1.91M
    }
798
799
5.12M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
438M
  if (cinfo->restart_interval)
803
152M
    entropy->restarts_to_go--;
804
805
438M
  return TRUE;
806
438M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
44.4k
{
816
44.4k
  huff_entropy_ptr entropy;
817
44.4k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
44.4k
  std_huff_tables((j_common_ptr)cinfo);
824
825
44.4k
  entropy = (huff_entropy_ptr)
826
44.4k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
44.4k
                                sizeof(huff_entropy_decoder));
828
44.4k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
44.4k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
44.4k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
222k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
177k
  }
836
44.4k
}