/src/libjxl/lib/jxl/dec_huffman.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) the JPEG XL Project Authors. All rights reserved. |
2 | | // |
3 | | // Use of this source code is governed by a BSD-style |
4 | | // license that can be found in the LICENSE file. |
5 | | |
6 | | #include "lib/jxl/dec_huffman.h" |
7 | | |
8 | | #include <string.h> /* for memset */ |
9 | | |
10 | | #include <vector> |
11 | | |
12 | | #include "lib/jxl/ans_params.h" |
13 | | #include "lib/jxl/base/bits.h" |
14 | | #include "lib/jxl/huffman_table.h" |
15 | | |
16 | | namespace jxl { |
17 | | |
18 | | static const int kCodeLengthCodes = 18; |
19 | | static const uint8_t kCodeLengthCodeOrder[kCodeLengthCodes] = { |
20 | | 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
21 | | }; |
22 | | static const uint8_t kDefaultCodeLength = 8; |
23 | | static const uint8_t kCodeLengthRepeatCode = 16; |
24 | | |
25 | | int ReadHuffmanCodeLengths(const uint8_t* code_length_code_lengths, |
26 | | int num_symbols, uint8_t* code_lengths, |
27 | 0 | BitReader* br) { |
28 | 0 | int symbol = 0; |
29 | 0 | uint8_t prev_code_len = kDefaultCodeLength; |
30 | 0 | int repeat = 0; |
31 | 0 | uint8_t repeat_code_len = 0; |
32 | 0 | int space = 32768; |
33 | 0 | HuffmanCode table[32]; |
34 | |
|
35 | 0 | uint16_t counts[16] = {0}; |
36 | 0 | for (int i = 0; i < kCodeLengthCodes; ++i) { |
37 | 0 | ++counts[code_length_code_lengths[i]]; |
38 | 0 | } |
39 | 0 | if (!BuildHuffmanTable(table, 5, code_length_code_lengths, kCodeLengthCodes, |
40 | 0 | &counts[0])) { |
41 | 0 | return 0; |
42 | 0 | } |
43 | | |
44 | 0 | while (symbol < num_symbols && space > 0) { |
45 | 0 | const HuffmanCode* p = table; |
46 | 0 | uint8_t code_len; |
47 | 0 | br->Refill(); |
48 | 0 | p += br->PeekFixedBits<5>(); |
49 | 0 | br->Consume(p->bits); |
50 | 0 | code_len = (uint8_t)p->value; |
51 | 0 | if (code_len < kCodeLengthRepeatCode) { |
52 | 0 | repeat = 0; |
53 | 0 | code_lengths[symbol++] = code_len; |
54 | 0 | if (code_len != 0) { |
55 | 0 | prev_code_len = code_len; |
56 | 0 | space -= 32768u >> code_len; |
57 | 0 | } |
58 | 0 | } else { |
59 | 0 | const int extra_bits = code_len - 14; |
60 | 0 | int old_repeat; |
61 | 0 | int repeat_delta; |
62 | 0 | uint8_t new_len = 0; |
63 | 0 | if (code_len == kCodeLengthRepeatCode) { |
64 | 0 | new_len = prev_code_len; |
65 | 0 | } |
66 | 0 | if (repeat_code_len != new_len) { |
67 | 0 | repeat = 0; |
68 | 0 | repeat_code_len = new_len; |
69 | 0 | } |
70 | 0 | old_repeat = repeat; |
71 | 0 | if (repeat > 0) { |
72 | 0 | repeat -= 2; |
73 | 0 | repeat <<= extra_bits; |
74 | 0 | } |
75 | 0 | repeat += (int)br->ReadBits(extra_bits) + 3; |
76 | 0 | repeat_delta = repeat - old_repeat; |
77 | 0 | if (symbol + repeat_delta > num_symbols) { |
78 | 0 | return 0; |
79 | 0 | } |
80 | 0 | memset(&code_lengths[symbol], repeat_code_len, (size_t)repeat_delta); |
81 | 0 | symbol += repeat_delta; |
82 | 0 | if (repeat_code_len != 0) { |
83 | 0 | space -= repeat_delta << (15 - repeat_code_len); |
84 | 0 | } |
85 | 0 | } |
86 | 0 | } |
87 | 0 | if (space != 0) { |
88 | 0 | return 0; |
89 | 0 | } |
90 | 0 | memset(&code_lengths[symbol], 0, (size_t)(num_symbols - symbol)); |
91 | 0 | return true; |
92 | 0 | } |
93 | | |
94 | | static JXL_INLINE bool ReadSimpleCode(size_t alphabet_size, BitReader* br, |
95 | 0 | HuffmanCode* table) { |
96 | 0 | size_t max_bits = |
97 | 0 | (alphabet_size > 1u) ? FloorLog2Nonzero(alphabet_size - 1u) + 1 : 0; |
98 | |
|
99 | 0 | size_t num_symbols = br->ReadFixedBits<2>() + 1; |
100 | |
|
101 | 0 | uint16_t symbols[4] = {0}; |
102 | 0 | for (size_t i = 0; i < num_symbols; ++i) { |
103 | 0 | uint16_t symbol = br->ReadBits(max_bits); |
104 | 0 | if (symbol >= alphabet_size) { |
105 | 0 | return false; |
106 | 0 | } |
107 | 0 | symbols[i] = symbol; |
108 | 0 | } |
109 | | |
110 | 0 | for (size_t i = 0; i < num_symbols - 1; ++i) { |
111 | 0 | for (size_t j = i + 1; j < num_symbols; ++j) { |
112 | 0 | if (symbols[i] == symbols[j]) return false; |
113 | 0 | } |
114 | 0 | } |
115 | | |
116 | | // 4 symbols have to option to encode. |
117 | 0 | if (num_symbols == 4) num_symbols += br->ReadFixedBits<1>(); |
118 | |
|
119 | 0 | const auto swap_symbols = [&symbols](size_t i, size_t j) { |
120 | 0 | uint16_t t = symbols[j]; |
121 | 0 | symbols[j] = symbols[i]; |
122 | 0 | symbols[i] = t; |
123 | 0 | }; |
124 | |
|
125 | 0 | size_t table_size = 1; |
126 | 0 | switch (num_symbols) { |
127 | 0 | case 1: |
128 | 0 | table[0] = {0, symbols[0]}; |
129 | 0 | break; |
130 | 0 | case 2: |
131 | 0 | if (symbols[0] > symbols[1]) swap_symbols(0, 1); |
132 | 0 | table[0] = {1, symbols[0]}; |
133 | 0 | table[1] = {1, symbols[1]}; |
134 | 0 | table_size = 2; |
135 | 0 | break; |
136 | 0 | case 3: |
137 | 0 | if (symbols[1] > symbols[2]) swap_symbols(1, 2); |
138 | 0 | table[0] = {1, symbols[0]}; |
139 | 0 | table[2] = {1, symbols[0]}; |
140 | 0 | table[1] = {2, symbols[1]}; |
141 | 0 | table[3] = {2, symbols[2]}; |
142 | 0 | table_size = 4; |
143 | 0 | break; |
144 | 0 | case 4: { |
145 | 0 | for (size_t i = 0; i < 3; ++i) { |
146 | 0 | for (size_t j = i + 1; j < 4; ++j) { |
147 | 0 | if (symbols[i] > symbols[j]) swap_symbols(i, j); |
148 | 0 | } |
149 | 0 | } |
150 | 0 | table[0] = {2, symbols[0]}; |
151 | 0 | table[2] = {2, symbols[1]}; |
152 | 0 | table[1] = {2, symbols[2]}; |
153 | 0 | table[3] = {2, symbols[3]}; |
154 | 0 | table_size = 4; |
155 | 0 | break; |
156 | 0 | } |
157 | 0 | case 5: { |
158 | 0 | if (symbols[2] > symbols[3]) swap_symbols(2, 3); |
159 | 0 | table[0] = {1, symbols[0]}; |
160 | 0 | table[1] = {2, symbols[1]}; |
161 | 0 | table[2] = {1, symbols[0]}; |
162 | 0 | table[3] = {3, symbols[2]}; |
163 | 0 | table[4] = {1, symbols[0]}; |
164 | 0 | table[5] = {2, symbols[1]}; |
165 | 0 | table[6] = {1, symbols[0]}; |
166 | 0 | table[7] = {3, symbols[3]}; |
167 | 0 | table_size = 8; |
168 | 0 | break; |
169 | 0 | } |
170 | 0 | default: { |
171 | | // Unreachable. |
172 | 0 | return false; |
173 | 0 | } |
174 | 0 | } |
175 | | |
176 | 0 | const uint32_t goal_size = 1u << kHuffmanTableBits; |
177 | 0 | while (table_size != goal_size) { |
178 | 0 | memcpy(&table[table_size], &table[0], |
179 | 0 | (size_t)table_size * sizeof(table[0])); |
180 | 0 | table_size <<= 1; |
181 | 0 | } |
182 | |
|
183 | 0 | return true; |
184 | 0 | } |
185 | | |
186 | | bool HuffmanDecodingData::ReadFromBitStream(size_t alphabet_size, |
187 | 0 | BitReader* br) { |
188 | 0 | if (alphabet_size > (1 << PREFIX_MAX_BITS)) return false; |
189 | | |
190 | | /* simple_code_or_skip is used as follows: |
191 | | 1 for simple code; |
192 | | 0 for no skipping, 2 skips 2 code lengths, 3 skips 3 code lengths */ |
193 | 0 | uint32_t simple_code_or_skip = br->ReadFixedBits<2>(); |
194 | 0 | if (simple_code_or_skip == 1u) { |
195 | 0 | table_.resize(1u << kHuffmanTableBits); |
196 | 0 | return ReadSimpleCode(alphabet_size, br, table_.data()); |
197 | 0 | } |
198 | | |
199 | 0 | std::vector<uint8_t> code_lengths(alphabet_size, 0); |
200 | 0 | uint8_t code_length_code_lengths[kCodeLengthCodes] = {0}; |
201 | 0 | int space = 32; |
202 | 0 | int num_codes = 0; |
203 | | /* Static Huffman code for the code length code lengths */ |
204 | 0 | static const HuffmanCode huff[16] = { |
205 | 0 | {2, 0}, {2, 4}, {2, 3}, {3, 2}, {2, 0}, {2, 4}, {2, 3}, {4, 1}, |
206 | 0 | {2, 0}, {2, 4}, {2, 3}, {3, 2}, {2, 0}, {2, 4}, {2, 3}, {4, 5}, |
207 | 0 | }; |
208 | 0 | for (size_t i = simple_code_or_skip; i < kCodeLengthCodes && space > 0; ++i) { |
209 | 0 | const int code_len_idx = kCodeLengthCodeOrder[i]; |
210 | 0 | const HuffmanCode* p = huff; |
211 | 0 | uint8_t v; |
212 | 0 | br->Refill(); |
213 | 0 | p += br->PeekFixedBits<4>(); |
214 | 0 | br->Consume(p->bits); |
215 | 0 | v = (uint8_t)p->value; |
216 | 0 | code_length_code_lengths[code_len_idx] = v; |
217 | 0 | if (v != 0) { |
218 | 0 | space -= (32u >> v); |
219 | 0 | ++num_codes; |
220 | 0 | } |
221 | 0 | } |
222 | 0 | bool ok = (num_codes == 1 || space == 0) && |
223 | 0 | ReadHuffmanCodeLengths(code_length_code_lengths, alphabet_size, |
224 | 0 | &code_lengths[0], br); |
225 | |
|
226 | 0 | if (!ok) return false; |
227 | 0 | uint16_t counts[16] = {0}; |
228 | 0 | for (size_t i = 0; i < alphabet_size; ++i) { |
229 | 0 | ++counts[code_lengths[i]]; |
230 | 0 | } |
231 | 0 | table_.resize(alphabet_size + 376); |
232 | 0 | uint32_t table_size = |
233 | 0 | BuildHuffmanTable(table_.data(), kHuffmanTableBits, &code_lengths[0], |
234 | 0 | alphabet_size, &counts[0]); |
235 | 0 | table_.resize(table_size); |
236 | 0 | return (table_size > 0); |
237 | 0 | } |
238 | | |
239 | | // Decodes the next Huffman coded symbol from the bit-stream. |
240 | 0 | uint16_t HuffmanDecodingData::ReadSymbol(BitReader* br) const { |
241 | 0 | size_t n_bits; |
242 | 0 | const HuffmanCode* table = table_.data(); |
243 | 0 | table += br->PeekBits(kHuffmanTableBits); |
244 | 0 | n_bits = table->bits; |
245 | 0 | if (n_bits > kHuffmanTableBits) { |
246 | 0 | br->Consume(kHuffmanTableBits); |
247 | 0 | n_bits -= kHuffmanTableBits; |
248 | 0 | table += table->value; |
249 | 0 | table += br->PeekBits(n_bits); |
250 | 0 | } |
251 | 0 | br->Consume(table->bits); |
252 | 0 | return table->value; |
253 | 0 | } |
254 | | |
255 | | } // namespace jxl |