Coverage Report

Created: 2025-07-23 07:47

/src/libjxl/lib/jxl/modular/encoding/enc_encoding.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include <jxl/memory_manager.h>
7
8
#include <algorithm>
9
#include <array>
10
#include <cstddef>
11
#include <cstdint>
12
#include <cstdlib>
13
#include <limits>
14
#include <queue>
15
#include <utility>
16
#include <vector>
17
18
#include "lib/jxl/base/bits.h"
19
#include "lib/jxl/base/common.h"
20
#include "lib/jxl/base/compiler_specific.h"
21
#include "lib/jxl/base/printf_macros.h"
22
#include "lib/jxl/base/status.h"
23
#include "lib/jxl/enc_ans.h"
24
#include "lib/jxl/enc_ans_params.h"
25
#include "lib/jxl/enc_aux_out.h"
26
#include "lib/jxl/enc_bit_writer.h"
27
#include "lib/jxl/enc_fields.h"
28
#include "lib/jxl/fields.h"
29
#include "lib/jxl/image.h"
30
#include "lib/jxl/image_ops.h"
31
#include "lib/jxl/modular/encoding/context_predict.h"
32
#include "lib/jxl/modular/encoding/dec_ma.h"
33
#include "lib/jxl/modular/encoding/enc_ma.h"
34
#include "lib/jxl/modular/encoding/encoding.h"
35
#include "lib/jxl/modular/encoding/ma_common.h"
36
#include "lib/jxl/modular/modular_image.h"
37
#include "lib/jxl/modular/options.h"
38
#include "lib/jxl/pack_signed.h"
39
40
namespace jxl {
41
42
namespace {
43
// Plot tree (if enabled) and predictor usage map.
44
constexpr bool kWantDebug = true;
45
// constexpr bool kPrintTree = false;
46
47
5.02k
inline std::array<uint8_t, 3> PredictorColor(Predictor p) {
48
5.02k
  switch (p) {
49
0
    case Predictor::Zero:
50
0
      return {{0, 0, 0}};
51
2.88k
    case Predictor::Left:
52
2.88k
      return {{255, 0, 0}};
53
0
    case Predictor::Top:
54
0
      return {{0, 255, 0}};
55
0
    case Predictor::Average0:
56
0
      return {{0, 0, 255}};
57
0
    case Predictor::Average4:
58
0
      return {{192, 128, 128}};
59
0
    case Predictor::Select:
60
0
      return {{255, 255, 0}};
61
0
    case Predictor::Gradient:
62
0
      return {{255, 0, 255}};
63
2.16k
    case Predictor::Weighted:
64
2.16k
      return {{0, 255, 255}};
65
      // TODO(jon)
66
0
    default:
67
0
      return {{255, 255, 255}};
68
5.02k
  };
69
0
}
70
71
// `cutoffs` must be sorted.
72
Tree MakeFixedTree(int property, const std::vector<int32_t> &cutoffs,
73
240
                   Predictor pred, size_t num_pixels, int bitdepth) {
74
240
  size_t log_px = CeilLog2Nonzero(num_pixels);
75
240
  size_t min_gap = 0;
76
  // Reduce fixed tree height when encoding small images.
77
240
  if (log_px < 14) {
78
240
    min_gap = 8 * (14 - log_px);
79
240
  }
80
240
  const int shift = bitdepth > 11 ? std::min(4, bitdepth - 11) : 0;
81
240
  const int mul = 1 << shift;
82
240
  Tree tree;
83
240
  struct NodeInfo {
84
240
    size_t begin, end, pos;
85
240
  };
86
240
  std::queue<NodeInfo> q;
87
  // Leaf IDs will be set by roundtrip decoding the tree.
88
240
  tree.push_back(PropertyDecisionNode::Leaf(pred));
89
240
  q.push(NodeInfo{0, cutoffs.size(), 0});
90
480
  while (!q.empty()) {
91
240
    NodeInfo info = q.front();
92
240
    q.pop();
93
240
    if (info.begin + min_gap >= info.end) continue;
94
0
    uint32_t split = (info.begin + info.end) / 2;
95
0
    int32_t cutoff = cutoffs[split] * mul;
96
0
    tree[info.pos] = PropertyDecisionNode::Split(property, cutoff, tree.size());
97
0
    q.push(NodeInfo{split + 1, info.end, tree.size()});
98
0
    tree.push_back(PropertyDecisionNode::Leaf(pred));
99
0
    q.push(NodeInfo{info.begin, split, tree.size()});
100
0
    tree.push_back(PropertyDecisionNode::Leaf(pred));
101
0
  }
102
240
  return tree;
103
240
}
104
105
Status GatherTreeData(const Image &image, pixel_type chan, size_t group_id,
106
                      const weighted::Header &wp_header,
107
                      const ModularOptions &options, TreeSamples &tree_samples,
108
0
                      size_t *total_pixels) {
109
0
  const Channel &channel = image.channel[chan];
110
0
  JxlMemoryManager *memory_manager = channel.memory_manager();
111
112
0
  JXL_DEBUG_V(7, "Learning %" PRIuS "x%" PRIuS " channel %d", channel.w,
113
0
              channel.h, chan);
114
115
0
  std::array<pixel_type, kNumStaticProperties> static_props = {
116
0
      {chan, static_cast<int>(group_id)}};
117
0
  Properties properties(kNumNonrefProperties +
118
0
                        kExtraPropsPerChannel * options.max_properties);
119
0
  double pixel_fraction = std::min(1.0f, options.nb_repeats);
120
  // a fraction of 0 is used to disable learning entirely.
121
0
  if (pixel_fraction > 0) {
122
0
    pixel_fraction = std::max(pixel_fraction,
123
0
                              std::min(1.0, 1024.0 / (channel.w * channel.h)));
124
0
  }
125
0
  uint64_t threshold =
126
0
      (std::numeric_limits<uint64_t>::max() >> 32) * pixel_fraction;
127
0
  uint64_t s[2] = {static_cast<uint64_t>(0x94D049BB133111EBull),
128
0
                   static_cast<uint64_t>(0xBF58476D1CE4E5B9ull)};
129
  // Xorshift128+ adapted from xorshift128+-inl.h
130
0
  auto use_sample = [&]() {
131
0
    auto s1 = s[0];
132
0
    const auto s0 = s[1];
133
0
    const auto bits = s1 + s0;  // b, c
134
0
    s[0] = s0;
135
0
    s1 ^= s1 << 23;
136
0
    s1 ^= s0 ^ (s1 >> 18) ^ (s0 >> 5);
137
0
    s[1] = s1;
138
0
    return (bits >> 32) <= threshold;
139
0
  };
140
141
0
  const intptr_t onerow = channel.plane.PixelsPerRow();
142
0
  JXL_ASSIGN_OR_RETURN(
143
0
      Channel references,
144
0
      Channel::Create(memory_manager, properties.size() - kNumNonrefProperties,
145
0
                      channel.w));
146
0
  weighted::State wp_state(wp_header, channel.w, channel.h);
147
0
  tree_samples.PrepareForSamples(pixel_fraction * channel.h * channel.w + 64);
148
0
  const bool multiple_predictors = tree_samples.NumPredictors() != 1;
149
0
  auto compute_sample = [&](const pixel_type *p, size_t x, size_t y) {
150
0
    pixel_type_w pred[kNumModularPredictors];
151
0
    if (multiple_predictors) {
152
0
      PredictLearnAll(&properties, channel.w, p + x, onerow, x, y, references,
153
0
                      &wp_state, pred);
154
0
    } else {
155
0
      pred[static_cast<int>(tree_samples.PredictorFromIndex(0))] =
156
0
          PredictLearn(&properties, channel.w, p + x, onerow, x, y,
157
0
                       tree_samples.PredictorFromIndex(0), references,
158
0
                       &wp_state)
159
0
              .guess;
160
0
    }
161
0
    (*total_pixels)++;
162
0
    if (use_sample()) {
163
0
      tree_samples.AddSample(p[x], properties, pred);
164
0
    }
165
0
    wp_state.UpdateErrors(p[x], x, y, channel.w);
166
0
  };
167
168
0
  for (size_t y = 0; y < channel.h; y++) {
169
0
    const pixel_type *JXL_RESTRICT p = channel.Row(y);
170
0
    PrecomputeReferences(channel, y, image, chan, &references);
171
0
    InitPropsRow(&properties, static_props, y);
172
173
    // TODO(veluca): avoid computing WP if we don't use its property or
174
    // predictions.
175
0
    if (y > 1 && channel.w > 8 && references.w == 0) {
176
0
      for (size_t x = 0; x < 2; x++) {
177
0
        compute_sample(p, x, y);
178
0
      }
179
0
      for (size_t x = 2; x < channel.w - 2; x++) {
180
0
        pixel_type_w pred[kNumModularPredictors];
181
0
        if (multiple_predictors) {
182
0
          PredictLearnAllNEC(&properties, channel.w, p + x, onerow, x, y,
183
0
                             references, &wp_state, pred);
184
0
        } else {
185
0
          pred[static_cast<int>(tree_samples.PredictorFromIndex(0))] =
186
0
              PredictLearnNEC(&properties, channel.w, p + x, onerow, x, y,
187
0
                              tree_samples.PredictorFromIndex(0), references,
188
0
                              &wp_state)
189
0
                  .guess;
190
0
        }
191
0
        (*total_pixels)++;
192
0
        if (use_sample()) {
193
0
          tree_samples.AddSample(p[x], properties, pred);
194
0
        }
195
0
        wp_state.UpdateErrors(p[x], x, y, channel.w);
196
0
      }
197
0
      for (size_t x = channel.w - 2; x < channel.w; x++) {
198
0
        compute_sample(p, x, y);
199
0
      }
200
0
    } else {
201
0
      for (size_t x = 0; x < channel.w; x++) {
202
0
        compute_sample(p, x, y);
203
0
      }
204
0
    }
205
0
  }
206
0
  return true;
207
0
}
208
209
StatusOr<Tree> LearnTree(
210
    TreeSamples &&tree_samples, size_t total_pixels,
211
    const ModularOptions &options,
212
    const std::vector<ModularMultiplierInfo> &multiplier_info = {},
213
0
    StaticPropRange static_prop_range = {}) {
214
0
  Tree tree;
215
0
  for (size_t i = 0; i < kNumStaticProperties; i++) {
216
0
    if (static_prop_range[i][1] == 0) {
217
0
      static_prop_range[i][1] = std::numeric_limits<uint32_t>::max();
218
0
    }
219
0
  }
220
0
  if (!tree_samples.HasSamples()) {
221
0
    tree.emplace_back();
222
0
    tree.back().predictor = tree_samples.PredictorFromIndex(0);
223
0
    tree.back().property = -1;
224
0
    tree.back().predictor_offset = 0;
225
0
    tree.back().multiplier = 1;
226
0
    return tree;
227
0
  }
228
0
  float pixel_fraction = tree_samples.NumSamples() * 1.0f / total_pixels;
229
0
  float required_cost = pixel_fraction * 0.9 + 0.1;
230
0
  tree_samples.AllSamplesDone();
231
0
  JXL_RETURN_IF_ERROR(ComputeBestTree(
232
0
      tree_samples, options.splitting_heuristics_node_threshold * required_cost,
233
0
      multiplier_info, static_prop_range, options.fast_decode_multiplier,
234
0
      &tree));
235
0
  return tree;
236
0
}
237
238
Status EncodeModularChannelMAANS(const Image &image, pixel_type chan,
239
                                 const weighted::Header &wp_header,
240
                                 const Tree &global_tree, Token **tokenpp,
241
1.67k
                                 size_t group_id, bool skip_encoder_fast_path) {
242
1.67k
  const Channel &channel = image.channel[chan];
243
1.67k
  JxlMemoryManager *memory_manager = channel.memory_manager();
244
1.67k
  Token *tokenp = *tokenpp;
245
1.67k
  JXL_ENSURE(channel.w != 0 && channel.h != 0);
246
247
1.67k
  Image3F predictor_img;
248
1.67k
  if (kWantDebug) {
249
1.67k
    JXL_ASSIGN_OR_RETURN(predictor_img,
250
1.67k
                         Image3F::Create(memory_manager, channel.w, channel.h));
251
1.67k
  }
252
253
1.67k
  JXL_DEBUG_V(6,
254
1.67k
              "Encoding %" PRIuS "x%" PRIuS
255
1.67k
              " channel %d, "
256
1.67k
              "(shift=%i,%i)",
257
1.67k
              channel.w, channel.h, chan, channel.hshift, channel.vshift);
258
259
1.67k
  std::array<pixel_type, kNumStaticProperties> static_props = {
260
1.67k
      {chan, static_cast<int>(group_id)}};
261
1.67k
  bool use_wp;
262
1.67k
  bool is_wp_only;
263
1.67k
  bool is_gradient_only;
264
1.67k
  size_t num_props;
265
1.67k
  FlatTree tree = FilterTree(global_tree, static_props, &num_props, &use_wp,
266
1.67k
                             &is_wp_only, &is_gradient_only);
267
1.67k
  MATreeLookup tree_lookup(tree);
268
1.67k
  JXL_DEBUG_V(3, "Encoding using a MA tree with %" PRIuS " nodes", tree.size());
269
270
  // Check if this tree is a WP-only tree with a small enough property value
271
  // range.
272
  // Initialized to avoid clang-tidy complaining.
273
1.67k
  auto tree_lut = jxl::make_unique<TreeLut<uint16_t, false, false>>();
274
1.67k
  if (is_wp_only) {
275
720
    is_wp_only = TreeToLookupTable(tree, *tree_lut);
276
720
  }
277
1.67k
  if (is_gradient_only) {
278
0
    is_gradient_only = TreeToLookupTable(tree, *tree_lut);
279
0
  }
280
281
1.67k
  if (is_wp_only && !skip_encoder_fast_path) {
282
2.88k
    for (size_t c = 0; c < 3; c++) {
283
2.16k
      FillImage(static_cast<float>(PredictorColor(Predictor::Weighted)[c]),
284
2.16k
                &predictor_img.Plane(c));
285
2.16k
    }
286
720
    const intptr_t onerow = channel.plane.PixelsPerRow();
287
720
    weighted::State wp_state(wp_header, channel.w, channel.h);
288
720
    Properties properties(1);
289
1.44k
    for (size_t y = 0; y < channel.h; y++) {
290
720
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
291
1.44k
      for (size_t x = 0; x < channel.w; x++) {
292
720
        size_t offset = 0;
293
720
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
294
720
        pixel_type_w top = (y ? *(r + x - onerow) : left);
295
720
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
296
720
        pixel_type_w topright =
297
720
            (x + 1 < channel.w && y ? *(r + x + 1 - onerow) : top);
298
720
        pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top);
299
720
        int32_t guess = wp_state.Predict</*compute_properties=*/true>(
300
720
            x, y, channel.w, top, left, topright, topleft, toptop, &properties,
301
720
            offset);
302
720
        uint32_t pos =
303
720
            kPropRangeFast +
304
720
            jxl::Clamp1(properties[0], -kPropRangeFast, kPropRangeFast - 1);
305
720
        uint32_t ctx_id = tree_lut->context_lookup[pos];
306
720
        int32_t residual = r[x] - guess;
307
720
        *tokenp++ = Token(ctx_id, PackSigned(residual));
308
720
        wp_state.UpdateErrors(r[x], x, y, channel.w);
309
720
      }
310
720
    }
311
960
  } else if (tree.size() == 1 && tree[0].predictor == Predictor::Gradient &&
312
956
             tree[0].multiplier == 1 && tree[0].predictor_offset == 0 &&
313
956
             !skip_encoder_fast_path) {
314
0
    for (size_t c = 0; c < 3; c++) {
315
0
      FillImage(static_cast<float>(PredictorColor(Predictor::Gradient)[c]),
316
0
                &predictor_img.Plane(c));
317
0
    }
318
0
    const intptr_t onerow = channel.plane.PixelsPerRow();
319
0
    for (size_t y = 0; y < channel.h; y++) {
320
0
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
321
0
      for (size_t x = 0; x < channel.w; x++) {
322
0
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
323
0
        pixel_type_w top = (y ? *(r + x - onerow) : left);
324
0
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
325
0
        int32_t guess = ClampedGradient(top, left, topleft);
326
0
        int32_t residual = r[x] - guess;
327
0
        *tokenp++ = Token(tree[0].childID, PackSigned(residual));
328
0
      }
329
0
    }
330
956
  } else if (is_gradient_only && !skip_encoder_fast_path) {
331
0
    for (size_t c = 0; c < 3; c++) {
332
0
      FillImage(static_cast<float>(PredictorColor(Predictor::Gradient)[c]),
333
0
                &predictor_img.Plane(c));
334
0
    }
335
0
    const intptr_t onerow = channel.plane.PixelsPerRow();
336
0
    for (size_t y = 0; y < channel.h; y++) {
337
0
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
338
0
      for (size_t x = 0; x < channel.w; x++) {
339
0
        pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0);
340
0
        pixel_type_w top = (y ? *(r + x - onerow) : left);
341
0
        pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left);
342
0
        int32_t guess = ClampedGradient(top, left, topleft);
343
0
        uint32_t pos =
344
0
            kPropRangeFast +
345
0
            std::min<pixel_type_w>(
346
0
                std::max<pixel_type_w>(-kPropRangeFast, top + left - topleft),
347
0
                kPropRangeFast - 1);
348
0
        uint32_t ctx_id = tree_lut->context_lookup[pos];
349
0
        int32_t residual = r[x] - guess;
350
0
        *tokenp++ = Token(ctx_id, PackSigned(residual));
351
0
      }
352
0
    }
353
960
  } else if (tree.size() == 1 && tree[0].predictor == Predictor::Zero &&
354
956
             tree[0].multiplier == 1 && tree[0].predictor_offset == 0 &&
355
956
             !skip_encoder_fast_path) {
356
0
    for (size_t c = 0; c < 3; c++) {
357
0
      FillImage(static_cast<float>(PredictorColor(Predictor::Zero)[c]),
358
0
                &predictor_img.Plane(c));
359
0
    }
360
0
    for (size_t y = 0; y < channel.h; y++) {
361
0
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
362
0
      for (size_t x = 0; x < channel.w; x++) {
363
0
        *tokenp++ = Token(tree[0].childID, PackSigned(p[x]));
364
0
      }
365
0
    }
366
960
  } else if (tree.size() == 1 && tree[0].predictor != Predictor::Weighted &&
367
960
             (tree[0].multiplier & (tree[0].multiplier - 1)) == 0 &&
368
960
             tree[0].predictor_offset == 0 && !skip_encoder_fast_path) {
369
    // multiplier is a power of 2.
370
3.84k
    for (size_t c = 0; c < 3; c++) {
371
2.88k
      FillImage(static_cast<float>(PredictorColor(tree[0].predictor)[c]),
372
2.88k
                &predictor_img.Plane(c));
373
2.88k
    }
374
960
    uint32_t mul_shift =
375
960
        FloorLog2Nonzero(static_cast<uint32_t>(tree[0].multiplier));
376
960
    const intptr_t onerow = channel.plane.PixelsPerRow();
377
2.16k
    for (size_t y = 0; y < channel.h; y++) {
378
1.20k
      const pixel_type *JXL_RESTRICT r = channel.Row(y);
379
2.40k
      for (size_t x = 0; x < channel.w; x++) {
380
1.20k
        PredictionResult pred = PredictNoTreeNoWP(channel.w, r + x, onerow, x,
381
1.20k
                                                  y, tree[0].predictor);
382
1.20k
        pixel_type_w residual = r[x] - pred.guess;
383
1.20k
        JXL_DASSERT((residual >> mul_shift) * tree[0].multiplier == residual);
384
1.20k
        *tokenp++ = Token(tree[0].childID, PackSigned(residual >> mul_shift));
385
1.20k
      }
386
1.20k
    }
387
388
18.4E
  } else if (!use_wp && !skip_encoder_fast_path) {
389
0
    const intptr_t onerow = channel.plane.PixelsPerRow();
390
0
    Properties properties(num_props);
391
0
    JXL_ASSIGN_OR_RETURN(
392
0
        Channel references,
393
0
        Channel::Create(memory_manager,
394
0
                        properties.size() - kNumNonrefProperties, channel.w));
395
0
    for (size_t y = 0; y < channel.h; y++) {
396
0
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
397
0
      PrecomputeReferences(channel, y, image, chan, &references);
398
0
      float *pred_img_row[3];
399
0
      if (kWantDebug) {
400
0
        for (size_t c = 0; c < 3; c++) {
401
0
          pred_img_row[c] = predictor_img.PlaneRow(c, y);
402
0
        }
403
0
      }
404
0
      InitPropsRow(&properties, static_props, y);
405
0
      for (size_t x = 0; x < channel.w; x++) {
406
0
        PredictionResult res =
407
0
            PredictTreeNoWP(&properties, channel.w, p + x, onerow, x, y,
408
0
                            tree_lookup, references);
409
0
        if (kWantDebug) {
410
0
          for (size_t i = 0; i < 3; i++) {
411
0
            pred_img_row[i][x] = PredictorColor(res.predictor)[i];
412
0
          }
413
0
        }
414
0
        pixel_type_w residual = p[x] - res.guess;
415
0
        JXL_DASSERT(residual % res.multiplier == 0);
416
0
        *tokenp++ = Token(res.context, PackSigned(residual / res.multiplier));
417
0
      }
418
0
    }
419
18.4E
  } else {
420
18.4E
    const intptr_t onerow = channel.plane.PixelsPerRow();
421
18.4E
    Properties properties(num_props);
422
18.4E
    JXL_ASSIGN_OR_RETURN(
423
18.4E
        Channel references,
424
18.4E
        Channel::Create(memory_manager,
425
18.4E
                        properties.size() - kNumNonrefProperties, channel.w));
426
18.4E
    weighted::State wp_state(wp_header, channel.w, channel.h);
427
18.4E
    for (size_t y = 0; y < channel.h; y++) {
428
0
      const pixel_type *JXL_RESTRICT p = channel.Row(y);
429
0
      PrecomputeReferences(channel, y, image, chan, &references);
430
0
      float *pred_img_row[3];
431
0
      if (kWantDebug) {
432
0
        for (size_t c = 0; c < 3; c++) {
433
0
          pred_img_row[c] = predictor_img.PlaneRow(c, y);
434
0
        }
435
0
      }
436
0
      InitPropsRow(&properties, static_props, y);
437
0
      for (size_t x = 0; x < channel.w; x++) {
438
0
        PredictionResult res =
439
0
            PredictTreeWP(&properties, channel.w, p + x, onerow, x, y,
440
0
                          tree_lookup, references, &wp_state);
441
0
        if (kWantDebug) {
442
0
          for (size_t i = 0; i < 3; i++) {
443
0
            pred_img_row[i][x] = PredictorColor(res.predictor)[i];
444
0
          }
445
0
        }
446
0
        pixel_type_w residual = p[x] - res.guess;
447
0
        JXL_DASSERT(residual % res.multiplier == 0);
448
0
        *tokenp++ = Token(res.context, PackSigned(residual / res.multiplier));
449
0
        wp_state.UpdateErrors(p[x], x, y, channel.w);
450
0
      }
451
0
    }
452
18.4E
  }
453
  /* TODO(szabadka): Add cparams to the call stack here.
454
  if (kWantDebug && WantDebugOutput(cparams)) {
455
    DumpImage(
456
        cparams,
457
        ("pred_" + ToString(group_id) + "_" + ToString(chan)).c_str(),
458
        predictor_img);
459
  }
460
  */
461
1.67k
  *tokenpp = tokenp;
462
1.67k
  return true;
463
1.67k
}
464
465
}  // namespace
466
467
Tree PredefinedTree(ModularOptions::TreeKind tree_kind, size_t total_pixels,
468
479
                    int bitdepth, int prevprop) {
469
479
  switch (tree_kind) {
470
0
    case ModularOptions::TreeKind::kJpegTranscodeACMeta:
471
      // All the data is 0, so no need for a fancy tree.
472
0
      return {PropertyDecisionNode::Leaf(Predictor::Zero)};
473
0
    case ModularOptions::TreeKind::kTrivialTreeNoPredictor:
474
      // All the data is 0, so no need for a fancy tree.
475
0
      return {PropertyDecisionNode::Leaf(Predictor::Zero)};
476
0
    case ModularOptions::TreeKind::kFalconACMeta:
477
      // All the data is 0 except the quant field. TODO(veluca): make that 0
478
      // too.
479
0
      return {PropertyDecisionNode::Leaf(Predictor::Left)};
480
240
    case ModularOptions::TreeKind::kACMeta: {
481
      // Small image.
482
240
      if (total_pixels < 1024) {
483
240
        return {PropertyDecisionNode::Leaf(Predictor::Left)};
484
240
      }
485
0
      Tree tree;
486
      // 0: c > 1
487
0
      tree.push_back(PropertyDecisionNode::Split(0, 1, 1));
488
      // 1: c > 2
489
0
      tree.push_back(PropertyDecisionNode::Split(0, 2, 3));
490
      // 2: c > 0
491
0
      tree.push_back(PropertyDecisionNode::Split(0, 0, 5));
492
      // 3: EPF control field (all 0 or 4), top > 3
493
0
      tree.push_back(PropertyDecisionNode::Split(6, 3, 21));
494
      // 4: ACS+QF, y > 0
495
0
      tree.push_back(PropertyDecisionNode::Split(2, 0, 7));
496
      // 5: CfL x
497
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
498
      // 6: CfL b
499
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Gradient));
500
      // 7: QF: split according to the left quant value.
501
0
      tree.push_back(PropertyDecisionNode::Split(7, 5, 9));
502
      // 8: ACS: split in 4 segments (8x8 from 0 to 3, large square 4-5, large
503
      // rectangular 6-11, 8x8 12+), according to previous ACS value.
504
0
      tree.push_back(PropertyDecisionNode::Split(7, 5, 15));
505
      // QF
506
0
      tree.push_back(PropertyDecisionNode::Split(7, 11, 11));
507
0
      tree.push_back(PropertyDecisionNode::Split(7, 3, 13));
508
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
509
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
510
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
511
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Left));
512
      // ACS
513
0
      tree.push_back(PropertyDecisionNode::Split(7, 11, 17));
514
0
      tree.push_back(PropertyDecisionNode::Split(7, 3, 19));
515
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
516
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
517
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
518
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
519
      // EPF, left > 3
520
0
      tree.push_back(PropertyDecisionNode::Split(7, 3, 23));
521
0
      tree.push_back(PropertyDecisionNode::Split(7, 3, 25));
522
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
523
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
524
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
525
0
      tree.push_back(PropertyDecisionNode::Leaf(Predictor::Zero));
526
0
      return tree;
527
240
    }
528
240
    case ModularOptions::TreeKind::kWPFixedDC: {
529
240
      std::vector<int32_t> cutoffs = {
530
240
          -500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
531
240
          -11,  -7,   -4,   -3,   -1,   0,   1,   3,   5,   7,   11,
532
240
          15,   23,   31,   47,   63,   95,  127, 191, 255, 392, 500};
533
240
      return MakeFixedTree(kWPProp, cutoffs, Predictor::Weighted, total_pixels,
534
240
                           bitdepth);
535
240
    }
536
0
    case ModularOptions::TreeKind::kGradientFixedDC: {
537
0
      std::vector<int32_t> cutoffs = {
538
0
          -500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15,
539
0
          -11,  -7,   -4,   -3,   -1,   0,   1,   3,   5,   7,   11,
540
0
          15,   23,   31,   47,   63,   95,  127, 191, 255, 392, 500};
541
0
      return MakeFixedTree(
542
0
          prevprop > 0 ? kNumNonrefProperties + 2 : kGradientProp, cutoffs,
543
0
          Predictor::Gradient, total_pixels, bitdepth);
544
240
    }
545
0
    case ModularOptions::TreeKind::kLearn: {
546
0
      JXL_DEBUG_ABORT("internal: kLearn is not predefined tree");
547
0
      return {};
548
0
    }
549
479
  }
550
0
  JXL_DEBUG_ABORT("internal: unexpected TreeKind: %d",
551
0
                  static_cast<int>(tree_kind));
552
0
  return {};
553
0
}
554
555
StatusOr<Tree> LearnTree(
556
    const Image *images, const ModularOptions *options, const uint32_t start,
557
    const uint32_t stop,
558
0
    const std::vector<ModularMultiplierInfo> &multiplier_info = {}) {
559
0
  TreeSamples tree_samples;
560
0
  JXL_RETURN_IF_ERROR(tree_samples.SetPredictor(options[start].predictor,
561
0
                                                options[start].wp_tree_mode));
562
0
  JXL_RETURN_IF_ERROR(
563
0
      tree_samples.SetProperties(options[start].splitting_heuristics_properties,
564
0
                                 options[start].wp_tree_mode));
565
0
  uint32_t max_c = 0;
566
0
  std::vector<pixel_type> pixel_samples;
567
0
  std::vector<pixel_type> diff_samples;
568
0
  std::vector<uint32_t> group_pixel_count;
569
0
  std::vector<uint32_t> channel_pixel_count;
570
0
  for (uint32_t i = start; i < stop; i++) {
571
0
    max_c = std::max<uint32_t>(images[i].channel.size(), max_c);
572
0
    CollectPixelSamples(images[i], options[i], i, group_pixel_count,
573
0
                        channel_pixel_count, pixel_samples, diff_samples);
574
0
  }
575
0
  StaticPropRange range;
576
0
  range[0] = {{0, max_c}};
577
0
  range[1] = {{start, stop}};
578
579
0
  tree_samples.PreQuantizeProperties(
580
0
      range, multiplier_info, group_pixel_count, channel_pixel_count,
581
0
      pixel_samples, diff_samples, options[start].max_property_values);
582
583
0
  size_t total_pixels = 0;
584
0
  for (size_t i = 0; i < images[start].channel.size(); i++) {
585
0
    if (i >= images[start].nb_meta_channels &&
586
0
        (images[start].channel[i].w > options[start].max_chan_size ||
587
0
         images[start].channel[i].h > options[start].max_chan_size)) {
588
0
      break;
589
0
    }
590
0
    total_pixels += images[start].channel[i].w * images[start].channel[i].h;
591
0
  }
592
0
  total_pixels = std::max<size_t>(total_pixels, 1);
593
594
0
  weighted::Header wp_header;
595
596
0
  for (size_t i = start; i < stop; i++) {
597
0
    size_t nb_channels = images[i].channel.size();
598
599
0
    if (images[i].w == 0 || images[i].h == 0 || nb_channels < 1)
600
0
      continue;  // is there any use for a zero-channel image?
601
0
    if (images[i].error) return JXL_FAILURE("Invalid image");
602
0
    JXL_ENSURE(options[i].tree_kind == ModularOptions::TreeKind::kLearn);
603
604
0
    JXL_DEBUG_V(
605
0
        2, "Encoding %" PRIuS "-channel, %i-bit, %" PRIuS "x%" PRIuS " image.",
606
0
        nb_channels, images[i].bitdepth, images[i].w, images[i].h);
607
608
    // encode transforms
609
0
    Bundle::Init(&wp_header);
610
0
    if (options[i].predictor == Predictor::Weighted) {
611
0
      weighted::PredictorMode(options[i].wp_mode, &wp_header);
612
0
    }
613
614
    // Gather tree data
615
0
    for (size_t c = 0; c < nb_channels; c++) {
616
0
      if (c >= images[i].nb_meta_channels &&
617
0
          (images[i].channel[c].w > options[i].max_chan_size ||
618
0
           images[i].channel[c].h > options[i].max_chan_size)) {
619
0
        break;
620
0
      }
621
0
      if (!images[i].channel[c].w || !images[i].channel[c].h) {
622
0
        continue;  // skip empty channels
623
0
      }
624
0
      JXL_RETURN_IF_ERROR(GatherTreeData(images[i], c, i, wp_header, options[i],
625
0
                                         tree_samples, &total_pixels));
626
0
    }
627
0
  }
628
629
  // TODO(veluca): parallelize more.
630
0
  JXL_ASSIGN_OR_RETURN(Tree tree,
631
0
                       LearnTree(std::move(tree_samples), total_pixels,
632
0
                                 options[start], multiplier_info, range));
633
0
  return tree;
634
0
}
635
636
Status ModularCompress(const Image &image, const ModularOptions &options,
637
                       size_t group_id, const Tree &tree, GroupHeader &header,
638
5.27k
                       std::vector<Token> &tokens, size_t *width) {
639
5.27k
  size_t nb_channels = image.channel.size();
640
641
5.27k
  if (image.w == 0 || image.h == 0 || nb_channels < 1)
642
4.79k
    return true;  // is there any use for a zero-channel image?
643
478
  if (image.error) return JXL_FAILURE("Invalid image");
644
645
478
  JXL_DEBUG_V(
646
478
      2, "Encoding %" PRIuS "-channel, %i-bit, %" PRIuS "x%" PRIuS " image.",
647
478
      nb_channels, image.bitdepth, image.w, image.h);
648
649
  // encode transforms
650
478
  Bundle::Init(&header);
651
478
  if (options.predictor == Predictor::Weighted) {
652
240
    weighted::PredictorMode(options.wp_mode, &header.wp_header);
653
240
  }
654
478
  header.transforms = image.transform;
655
478
  header.use_global_tree = true;
656
657
478
  size_t image_width = 0;
658
478
  size_t total_tokens = 0;
659
2.13k
  for (size_t i = 0; i < nb_channels; i++) {
660
1.65k
    if (i >= image.nb_meta_channels &&
661
1.66k
        (image.channel[i].w > options.max_chan_size ||
662
1.67k
         image.channel[i].h > options.max_chan_size)) {
663
0
      break;
664
0
    }
665
1.65k
    if (image.channel[i].w > image_width) image_width = image.channel[i].w;
666
1.65k
    total_tokens += image.channel[i].w * image.channel[i].h;
667
1.65k
  }
668
478
  if (options.zero_tokens) {
669
0
    tokens.resize(tokens.size() + total_tokens, {0, 0});
670
478
  } else {
671
    // Do one big allocation for all the tokens we'll need,
672
    // to avoid reallocs that might require copying.
673
478
    size_t pos = tokens.size();
674
478
    tokens.resize(pos + total_tokens);
675
478
    Token *tokenp = tokens.data() + pos;
676
2.15k
    for (size_t i = 0; i < nb_channels; i++) {
677
1.67k
      if (i >= image.nb_meta_channels &&
678
1.67k
          (image.channel[i].w > options.max_chan_size ||
679
1.67k
           image.channel[i].h > options.max_chan_size)) {
680
0
        break;
681
0
      }
682
1.67k
      if (!image.channel[i].w || !image.channel[i].h) {
683
0
        continue;  // skip empty channels
684
0
      }
685
1.67k
      JXL_RETURN_IF_ERROR(
686
1.67k
          EncodeModularChannelMAANS(image, i, header.wp_header, tree, &tokenp,
687
1.67k
                                    group_id, options.skip_encoder_fast_path));
688
1.67k
    }
689
    // Make sure we actually wrote all tokens
690
478
    JXL_ENSURE(tokenp == tokens.data() + tokens.size());
691
478
  }
692
693
478
  *width = image_width;
694
695
478
  return true;
696
478
}
697
698
Status ModularGenericCompress(const Image &image, const ModularOptions &opts,
699
                              BitWriter &writer, AuxOut *aux_out,
700
0
                              LayerType layer, size_t group_id) {
701
0
  size_t nb_channels = image.channel.size();
702
703
0
  if (image.w == 0 || image.h == 0 || nb_channels < 1)
704
0
    return true;  // is there any use for a zero-channel image?
705
0
  if (image.error) return JXL_FAILURE("Invalid image");
706
707
0
  ModularOptions options = opts;  // Make a copy to modify it.
708
0
  if (options.predictor == kUndefinedPredictor) {
709
0
    options.predictor = Predictor::Gradient;
710
0
  }
711
712
0
  size_t bits = writer.BitsWritten();
713
714
0
  JxlMemoryManager *memory_manager = image.memory_manager();
715
0
  JXL_DEBUG_V(
716
0
      2, "Encoding %" PRIuS "-channel, %i-bit, %" PRIuS "x%" PRIuS " image.",
717
0
      nb_channels, image.bitdepth, image.w, image.h);
718
719
  // encode transforms
720
0
  GroupHeader header;
721
0
  Bundle::Init(&header);
722
0
  if (options.predictor == Predictor::Weighted) {
723
0
    weighted::PredictorMode(options.wp_mode, &header.wp_header);
724
0
  }
725
0
  header.transforms = image.transform;
726
727
0
  JXL_RETURN_IF_ERROR(Bundle::Write(header, &writer, layer, aux_out));
728
729
  // Compute tree.
730
0
  Tree tree;
731
0
  if (options.tree_kind == ModularOptions::TreeKind::kLearn) {
732
0
    JXL_ASSIGN_OR_RETURN(tree, LearnTree(&image, &options, 0, 1));
733
0
  } else {
734
0
    size_t total_pixels = 0;
735
0
    for (size_t i = 0; i < nb_channels; i++) {
736
0
      if (i >= image.nb_meta_channels &&
737
0
          (image.channel[i].w > options.max_chan_size ||
738
0
           image.channel[i].h > options.max_chan_size)) {
739
0
        break;
740
0
      }
741
0
      total_pixels += image.channel[i].w * image.channel[i].h;
742
0
    }
743
0
    total_pixels = std::max<size_t>(total_pixels, 1);
744
745
0
    tree = PredefinedTree(options.tree_kind, total_pixels, image.bitdepth,
746
0
                          options.max_properties);
747
0
  }
748
749
0
  Tree decoded_tree;
750
0
  std::vector<std::vector<Token>> tree_tokens(1);
751
0
  JXL_RETURN_IF_ERROR(TokenizeTree(tree, tree_tokens.data(), &decoded_tree));
752
0
  JXL_ENSURE(tree.size() == decoded_tree.size());
753
0
  tree = std::move(decoded_tree);
754
755
  /* TODO(szabadka) Add text output callback
756
  if (kWantDebug && kPrintTree && WantDebugOutput(aux_out)) {
757
    PrintTree(*tree, aux_out->debug_prefix + "/tree_" + ToString(group_id));
758
  } */
759
760
  // Write tree
761
0
  EntropyEncodingData code;
762
0
  JXL_ASSIGN_OR_RETURN(
763
0
      size_t cost,
764
0
      BuildAndEncodeHistograms(memory_manager, options.histogram_params,
765
0
                               kNumTreeContexts, tree_tokens, &code, &writer,
766
0
                               LayerType::ModularTree, aux_out));
767
0
  JXL_RETURN_IF_ERROR(WriteTokens(tree_tokens[0], code, 0, &writer,
768
0
                                  LayerType::ModularTree, aux_out));
769
770
0
  size_t image_width = 0;
771
0
  std::vector<std::vector<Token>> tokens(1);
772
  // it puts `use_global_tree = true` in the header, but this is not used
773
  // further
774
0
  JXL_RETURN_IF_ERROR(ModularCompress(image, options, group_id, tree, header,
775
0
                                      tokens[0], &image_width));
776
777
  // Write data
778
0
  code = {};
779
0
  HistogramParams histo_params = options.histogram_params;
780
0
  histo_params.image_widths.push_back(image_width);
781
0
  JXL_ASSIGN_OR_RETURN(
782
0
      cost, BuildAndEncodeHistograms(memory_manager, histo_params,
783
0
                                     (tree.size() + 1) / 2, tokens, &code,
784
0
                                     &writer, layer, aux_out));
785
0
  (void)cost;
786
0
  JXL_RETURN_IF_ERROR(WriteTokens(tokens[0], code, 0, &writer, layer, aux_out));
787
788
0
  bits = writer.BitsWritten() - bits;
789
0
  JXL_DEBUG_V(4,
790
0
              "Modular-encoded a %" PRIuS "x%" PRIuS
791
0
              " bitdepth=%i nbchans=%" PRIuS " image in %" PRIuS " bytes",
792
0
              image.w, image.h, image.bitdepth, image.channel.size(), bits / 8);
793
0
  (void)bits;
794
795
0
  return true;
796
0
}
797
798
}  // namespace jxl