Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996 |
3 | | * The Regents of the University of California. All rights reserved. |
4 | | * |
5 | | * Redistribution and use in source and binary forms, with or without |
6 | | * modification, are permitted provided that: (1) source code distributions |
7 | | * retain the above copyright notice and this paragraph in its entirety, (2) |
8 | | * distributions including binary code include the above copyright notice and |
9 | | * this paragraph in its entirety in the documentation or other materials |
10 | | * provided with the distribution, and (3) all advertising materials mentioning |
11 | | * features or use of this software display the following acknowledgement: |
12 | | * ``This product includes software developed by the University of California, |
13 | | * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of |
14 | | * the University nor the names of its contributors may be used to endorse |
15 | | * or promote products derived from this software without specific prior |
16 | | * written permission. |
17 | | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
18 | | * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
19 | | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
20 | | * |
21 | | * Optimization module for BPF code intermediate representation. |
22 | | */ |
23 | | |
24 | | #include <config.h> |
25 | | |
26 | | #include <pcap-types.h> |
27 | | |
28 | | #include <stdio.h> |
29 | | #include <stdlib.h> |
30 | | #include <memory.h> |
31 | | #include <setjmp.h> |
32 | | #include <string.h> |
33 | | #include <limits.h> /* for SIZE_MAX */ |
34 | | #include <errno.h> |
35 | | |
36 | | #include "pcap-int.h" |
37 | | |
38 | | #include "gencode.h" |
39 | | #include "optimize.h" |
40 | | #include "diag-control.h" |
41 | | |
42 | | #ifdef HAVE_OS_PROTO_H |
43 | | #include "os-proto.h" |
44 | | #endif |
45 | | |
46 | | #ifdef BDEBUG |
47 | | /* |
48 | | * The internal "debug printout" flag for the filter expression optimizer. |
49 | | * The code to print that stuff is present only if BDEBUG is defined, so |
50 | | * the flag, and the routine to set it, are defined only if BDEBUG is |
51 | | * defined. |
52 | | */ |
53 | | static int pcap_optimizer_debug; |
54 | | |
55 | | /* |
56 | | * Routine to set that flag. |
57 | | * |
58 | | * This is intended for libpcap developers, not for general use. |
59 | | * If you want to set these in a program, you'll have to declare this |
60 | | * routine yourself, with the appropriate DLL import attribute on Windows; |
61 | | * it's not declared in any header file, and won't be declared in any |
62 | | * header file provided by libpcap. |
63 | | */ |
64 | | PCAP_API void pcap_set_optimizer_debug(int value); |
65 | | |
66 | | PCAP_API_DEF void |
67 | | pcap_set_optimizer_debug(int value) |
68 | | { |
69 | | pcap_optimizer_debug = value; |
70 | | } |
71 | | |
72 | | /* |
73 | | * The internal "print dot graph" flag for the filter expression optimizer. |
74 | | * The code to print that stuff is present only if BDEBUG is defined, so |
75 | | * the flag, and the routine to set it, are defined only if BDEBUG is |
76 | | * defined. |
77 | | */ |
78 | | static int pcap_print_dot_graph; |
79 | | |
80 | | /* |
81 | | * Routine to set that flag. |
82 | | * |
83 | | * This is intended for libpcap developers, not for general use. |
84 | | * If you want to set these in a program, you'll have to declare this |
85 | | * routine yourself, with the appropriate DLL import attribute on Windows; |
86 | | * it's not declared in any header file, and won't be declared in any |
87 | | * header file provided by libpcap. |
88 | | */ |
89 | | PCAP_API void pcap_set_print_dot_graph(int value); |
90 | | |
91 | | PCAP_API_DEF void |
92 | | pcap_set_print_dot_graph(int value) |
93 | | { |
94 | | pcap_print_dot_graph = value; |
95 | | } |
96 | | |
97 | | #endif |
98 | | |
99 | | /* |
100 | | * lowest_set_bit(). |
101 | | * |
102 | | * Takes a 32-bit integer as an argument. |
103 | | * |
104 | | * If handed a non-zero value, returns the index of the lowest set bit, |
105 | | * counting upwards from zero. |
106 | | * |
107 | | * If handed zero, the results are platform- and compiler-dependent. |
108 | | * Keep it out of the light, don't give it any water, don't feed it |
109 | | * after midnight, and don't pass zero to it. |
110 | | * |
111 | | * This is the same as the count of trailing zeroes in the word. |
112 | | */ |
113 | | #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4) |
114 | | /* |
115 | | * GCC 3.4 and later; we have __builtin_ctz(). |
116 | | */ |
117 | 3.00M | #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask)) |
118 | | #elif defined(_MSC_VER) |
119 | | /* |
120 | | * Visual Studio; we support only 2015 and later, so use |
121 | | * _BitScanForward(). |
122 | | */ |
123 | | #include <intrin.h> |
124 | | |
125 | | #ifndef __clang__ |
126 | | #pragma intrinsic(_BitScanForward) |
127 | | #endif |
128 | | |
129 | | static __forceinline u_int |
130 | | lowest_set_bit(int mask) |
131 | | { |
132 | | unsigned long bit; |
133 | | |
134 | | /* |
135 | | * Don't sign-extend mask if long is longer than int. |
136 | | * (It's currently not, in MSVC, even on 64-bit platforms, but....) |
137 | | */ |
138 | | if (_BitScanForward(&bit, (unsigned int)mask) == 0) |
139 | | abort(); /* mask is zero */ |
140 | | return (u_int)bit; |
141 | | } |
142 | | #else |
143 | | /* |
144 | | * POSIX.1-2001 says ffs() is in <strings.h>. Every supported non-Windows OS |
145 | | * (including Linux with musl libc and uclibc-ng) has the header and (except |
146 | | * HP-UX) declares the function there. HP-UX declares the function in |
147 | | * <string.h>, which has already been included. |
148 | | */ |
149 | | #include <strings.h> |
150 | | #define lowest_set_bit(mask) ((u_int)(ffs((mask)) - 1)) |
151 | | #endif |
152 | | |
153 | | /* |
154 | | * Represents a deleted instruction. |
155 | | */ |
156 | 64.7M | #define NOP -1 |
157 | | |
158 | | /* |
159 | | * Register numbers for use-def values. |
160 | | * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory |
161 | | * location. A_ATOM is the accumulator and X_ATOM is the index |
162 | | * register. |
163 | | */ |
164 | 17.5M | #define A_ATOM BPF_MEMWORDS |
165 | 3.27M | #define X_ATOM (BPF_MEMWORDS+1) |
166 | | |
167 | | /* |
168 | | * This define is used to represent *both* the accumulator and |
169 | | * x register in use-def computations. |
170 | | * Currently, the use-def code assumes only one definition per instruction. |
171 | | */ |
172 | 4.69M | #define AX_ATOM N_ATOMS |
173 | | |
174 | | /* |
175 | | * These data structures are used in a Cocke and Schwartz style |
176 | | * value numbering scheme. Since the flowgraph is acyclic, |
177 | | * exit values can be propagated from a node's predecessors |
178 | | * provided it is uniquely defined. |
179 | | */ |
180 | | struct valnode { |
181 | | int code; |
182 | | bpf_u_int32 v0, v1; |
183 | | int val; /* the value number */ |
184 | | struct valnode *next; |
185 | | }; |
186 | | |
187 | | /* Integer constants mapped with the load immediate opcode. */ |
188 | 1.10M | #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U) |
189 | | |
190 | | struct vmapinfo { |
191 | | int is_const; |
192 | | bpf_u_int32 const_val; |
193 | | }; |
194 | | |
195 | | typedef struct { |
196 | | /* |
197 | | * Place to longjmp to on an error. |
198 | | */ |
199 | | jmp_buf top_ctx; |
200 | | |
201 | | /* |
202 | | * The buffer into which to put error message. |
203 | | */ |
204 | | char *errbuf; |
205 | | |
206 | | /* |
207 | | * A flag to indicate that further optimization is needed. |
208 | | * Iterative passes are continued until a given pass yields no |
209 | | * code simplification or branch movement. |
210 | | */ |
211 | | int done; |
212 | | |
213 | | /* |
214 | | * XXX - detect loops that do nothing but repeated AND/OR pullups |
215 | | * and edge moves. |
216 | | * If 100 passes in a row do nothing but that, treat that as a |
217 | | * sign that we're in a loop that just shuffles in a cycle in |
218 | | * which each pass just shuffles the code and we eventually |
219 | | * get back to the original configuration. |
220 | | * |
221 | | * XXX - we need a non-heuristic way of detecting, or preventing, |
222 | | * such a cycle. |
223 | | */ |
224 | | int non_branch_movement_performed; |
225 | | |
226 | | u_int n_blocks; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */ |
227 | | struct block **blocks; |
228 | | u_int n_edges; /* twice n_blocks, so guaranteed to be > 0 */ |
229 | | struct edge **edges; |
230 | | |
231 | | /* |
232 | | * A bit vector set representation of the dominators. |
233 | | * We round up the set size to the next power of two. |
234 | | */ |
235 | | u_int nodewords; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */ |
236 | | u_int edgewords; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */ |
237 | | struct block **levels; |
238 | | bpf_u_int32 *space; |
239 | | |
240 | 11.4M | #define BITS_PER_WORD (8*sizeof(bpf_u_int32)) |
241 | | /* |
242 | | * True if a is in uset {p} |
243 | | */ |
244 | 800k | #define SET_MEMBER(p, a) \ |
245 | 800k | ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))) |
246 | | |
247 | | /* |
248 | | * Add 'a' to uset p. |
249 | | */ |
250 | 3.39M | #define SET_INSERT(p, a) \ |
251 | 3.39M | (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) |
252 | | |
253 | | /* |
254 | | * Delete 'a' from uset p. |
255 | | */ |
256 | | #define SET_DELETE(p, a) \ |
257 | | (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)) |
258 | | |
259 | | /* |
260 | | * a := a intersect b |
261 | | * n must be guaranteed to be > 0 |
262 | | */ |
263 | 4.99M | #define SET_INTERSECT(a, b, n)\ |
264 | 4.99M | {\ |
265 | 4.99M | register bpf_u_int32 *_x = a, *_y = b;\ |
266 | 4.99M | register u_int _n = n;\ |
267 | 67.1M | do *_x++ &= *_y++; while (--_n != 0);\ |
268 | 4.99M | } |
269 | | |
270 | | /* |
271 | | * a := a - b |
272 | | * n must be guaranteed to be > 0 |
273 | | */ |
274 | | #define SET_SUBTRACT(a, b, n)\ |
275 | | {\ |
276 | | register bpf_u_int32 *_x = a, *_y = b;\ |
277 | | register u_int _n = n;\ |
278 | | do *_x++ &=~ *_y++; while (--_n != 0);\ |
279 | | } |
280 | | |
281 | | /* |
282 | | * a := a union b |
283 | | * n must be guaranteed to be > 0 |
284 | | */ |
285 | 1.23M | #define SET_UNION(a, b, n)\ |
286 | 1.23M | {\ |
287 | 1.23M | register bpf_u_int32 *_x = a, *_y = b;\ |
288 | 1.23M | register u_int _n = n;\ |
289 | 10.6M | do *_x++ |= *_y++; while (--_n != 0);\ |
290 | 1.23M | } |
291 | | |
292 | | uset all_dom_sets; |
293 | | uset all_closure_sets; |
294 | | uset all_edge_sets; |
295 | | |
296 | 2.40M | #define MODULUS 213 |
297 | | struct valnode *hashtbl[MODULUS]; |
298 | | bpf_u_int32 curval; |
299 | | bpf_u_int32 maxval; |
300 | | |
301 | | struct vmapinfo *vmap; |
302 | | struct valnode *vnode_base; |
303 | | struct valnode *next_vnode; |
304 | | } opt_state_t; |
305 | | |
306 | | typedef struct { |
307 | | /* |
308 | | * Place to longjmp to on an error. |
309 | | */ |
310 | | jmp_buf top_ctx; |
311 | | |
312 | | /* |
313 | | * The buffer into which to put error message. |
314 | | */ |
315 | | char *errbuf; |
316 | | |
317 | | /* |
318 | | * Some pointers used to convert the basic block form of the code, |
319 | | * into the array form that BPF requires. 'fstart' will point to |
320 | | * the malloc'd array while 'ftail' is used during the recursive |
321 | | * traversal. |
322 | | */ |
323 | | struct bpf_insn *fstart; |
324 | | struct bpf_insn *ftail; |
325 | | } conv_state_t; |
326 | | |
327 | | static void opt_init(opt_state_t *, struct icode *); |
328 | | static void opt_cleanup(opt_state_t *); |
329 | | static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...) |
330 | | PCAP_PRINTFLIKE(2, 3); |
331 | | |
332 | | static void intern_blocks(opt_state_t *, struct icode *); |
333 | | |
334 | | static void find_inedges(opt_state_t *, struct block *); |
335 | | #ifdef BDEBUG |
336 | | static void opt_dump(opt_state_t *, struct icode *); |
337 | | #endif |
338 | | |
339 | | static void |
340 | | find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b) |
341 | 1.27M | { |
342 | 1.27M | int level; |
343 | | |
344 | 1.27M | if (isMarked(ic, b)) |
345 | 589k | return; |
346 | | |
347 | 682k | Mark(ic, b); |
348 | 682k | b->link = 0; |
349 | | |
350 | 682k | if (JT(b)) { |
351 | 616k | find_levels_r(opt_state, ic, JT(b)); |
352 | 616k | find_levels_r(opt_state, ic, JF(b)); |
353 | 616k | level = max(JT(b)->level, JF(b)->level) + 1; |
354 | 616k | } else |
355 | 66.0k | level = 0; |
356 | 682k | b->level = level; |
357 | 682k | b->link = opt_state->levels[level]; |
358 | 682k | opt_state->levels[level] = b; |
359 | 682k | } |
360 | | |
361 | | /* |
362 | | * Level graph. The levels go from 0 at the leaves to |
363 | | * N_LEVELS at the root. The opt_state->levels[] array points to the |
364 | | * first node of the level list, whose elements are linked |
365 | | * with the 'link' field of the struct block. |
366 | | */ |
367 | | static void |
368 | | find_levels(opt_state_t *opt_state, struct icode *ic) |
369 | 38.7k | { |
370 | 38.7k | memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels)); |
371 | 38.7k | unMarkAll(ic); |
372 | 38.7k | find_levels_r(opt_state, ic, ic->root); |
373 | 38.7k | } |
374 | | |
375 | | /* |
376 | | * Find dominator relationships. |
377 | | * Assumes graph has been leveled. |
378 | | */ |
379 | | static void |
380 | | find_dom(opt_state_t *opt_state, struct block *root) |
381 | 46.4k | { |
382 | 46.4k | u_int i; |
383 | 46.4k | int level; |
384 | 46.4k | struct block *b; |
385 | 46.4k | bpf_u_int32 *x; |
386 | | |
387 | | /* |
388 | | * Initialize sets to contain all nodes. |
389 | | */ |
390 | 46.4k | x = opt_state->all_dom_sets; |
391 | | /* |
392 | | * In opt_init(), we've made sure the product doesn't overflow. |
393 | | */ |
394 | 46.4k | i = opt_state->n_blocks * opt_state->nodewords; |
395 | 22.5M | while (i != 0) { |
396 | 22.5M | --i; |
397 | 22.5M | *x++ = 0xFFFFFFFFU; |
398 | 22.5M | } |
399 | | /* Root starts off empty. */ |
400 | 152k | for (i = opt_state->nodewords; i != 0;) { |
401 | 105k | --i; |
402 | 105k | root->dom[i] = 0; |
403 | 105k | } |
404 | | |
405 | | /* root->level is the highest level no found. */ |
406 | 844k | for (level = root->level; level >= 0; --level) { |
407 | 2.14M | for (b = opt_state->levels[level]; b; b = b->link) { |
408 | 1.34M | SET_INSERT(b->dom, b->id); |
409 | 1.34M | if (JT(b) == 0) |
410 | 81.5k | continue; |
411 | 1.26M | SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords); |
412 | 1.26M | SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords); |
413 | 1.26M | } |
414 | 798k | } |
415 | 46.4k | } |
416 | | |
417 | | static void |
418 | | propedom(opt_state_t *opt_state, struct edge *ep) |
419 | 1.36M | { |
420 | 1.36M | SET_INSERT(ep->edom, ep->id); |
421 | 1.36M | if (ep->succ) { |
422 | 1.23M | SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords); |
423 | 1.23M | SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords); |
424 | 1.23M | } |
425 | 1.36M | } |
426 | | |
427 | | /* |
428 | | * Compute edge dominators. |
429 | | * Assumes graph has been leveled and predecessors established. |
430 | | */ |
431 | | static void |
432 | | find_edom(opt_state_t *opt_state, struct block *root) |
433 | 38.7k | { |
434 | 38.7k | u_int i; |
435 | 38.7k | uset x; |
436 | 38.7k | int level; |
437 | 38.7k | struct block *b; |
438 | | |
439 | 38.7k | x = opt_state->all_edge_sets; |
440 | | /* |
441 | | * In opt_init(), we've made sure the product doesn't overflow. |
442 | | */ |
443 | 31.8M | for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) { |
444 | 31.8M | --i; |
445 | 31.8M | x[i] = 0xFFFFFFFFU; |
446 | 31.8M | } |
447 | | |
448 | | /* root->level is the highest level no found. */ |
449 | 38.7k | memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); |
450 | 38.7k | memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0)); |
451 | 520k | for (level = root->level; level >= 0; --level) { |
452 | 1.16M | for (b = opt_state->levels[level]; b != 0; b = b->link) { |
453 | 682k | propedom(opt_state, &b->et); |
454 | 682k | propedom(opt_state, &b->ef); |
455 | 682k | } |
456 | 481k | } |
457 | 38.7k | } |
458 | | |
459 | | /* |
460 | | * Find the backwards transitive closure of the flow graph. These sets |
461 | | * are backwards in the sense that we find the set of nodes that reach |
462 | | * a given node, not the set of nodes that can be reached by a node. |
463 | | * |
464 | | * Assumes graph has been leveled. |
465 | | */ |
466 | | static void |
467 | | find_closure(opt_state_t *opt_state, struct block *root) |
468 | 38.7k | { |
469 | 38.7k | int level; |
470 | 38.7k | struct block *b; |
471 | | |
472 | | /* |
473 | | * Initialize sets to contain no nodes. |
474 | | */ |
475 | 38.7k | memset((char *)opt_state->all_closure_sets, 0, |
476 | 38.7k | opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets)); |
477 | | |
478 | | /* root->level is the highest level no found. */ |
479 | 520k | for (level = root->level; level >= 0; --level) { |
480 | 1.16M | for (b = opt_state->levels[level]; b; b = b->link) { |
481 | 682k | SET_INSERT(b->closure, b->id); |
482 | 682k | if (JT(b) == 0) |
483 | 66.0k | continue; |
484 | 616k | SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords); |
485 | 616k | SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords); |
486 | 616k | } |
487 | 481k | } |
488 | 38.7k | } |
489 | | |
490 | | /* |
491 | | * Return the register number that is used by s. |
492 | | * |
493 | | * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X |
494 | | * are used, the scratch memory location's number if a scratch memory |
495 | | * location is used (e.g., 0 for M[0]), or -1 if none of those are used. |
496 | | * |
497 | | * The implementation should probably change to an array access. |
498 | | */ |
499 | | static int |
500 | | atomuse(struct stmt *s) |
501 | 8.39M | { |
502 | 8.39M | register int c = s->code; |
503 | | |
504 | 8.39M | if (c == NOP) |
505 | 2.71M | return -1; |
506 | | |
507 | 5.67M | switch (BPF_CLASS(c)) { |
508 | | |
509 | 33.4k | case BPF_RET: |
510 | 33.4k | return (BPF_RVAL(c) == BPF_A) ? A_ATOM : |
511 | 33.4k | (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1; |
512 | | |
513 | 1.87M | case BPF_LD: |
514 | 2.27M | case BPF_LDX: |
515 | | /* |
516 | | * As there are fewer than 2^31 memory locations, |
517 | | * s->k should be convertible to int without problems. |
518 | | */ |
519 | 2.27M | return (BPF_MODE(c) == BPF_IND) ? X_ATOM : |
520 | 2.27M | (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1; |
521 | | |
522 | 482k | case BPF_ST: |
523 | 482k | return A_ATOM; |
524 | | |
525 | 8.31k | case BPF_STX: |
526 | 8.31k | return X_ATOM; |
527 | | |
528 | 1.22M | case BPF_JMP: |
529 | 2.60M | case BPF_ALU: |
530 | 2.60M | if (BPF_SRC(c) == BPF_X) |
531 | 357k | return AX_ATOM; |
532 | 2.24M | return A_ATOM; |
533 | | |
534 | 283k | case BPF_MISC: |
535 | 283k | return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM; |
536 | 5.67M | } |
537 | 0 | abort(); |
538 | | /* NOTREACHED */ |
539 | 5.67M | } |
540 | | |
541 | | /* |
542 | | * Return the register number that is defined by 's'. We assume that |
543 | | * a single stmt cannot define more than one register. If no register |
544 | | * is defined, return -1. |
545 | | * |
546 | | * The implementation should probably change to an array access. |
547 | | */ |
548 | | static int |
549 | | atomdef(struct stmt *s) |
550 | 7.78M | { |
551 | 7.78M | if (s->code == NOP) |
552 | 2.71M | return -1; |
553 | | |
554 | 5.06M | switch (BPF_CLASS(s->code)) { |
555 | | |
556 | 1.87M | case BPF_LD: |
557 | 3.24M | case BPF_ALU: |
558 | 3.24M | return A_ATOM; |
559 | | |
560 | 397k | case BPF_LDX: |
561 | 397k | return X_ATOM; |
562 | | |
563 | 482k | case BPF_ST: |
564 | 490k | case BPF_STX: |
565 | 490k | return s->k; |
566 | | |
567 | 283k | case BPF_MISC: |
568 | 283k | return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM; |
569 | 5.06M | } |
570 | 646k | return -1; |
571 | 5.06M | } |
572 | | |
573 | | /* |
574 | | * Compute the sets of registers used, defined, and killed by 'b'. |
575 | | * |
576 | | * "Used" means that a statement in 'b' uses the register before any |
577 | | * statement in 'b' defines it, i.e. it uses the value left in |
578 | | * that register by a predecessor block of this block. |
579 | | * "Defined" means that a statement in 'b' defines it. |
580 | | * "Killed" means that a statement in 'b' defines it before any |
581 | | * statement in 'b' uses it, i.e. it kills the value left in that |
582 | | * register by a predecessor block of this block. |
583 | | */ |
584 | | static void |
585 | | compute_local_ud(struct block *b) |
586 | 682k | { |
587 | 682k | struct slist *s; |
588 | 682k | atomset def = 0, use = 0, killed = 0; |
589 | 682k | int atom; |
590 | | |
591 | 5.58M | for (s = b->stmts; s; s = s->next) { |
592 | 4.90M | if (s->s.code == NOP) |
593 | 2.66M | continue; |
594 | 2.24M | atom = atomuse(&s->s); |
595 | 2.24M | if (atom >= 0) { |
596 | 1.59M | if (atom == AX_ATOM) { |
597 | 147k | if (!ATOMELEM(def, X_ATOM)) |
598 | 3.83k | use |= ATOMMASK(X_ATOM); |
599 | 147k | if (!ATOMELEM(def, A_ATOM)) |
600 | 80 | use |= ATOMMASK(A_ATOM); |
601 | 147k | } |
602 | 1.44M | else if (atom < N_ATOMS) { |
603 | 1.44M | if (!ATOMELEM(def, atom)) |
604 | 131k | use |= ATOMMASK(atom); |
605 | 1.44M | } |
606 | 0 | else |
607 | 0 | abort(); |
608 | 1.59M | } |
609 | 2.24M | atom = atomdef(&s->s); |
610 | 2.24M | if (atom >= 0) { |
611 | 2.24M | if (!ATOMELEM(use, atom)) |
612 | 2.21M | killed |= ATOMMASK(atom); |
613 | 2.24M | def |= ATOMMASK(atom); |
614 | 2.24M | } |
615 | 2.24M | } |
616 | 682k | if (BPF_CLASS(b->s.code) == BPF_JMP) { |
617 | | /* |
618 | | * XXX - what about RET? |
619 | | */ |
620 | 616k | atom = atomuse(&b->s); |
621 | 616k | if (atom >= 0) { |
622 | 616k | if (atom == AX_ATOM) { |
623 | 40.8k | if (!ATOMELEM(def, X_ATOM)) |
624 | 3.06k | use |= ATOMMASK(X_ATOM); |
625 | 40.8k | if (!ATOMELEM(def, A_ATOM)) |
626 | 374 | use |= ATOMMASK(A_ATOM); |
627 | 40.8k | } |
628 | 575k | else if (atom < N_ATOMS) { |
629 | 575k | if (!ATOMELEM(def, atom)) |
630 | 23.3k | use |= ATOMMASK(atom); |
631 | 575k | } |
632 | 0 | else |
633 | 0 | abort(); |
634 | 616k | } |
635 | 616k | } |
636 | | |
637 | 682k | b->def = def; |
638 | 682k | b->kill = killed; |
639 | 682k | b->in_use = use; |
640 | 682k | } |
641 | | |
642 | | /* |
643 | | * Assume graph is already leveled. |
644 | | */ |
645 | | static void |
646 | | find_ud(opt_state_t *opt_state, struct block *root) |
647 | 38.7k | { |
648 | 38.7k | int i, maxlevel; |
649 | 38.7k | struct block *p; |
650 | | |
651 | | /* |
652 | | * root->level is the highest level no found; |
653 | | * count down from there. |
654 | | */ |
655 | 38.7k | maxlevel = root->level; |
656 | 520k | for (i = maxlevel; i >= 0; --i) |
657 | 1.16M | for (p = opt_state->levels[i]; p; p = p->link) { |
658 | 682k | compute_local_ud(p); |
659 | 682k | p->out_use = 0; |
660 | 682k | } |
661 | | |
662 | 481k | for (i = 1; i <= maxlevel; ++i) { |
663 | 1.05M | for (p = opt_state->levels[i]; p; p = p->link) { |
664 | 616k | p->out_use |= JT(p)->in_use | JF(p)->in_use; |
665 | 616k | p->in_use |= p->out_use &~ p->kill; |
666 | 616k | } |
667 | 443k | } |
668 | 38.7k | } |
669 | | static void |
670 | | init_val(opt_state_t *opt_state) |
671 | 38.7k | { |
672 | 38.7k | opt_state->curval = 0; |
673 | 38.7k | opt_state->next_vnode = opt_state->vnode_base; |
674 | 38.7k | memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap)); |
675 | 38.7k | memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl); |
676 | 38.7k | } |
677 | | |
678 | | /* |
679 | | * Because we really don't have an IR, this stuff is a little messy. |
680 | | * |
681 | | * This routine looks in the table of existing value number for a value |
682 | | * with generated from an operation with the specified opcode and |
683 | | * the specified values. If it finds it, it returns its value number, |
684 | | * otherwise it makes a new entry in the table and returns the |
685 | | * value number of that entry. |
686 | | */ |
687 | | static bpf_u_int32 |
688 | | F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1) |
689 | 2.40M | { |
690 | 2.40M | u_int hash; |
691 | 2.40M | bpf_u_int32 val; |
692 | 2.40M | struct valnode *p; |
693 | | |
694 | 2.40M | hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8); |
695 | 2.40M | hash %= MODULUS; |
696 | | |
697 | 2.69M | for (p = opt_state->hashtbl[hash]; p; p = p->next) |
698 | 1.75M | if (p->code == code && p->v0 == v0 && p->v1 == v1) |
699 | 1.46M | return p->val; |
700 | | |
701 | | /* |
702 | | * Not found. Allocate a new value, and assign it a new |
703 | | * value number. |
704 | | * |
705 | | * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we |
706 | | * increment it before using it as the new value number, which |
707 | | * means we never assign VAL_UNKNOWN. |
708 | | * |
709 | | * XXX - unless we overflow, but we probably won't have 2^32-1 |
710 | | * values; we treat 32 bits as effectively infinite. |
711 | | */ |
712 | 941k | val = ++opt_state->curval; |
713 | 941k | if (BPF_MODE(code) == BPF_IMM && |
714 | 941k | (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) { |
715 | 298k | opt_state->vmap[val].const_val = v0; |
716 | 298k | opt_state->vmap[val].is_const = 1; |
717 | 298k | } |
718 | 941k | p = opt_state->next_vnode++; |
719 | 941k | p->val = val; |
720 | 941k | p->code = code; |
721 | 941k | p->v0 = v0; |
722 | 941k | p->v1 = v1; |
723 | 941k | p->next = opt_state->hashtbl[hash]; |
724 | 941k | opt_state->hashtbl[hash] = p; |
725 | | |
726 | 941k | return val; |
727 | 2.40M | } |
728 | | |
729 | | static inline void |
730 | | vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter) |
731 | 1.57M | { |
732 | 1.57M | if (alter && newval != VAL_UNKNOWN && *valp == newval) |
733 | 61.1k | s->code = NOP; |
734 | 1.51M | else |
735 | 1.51M | *valp = newval; |
736 | 1.57M | } |
737 | | |
738 | | /* |
739 | | * Do constant-folding on binary operators. |
740 | | * (Unary operators are handled elsewhere.) |
741 | | */ |
742 | | static void |
743 | | fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1) |
744 | 10.0k | { |
745 | 10.0k | bpf_u_int32 a, b; |
746 | | |
747 | 10.0k | a = opt_state->vmap[v0].const_val; |
748 | 10.0k | b = opt_state->vmap[v1].const_val; |
749 | | |
750 | 10.0k | switch (BPF_OP(s->code)) { |
751 | 2.55k | case BPF_ADD: |
752 | 2.55k | a += b; |
753 | 2.55k | break; |
754 | | |
755 | 978 | case BPF_SUB: |
756 | 978 | a -= b; |
757 | 978 | break; |
758 | | |
759 | 2.71k | case BPF_MUL: |
760 | 2.71k | a *= b; |
761 | 2.71k | break; |
762 | | |
763 | 942 | case BPF_DIV: |
764 | 942 | if (b == 0) |
765 | 3 | opt_error(opt_state, "division by zero"); |
766 | 939 | a /= b; |
767 | 939 | break; |
768 | | |
769 | 558 | case BPF_MOD: |
770 | 558 | if (b == 0) |
771 | 35 | opt_error(opt_state, "modulus by zero"); |
772 | 523 | a %= b; |
773 | 523 | break; |
774 | | |
775 | 999 | case BPF_AND: |
776 | 999 | a &= b; |
777 | 999 | break; |
778 | | |
779 | 441 | case BPF_OR: |
780 | 441 | a |= b; |
781 | 441 | break; |
782 | | |
783 | 266 | case BPF_XOR: |
784 | 266 | a ^= b; |
785 | 266 | break; |
786 | | |
787 | 379 | case BPF_LSH: |
788 | | /* |
789 | | * A left shift of more than the width of the type |
790 | | * is undefined in C; we'll just treat it as shifting |
791 | | * all the bits out. |
792 | | * |
793 | | * XXX - the BPF interpreter doesn't check for this, |
794 | | * so its behavior is dependent on the behavior of |
795 | | * the processor on which it's running. There are |
796 | | * processors on which it shifts all the bits out |
797 | | * and processors on which it does no shift. |
798 | | */ |
799 | 379 | if (b < 32) |
800 | 299 | a <<= b; |
801 | 80 | else |
802 | 80 | a = 0; |
803 | 379 | break; |
804 | | |
805 | 200 | case BPF_RSH: |
806 | | /* |
807 | | * A right shift of more than the width of the type |
808 | | * is undefined in C; we'll just treat it as shifting |
809 | | * all the bits out. |
810 | | * |
811 | | * XXX - the BPF interpreter doesn't check for this, |
812 | | * so its behavior is dependent on the behavior of |
813 | | * the processor on which it's running. There are |
814 | | * processors on which it shifts all the bits out |
815 | | * and processors on which it does no shift. |
816 | | */ |
817 | 200 | if (b < 32) |
818 | 124 | a >>= b; |
819 | 76 | else |
820 | 76 | a = 0; |
821 | 200 | break; |
822 | | |
823 | 0 | default: |
824 | 0 | abort(); |
825 | 10.0k | } |
826 | 9.99k | s->k = a; |
827 | 9.99k | s->code = BPF_LD|BPF_IMM; |
828 | 9.99k | opt_state->done = 0; |
829 | | /* |
830 | | * XXX - optimizer loop detection. |
831 | | */ |
832 | 9.99k | opt_state->non_branch_movement_performed = 1; |
833 | 9.99k | } |
834 | | |
835 | | static inline struct slist * |
836 | | this_op(struct slist *s) |
837 | 4.39M | { |
838 | 7.13M | while (s != 0 && s->s.code == NOP) |
839 | 2.74M | s = s->next; |
840 | 4.39M | return s; |
841 | 4.39M | } |
842 | | |
843 | | static void |
844 | | opt_not(struct block *b) |
845 | 893 | { |
846 | 893 | struct block *tmp = JT(b); |
847 | | |
848 | 893 | JT(b) = JF(b); |
849 | 893 | JF(b) = tmp; |
850 | 893 | } |
851 | | |
852 | | static void |
853 | | opt_peep(opt_state_t *opt_state, struct block *b) |
854 | 646k | { |
855 | 646k | struct slist *s; |
856 | 646k | struct slist *next, *last; |
857 | 646k | bpf_u_int32 val; |
858 | | |
859 | 646k | s = b->stmts; |
860 | 646k | if (s == 0) |
861 | 38.1k | return; |
862 | | |
863 | 608k | last = s; |
864 | 2.20M | for (/*empty*/; /*empty*/; s = next) { |
865 | | /* |
866 | | * Skip over nops. |
867 | | */ |
868 | 2.20M | s = this_op(s); |
869 | 2.20M | if (s == 0) |
870 | 30.0k | break; /* nothing left in the block */ |
871 | | |
872 | | /* |
873 | | * Find the next real instruction after that one |
874 | | * (skipping nops). |
875 | | */ |
876 | 2.17M | next = this_op(s->next); |
877 | 2.17M | if (next == 0) |
878 | 577k | break; /* no next instruction */ |
879 | 1.59M | last = next; |
880 | | |
881 | | /* |
882 | | * st M[k] --> st M[k] |
883 | | * ldx M[k] tax |
884 | | */ |
885 | 1.59M | if (s->s.code == BPF_ST && |
886 | 1.59M | next->s.code == (BPF_LDX|BPF_MEM) && |
887 | 1.59M | s->s.k == next->s.k) { |
888 | 22.4k | opt_state->done = 0; |
889 | 22.4k | next->s.code = BPF_MISC|BPF_TAX; |
890 | | /* |
891 | | * XXX - optimizer loop detection. |
892 | | */ |
893 | 22.4k | opt_state->non_branch_movement_performed = 1; |
894 | 22.4k | } |
895 | | /* |
896 | | * ld #k --> ldx #k |
897 | | * tax txa |
898 | | */ |
899 | 1.59M | if (s->s.code == (BPF_LD|BPF_IMM) && |
900 | 1.59M | next->s.code == (BPF_MISC|BPF_TAX)) { |
901 | 15.0k | s->s.code = BPF_LDX|BPF_IMM; |
902 | 15.0k | next->s.code = BPF_MISC|BPF_TXA; |
903 | 15.0k | opt_state->done = 0; |
904 | | /* |
905 | | * XXX - optimizer loop detection. |
906 | | */ |
907 | 15.0k | opt_state->non_branch_movement_performed = 1; |
908 | 15.0k | } |
909 | | /* |
910 | | * This is an ugly special case, but it happens |
911 | | * when you say tcp[k] or udp[k] where k is a constant. |
912 | | */ |
913 | 1.59M | if (s->s.code == (BPF_LD|BPF_IMM)) { |
914 | 138k | struct slist *add, *tax, *ild; |
915 | | |
916 | | /* |
917 | | * Check that X isn't used on exit from this |
918 | | * block (which the optimizer might cause). |
919 | | * We know the code generator won't generate |
920 | | * any local dependencies. |
921 | | */ |
922 | 138k | if (ATOMELEM(b->out_use, X_ATOM)) |
923 | 396 | continue; |
924 | | |
925 | | /* |
926 | | * Check that the instruction following the ldi |
927 | | * is an addx, or it's an ldxms with an addx |
928 | | * following it (with 0 or more nops between the |
929 | | * ldxms and addx). |
930 | | */ |
931 | 137k | if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B)) |
932 | 137k | add = next; |
933 | 455 | else |
934 | 455 | add = this_op(next->next); |
935 | 137k | if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X)) |
936 | 129k | continue; |
937 | | |
938 | | /* |
939 | | * Check that a tax follows that (with 0 or more |
940 | | * nops between them). |
941 | | */ |
942 | 8.69k | tax = this_op(add->next); |
943 | 8.69k | if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX)) |
944 | 2.03k | continue; |
945 | | |
946 | | /* |
947 | | * Check that an ild follows that (with 0 or more |
948 | | * nops between them). |
949 | | */ |
950 | 6.65k | ild = this_op(tax->next); |
951 | 6.65k | if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD || |
952 | 6.65k | BPF_MODE(ild->s.code) != BPF_IND) |
953 | 6.21k | continue; |
954 | | /* |
955 | | * We want to turn this sequence: |
956 | | * |
957 | | * (004) ldi #0x2 {s} |
958 | | * (005) ldxms [14] {next} -- optional |
959 | | * (006) addx {add} |
960 | | * (007) tax {tax} |
961 | | * (008) ild [x+0] {ild} |
962 | | * |
963 | | * into this sequence: |
964 | | * |
965 | | * (004) nop |
966 | | * (005) ldxms [14] |
967 | | * (006) nop |
968 | | * (007) nop |
969 | | * (008) ild [x+2] |
970 | | * |
971 | | * XXX We need to check that X is not |
972 | | * subsequently used, because we want to change |
973 | | * what'll be in it after this sequence. |
974 | | * |
975 | | * We know we can eliminate the accumulator |
976 | | * modifications earlier in the sequence since |
977 | | * it is defined by the last stmt of this sequence |
978 | | * (i.e., the last statement of the sequence loads |
979 | | * a value into the accumulator, so we can eliminate |
980 | | * earlier operations on the accumulator). |
981 | | */ |
982 | 439 | ild->s.k += s->s.k; |
983 | 439 | s->s.code = NOP; |
984 | 439 | add->s.code = NOP; |
985 | 439 | tax->s.code = NOP; |
986 | 439 | opt_state->done = 0; |
987 | | /* |
988 | | * XXX - optimizer loop detection. |
989 | | */ |
990 | 439 | opt_state->non_branch_movement_performed = 1; |
991 | 439 | } |
992 | 1.59M | } |
993 | | /* |
994 | | * If the comparison at the end of a block is an equality |
995 | | * comparison against a constant, and nobody uses the value |
996 | | * we leave in the A register at the end of a block, and |
997 | | * the operation preceding the comparison is an arithmetic |
998 | | * operation, we can sometime optimize it away. |
999 | | */ |
1000 | 608k | if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) && |
1001 | 608k | !ATOMELEM(b->out_use, A_ATOM)) { |
1002 | | /* |
1003 | | * We can optimize away certain subtractions of the |
1004 | | * X register. |
1005 | | */ |
1006 | 507k | if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) { |
1007 | 2.13k | val = b->val[X_ATOM]; |
1008 | 2.13k | if (opt_state->vmap[val].is_const) { |
1009 | | /* |
1010 | | * If we have a subtract to do a comparison, |
1011 | | * and the X register is a known constant, |
1012 | | * we can merge this value into the |
1013 | | * comparison: |
1014 | | * |
1015 | | * sub x -> nop |
1016 | | * jeq #y jeq #(x+y) |
1017 | | */ |
1018 | 634 | b->s.k += opt_state->vmap[val].const_val; |
1019 | 634 | last->s.code = NOP; |
1020 | 634 | opt_state->done = 0; |
1021 | | /* |
1022 | | * XXX - optimizer loop detection. |
1023 | | */ |
1024 | 634 | opt_state->non_branch_movement_performed = 1; |
1025 | 1.50k | } else if (b->s.k == 0) { |
1026 | | /* |
1027 | | * If the X register isn't a constant, |
1028 | | * and the comparison in the test is |
1029 | | * against 0, we can compare with the |
1030 | | * X register, instead: |
1031 | | * |
1032 | | * sub x -> nop |
1033 | | * jeq #0 jeq x |
1034 | | */ |
1035 | 1.23k | last->s.code = NOP; |
1036 | 1.23k | b->s.code = BPF_JMP|BPF_JEQ|BPF_X; |
1037 | 1.23k | opt_state->done = 0; |
1038 | | /* |
1039 | | * XXX - optimizer loop detection. |
1040 | | */ |
1041 | 1.23k | opt_state->non_branch_movement_performed = 1; |
1042 | 1.23k | } |
1043 | 2.13k | } |
1044 | | /* |
1045 | | * Likewise, a constant subtract can be simplified: |
1046 | | * |
1047 | | * sub #x -> nop |
1048 | | * jeq #y -> jeq #(x+y) |
1049 | | */ |
1050 | 505k | else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) { |
1051 | 100 | last->s.code = NOP; |
1052 | 100 | b->s.k += last->s.k; |
1053 | 100 | opt_state->done = 0; |
1054 | | /* |
1055 | | * XXX - optimizer loop detection. |
1056 | | */ |
1057 | 100 | opt_state->non_branch_movement_performed = 1; |
1058 | 100 | } |
1059 | | /* |
1060 | | * And, similarly, a constant AND can be simplified |
1061 | | * if we're testing against 0, i.e.: |
1062 | | * |
1063 | | * and #k nop |
1064 | | * jeq #0 -> jset #k |
1065 | | */ |
1066 | 505k | else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) && |
1067 | 505k | b->s.k == 0) { |
1068 | 893 | b->s.k = last->s.k; |
1069 | 893 | b->s.code = BPF_JMP|BPF_K|BPF_JSET; |
1070 | 893 | last->s.code = NOP; |
1071 | 893 | opt_state->done = 0; |
1072 | 893 | opt_not(b); |
1073 | | /* |
1074 | | * XXX - optimizer loop detection. |
1075 | | */ |
1076 | 893 | opt_state->non_branch_movement_performed = 1; |
1077 | 893 | } |
1078 | 507k | } |
1079 | | /* |
1080 | | * jset #0 -> never |
1081 | | * jset #ffffffff -> always |
1082 | | */ |
1083 | 608k | if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) { |
1084 | 27.1k | if (b->s.k == 0) |
1085 | 284 | JT(b) = JF(b); |
1086 | 27.1k | if (b->s.k == 0xffffffffU) |
1087 | 475 | JF(b) = JT(b); |
1088 | 27.1k | } |
1089 | | /* |
1090 | | * If we're comparing against the index register, and the index |
1091 | | * register is a known constant, we can just compare against that |
1092 | | * constant. |
1093 | | */ |
1094 | 608k | val = b->val[X_ATOM]; |
1095 | 608k | if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) { |
1096 | 2.47k | bpf_u_int32 v = opt_state->vmap[val].const_val; |
1097 | 2.47k | b->s.code &= ~BPF_X; |
1098 | 2.47k | b->s.k = v; |
1099 | 2.47k | } |
1100 | | /* |
1101 | | * If the accumulator is a known constant, we can compute the |
1102 | | * comparison result. |
1103 | | */ |
1104 | 608k | val = b->val[A_ATOM]; |
1105 | 608k | if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) { |
1106 | 28.9k | bpf_u_int32 v = opt_state->vmap[val].const_val; |
1107 | 28.9k | switch (BPF_OP(b->s.code)) { |
1108 | | |
1109 | 22.3k | case BPF_JEQ: |
1110 | 22.3k | v = v == b->s.k; |
1111 | 22.3k | break; |
1112 | | |
1113 | 2.52k | case BPF_JGT: |
1114 | 2.52k | v = v > b->s.k; |
1115 | 2.52k | break; |
1116 | | |
1117 | 3.80k | case BPF_JGE: |
1118 | 3.80k | v = v >= b->s.k; |
1119 | 3.80k | break; |
1120 | | |
1121 | 313 | case BPF_JSET: |
1122 | 313 | v &= b->s.k; |
1123 | 313 | break; |
1124 | | |
1125 | 0 | default: |
1126 | 0 | abort(); |
1127 | 28.9k | } |
1128 | 28.9k | if (JF(b) != JT(b)) { |
1129 | 9.24k | opt_state->done = 0; |
1130 | | /* |
1131 | | * XXX - optimizer loop detection. |
1132 | | */ |
1133 | 9.24k | opt_state->non_branch_movement_performed = 1; |
1134 | 9.24k | } |
1135 | 28.9k | if (v) |
1136 | 12.3k | JF(b) = JT(b); |
1137 | 16.5k | else |
1138 | 16.5k | JT(b) = JF(b); |
1139 | 28.9k | } |
1140 | 608k | } |
1141 | | |
1142 | | /* |
1143 | | * Compute the symbolic value of expression of 's', and update |
1144 | | * anything it defines in the value table 'val'. If 'alter' is true, |
1145 | | * do various optimizations. This code would be cleaner if symbolic |
1146 | | * evaluation and code transformations weren't folded together. |
1147 | | */ |
1148 | | static void |
1149 | | opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter) |
1150 | 4.90M | { |
1151 | 4.90M | int op; |
1152 | 4.90M | bpf_u_int32 v; |
1153 | | |
1154 | 4.90M | switch (s->code) { |
1155 | | |
1156 | 157k | case BPF_LD|BPF_ABS|BPF_W: |
1157 | 250k | case BPF_LD|BPF_ABS|BPF_H: |
1158 | 382k | case BPF_LD|BPF_ABS|BPF_B: |
1159 | 382k | v = F(opt_state, s->code, s->k, 0L); |
1160 | 382k | vstore(s, &val[A_ATOM], v, alter); |
1161 | 382k | break; |
1162 | | |
1163 | 31.5k | case BPF_LD|BPF_IND|BPF_W: |
1164 | 100k | case BPF_LD|BPF_IND|BPF_H: |
1165 | 174k | case BPF_LD|BPF_IND|BPF_B: |
1166 | 174k | v = val[X_ATOM]; |
1167 | 174k | if (alter && opt_state->vmap[v].is_const) { |
1168 | 3.97k | s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code); |
1169 | 3.97k | s->k += opt_state->vmap[v].const_val; |
1170 | 3.97k | v = F(opt_state, s->code, s->k, 0L); |
1171 | 3.97k | opt_state->done = 0; |
1172 | | /* |
1173 | | * XXX - optimizer loop detection. |
1174 | | */ |
1175 | 3.97k | opt_state->non_branch_movement_performed = 1; |
1176 | 3.97k | } |
1177 | 170k | else |
1178 | 170k | v = F(opt_state, s->code, s->k, v); |
1179 | 174k | vstore(s, &val[A_ATOM], v, alter); |
1180 | 174k | break; |
1181 | | |
1182 | 30.9k | case BPF_LD|BPF_LEN: |
1183 | 30.9k | v = F(opt_state, s->code, 0L, 0L); |
1184 | 30.9k | vstore(s, &val[A_ATOM], v, alter); |
1185 | 30.9k | break; |
1186 | | |
1187 | 159k | case BPF_LD|BPF_IMM: |
1188 | 159k | v = K(s->k); |
1189 | 159k | vstore(s, &val[A_ATOM], v, alter); |
1190 | 159k | break; |
1191 | | |
1192 | 47.0k | case BPF_LDX|BPF_IMM: |
1193 | 47.0k | v = K(s->k); |
1194 | 47.0k | vstore(s, &val[X_ATOM], v, alter); |
1195 | 47.0k | break; |
1196 | | |
1197 | 29.2k | case BPF_LDX|BPF_MSH|BPF_B: |
1198 | 29.2k | v = F(opt_state, s->code, s->k, 0L); |
1199 | 29.2k | vstore(s, &val[X_ATOM], v, alter); |
1200 | 29.2k | break; |
1201 | | |
1202 | 313k | case BPF_ALU|BPF_NEG: |
1203 | 313k | if (alter && opt_state->vmap[val[A_ATOM]].is_const) { |
1204 | 6.69k | s->code = BPF_LD|BPF_IMM; |
1205 | | /* |
1206 | | * Do this negation as unsigned arithmetic; that's |
1207 | | * what modern BPF engines do, and it guarantees |
1208 | | * that all possible values can be negated. (Yeah, |
1209 | | * negating 0x80000000, the minimum signed 32-bit |
1210 | | * two's-complement value, results in 0x80000000, |
1211 | | * so it's still negative, but we *should* be doing |
1212 | | * all unsigned arithmetic here, to match what |
1213 | | * modern BPF engines do.) |
1214 | | * |
1215 | | * Express it as 0U - (unsigned value) so that we |
1216 | | * don't get compiler warnings about negating an |
1217 | | * unsigned value and don't get UBSan warnings |
1218 | | * about the result of negating 0x80000000 being |
1219 | | * undefined. |
1220 | | */ |
1221 | 6.69k | s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val; |
1222 | 6.69k | val[A_ATOM] = K(s->k); |
1223 | 6.69k | } |
1224 | 306k | else |
1225 | 306k | val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L); |
1226 | 313k | break; |
1227 | | |
1228 | 26.9k | case BPF_ALU|BPF_ADD|BPF_K: |
1229 | 30.4k | case BPF_ALU|BPF_SUB|BPF_K: |
1230 | 39.3k | case BPF_ALU|BPF_MUL|BPF_K: |
1231 | 44.1k | case BPF_ALU|BPF_DIV|BPF_K: |
1232 | 45.1k | case BPF_ALU|BPF_MOD|BPF_K: |
1233 | 206k | case BPF_ALU|BPF_AND|BPF_K: |
1234 | 207k | case BPF_ALU|BPF_OR|BPF_K: |
1235 | 208k | case BPF_ALU|BPF_XOR|BPF_K: |
1236 | 235k | case BPF_ALU|BPF_LSH|BPF_K: |
1237 | 236k | case BPF_ALU|BPF_RSH|BPF_K: |
1238 | 236k | op = BPF_OP(s->code); |
1239 | 236k | if (alter) { |
1240 | 95.7k | if (s->k == 0) { |
1241 | | /* |
1242 | | * Optimize operations where the constant |
1243 | | * is zero. |
1244 | | * |
1245 | | * Don't optimize away "sub #0" |
1246 | | * as it may be needed later to |
1247 | | * fixup the generated math code. |
1248 | | * |
1249 | | * Fail if we're dividing by zero or taking |
1250 | | * a modulus by zero. |
1251 | | */ |
1252 | 3.51k | if (op == BPF_ADD || |
1253 | 3.51k | op == BPF_LSH || op == BPF_RSH || |
1254 | 3.51k | op == BPF_OR || op == BPF_XOR) { |
1255 | 911 | s->code = NOP; |
1256 | 911 | break; |
1257 | 911 | } |
1258 | 2.60k | if (op == BPF_MUL || op == BPF_AND) { |
1259 | 891 | s->code = BPF_LD|BPF_IMM; |
1260 | 891 | val[A_ATOM] = K(s->k); |
1261 | 891 | break; |
1262 | 891 | } |
1263 | 1.70k | if (op == BPF_DIV) |
1264 | 2 | opt_error(opt_state, |
1265 | 2 | "division by zero"); |
1266 | 1.70k | if (op == BPF_MOD) |
1267 | 13 | opt_error(opt_state, |
1268 | 13 | "modulus by zero"); |
1269 | 1.70k | } |
1270 | 93.9k | if (opt_state->vmap[val[A_ATOM]].is_const) { |
1271 | 1.74k | fold_op(opt_state, s, val[A_ATOM], K(s->k)); |
1272 | 1.74k | val[A_ATOM] = K(s->k); |
1273 | 1.74k | break; |
1274 | 1.74k | } |
1275 | 93.9k | } |
1276 | 232k | val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k)); |
1277 | 232k | break; |
1278 | | |
1279 | 52.7k | case BPF_ALU|BPF_ADD|BPF_X: |
1280 | 64.0k | case BPF_ALU|BPF_SUB|BPF_X: |
1281 | 87.5k | case BPF_ALU|BPF_MUL|BPF_X: |
1282 | 97.6k | case BPF_ALU|BPF_DIV|BPF_X: |
1283 | 106k | case BPF_ALU|BPF_MOD|BPF_X: |
1284 | 127k | case BPF_ALU|BPF_AND|BPF_X: |
1285 | 135k | case BPF_ALU|BPF_OR|BPF_X: |
1286 | 141k | case BPF_ALU|BPF_XOR|BPF_X: |
1287 | 145k | case BPF_ALU|BPF_LSH|BPF_X: |
1288 | 147k | case BPF_ALU|BPF_RSH|BPF_X: |
1289 | 147k | op = BPF_OP(s->code); |
1290 | 147k | if (alter && opt_state->vmap[val[X_ATOM]].is_const) { |
1291 | 15.0k | if (opt_state->vmap[val[A_ATOM]].is_const) { |
1292 | 8.29k | fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]); |
1293 | 8.29k | val[A_ATOM] = K(s->k); |
1294 | 8.29k | } |
1295 | 6.80k | else { |
1296 | 6.80k | s->code = BPF_ALU|BPF_K|op; |
1297 | 6.80k | s->k = opt_state->vmap[val[X_ATOM]].const_val; |
1298 | 6.80k | if ((op == BPF_LSH || op == BPF_RSH) && |
1299 | 6.80k | s->k > 31) |
1300 | 7 | opt_error(opt_state, |
1301 | 7 | "shift by more than 31 bits"); |
1302 | 6.79k | opt_state->done = 0; |
1303 | 6.79k | val[A_ATOM] = |
1304 | 6.79k | F(opt_state, s->code, val[A_ATOM], K(s->k)); |
1305 | | /* |
1306 | | * XXX - optimizer loop detection. |
1307 | | */ |
1308 | 6.79k | opt_state->non_branch_movement_performed = 1; |
1309 | 6.79k | } |
1310 | 15.0k | break; |
1311 | 15.0k | } |
1312 | | /* |
1313 | | * Check if we're doing something to an accumulator |
1314 | | * that is 0, and simplify. This may not seem like |
1315 | | * much of a simplification but it could open up further |
1316 | | * optimizations. |
1317 | | * XXX We could also check for mul by 1, etc. |
1318 | | */ |
1319 | 132k | if (alter && opt_state->vmap[val[A_ATOM]].is_const |
1320 | 132k | && opt_state->vmap[val[A_ATOM]].const_val == 0) { |
1321 | 1.94k | if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) { |
1322 | 443 | s->code = BPF_MISC|BPF_TXA; |
1323 | 443 | vstore(s, &val[A_ATOM], val[X_ATOM], alter); |
1324 | 443 | break; |
1325 | 443 | } |
1326 | 1.50k | else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD || |
1327 | 1.50k | op == BPF_AND || op == BPF_LSH || op == BPF_RSH) { |
1328 | 664 | s->code = BPF_LD|BPF_IMM; |
1329 | 664 | s->k = 0; |
1330 | 664 | vstore(s, &val[A_ATOM], K(s->k), alter); |
1331 | 664 | break; |
1332 | 664 | } |
1333 | 841 | else if (op == BPF_NEG) { |
1334 | 0 | s->code = NOP; |
1335 | 0 | break; |
1336 | 0 | } |
1337 | 1.94k | } |
1338 | 131k | val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]); |
1339 | 131k | break; |
1340 | | |
1341 | 8.35k | case BPF_MISC|BPF_TXA: |
1342 | 8.35k | vstore(s, &val[A_ATOM], val[X_ATOM], alter); |
1343 | 8.35k | break; |
1344 | | |
1345 | 211k | case BPF_LD|BPF_MEM: |
1346 | 211k | v = val[s->k]; |
1347 | 211k | if (alter && opt_state->vmap[v].is_const) { |
1348 | 21.1k | s->code = BPF_LD|BPF_IMM; |
1349 | 21.1k | s->k = opt_state->vmap[v].const_val; |
1350 | 21.1k | opt_state->done = 0; |
1351 | | /* |
1352 | | * XXX - optimizer loop detection. |
1353 | | */ |
1354 | 21.1k | opt_state->non_branch_movement_performed = 1; |
1355 | 21.1k | } |
1356 | 211k | vstore(s, &val[A_ATOM], v, alter); |
1357 | 211k | break; |
1358 | | |
1359 | 123k | case BPF_MISC|BPF_TAX: |
1360 | 123k | vstore(s, &val[X_ATOM], val[A_ATOM], alter); |
1361 | 123k | break; |
1362 | | |
1363 | 130k | case BPF_LDX|BPF_MEM: |
1364 | 130k | v = val[s->k]; |
1365 | 130k | if (alter && opt_state->vmap[v].is_const) { |
1366 | 3.81k | s->code = BPF_LDX|BPF_IMM; |
1367 | 3.81k | s->k = opt_state->vmap[v].const_val; |
1368 | 3.81k | opt_state->done = 0; |
1369 | | /* |
1370 | | * XXX - optimizer loop detection. |
1371 | | */ |
1372 | 3.81k | opt_state->non_branch_movement_performed = 1; |
1373 | 3.81k | } |
1374 | 130k | vstore(s, &val[X_ATOM], v, alter); |
1375 | 130k | break; |
1376 | | |
1377 | 242k | case BPF_ST: |
1378 | 242k | vstore(s, &val[s->k], val[A_ATOM], alter); |
1379 | 242k | break; |
1380 | | |
1381 | 4.15k | case BPF_STX: |
1382 | 4.15k | vstore(s, &val[s->k], val[X_ATOM], alter); |
1383 | 4.15k | break; |
1384 | 4.90M | } |
1385 | 4.90M | } |
1386 | | |
1387 | | static void |
1388 | | deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[]) |
1389 | 5.53M | { |
1390 | 5.53M | register int atom; |
1391 | | |
1392 | 5.53M | atom = atomuse(s); |
1393 | 5.53M | if (atom >= 0) { |
1394 | 2.12M | if (atom == AX_ATOM) { |
1395 | 168k | last[X_ATOM] = 0; |
1396 | 168k | last[A_ATOM] = 0; |
1397 | 168k | } |
1398 | 1.95M | else |
1399 | 1.95M | last[atom] = 0; |
1400 | 2.12M | } |
1401 | 5.53M | atom = atomdef(s); |
1402 | 5.53M | if (atom >= 0) { |
1403 | 2.17M | if (last[atom]) { |
1404 | 97.3k | opt_state->done = 0; |
1405 | 97.3k | last[atom]->code = NOP; |
1406 | | /* |
1407 | | * XXX - optimizer loop detection. |
1408 | | */ |
1409 | 97.3k | opt_state->non_branch_movement_performed = 1; |
1410 | 97.3k | } |
1411 | 2.17M | last[atom] = s; |
1412 | 2.17M | } |
1413 | 5.53M | } |
1414 | | |
1415 | | static void |
1416 | | opt_deadstores(opt_state_t *opt_state, register struct block *b) |
1417 | 646k | { |
1418 | 646k | register struct slist *s; |
1419 | 646k | register int atom; |
1420 | 646k | struct stmt *last[N_ATOMS]; |
1421 | | |
1422 | 646k | memset((char *)last, 0, sizeof last); |
1423 | | |
1424 | 5.53M | for (s = b->stmts; s != 0; s = s->next) |
1425 | 4.89M | deadstmt(opt_state, &s->s, last); |
1426 | 646k | deadstmt(opt_state, &b->s, last); |
1427 | | |
1428 | 12.2M | for (atom = 0; atom < N_ATOMS; ++atom) |
1429 | 11.6M | if (last[atom] && !ATOMELEM(b->out_use, atom)) { |
1430 | 29.2k | last[atom]->code = NOP; |
1431 | | /* |
1432 | | * The store was removed as it's dead, |
1433 | | * so the value stored into now has |
1434 | | * an unknown value. |
1435 | | */ |
1436 | 29.2k | vstore(0, &b->val[atom], VAL_UNKNOWN, 0); |
1437 | 29.2k | opt_state->done = 0; |
1438 | | /* |
1439 | | * XXX - optimizer loop detection. |
1440 | | */ |
1441 | 29.2k | opt_state->non_branch_movement_performed = 1; |
1442 | 29.2k | } |
1443 | 646k | } |
1444 | | |
1445 | | static void |
1446 | | opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts) |
1447 | 682k | { |
1448 | 682k | struct slist *s; |
1449 | 682k | struct edge *p; |
1450 | 682k | int i; |
1451 | 682k | bpf_u_int32 aval, xval; |
1452 | | |
1453 | | #if 0 |
1454 | | for (s = b->stmts; s && s->next; s = s->next) |
1455 | | if (BPF_CLASS(s->s.code) == BPF_JMP) { |
1456 | | do_stmts = 0; |
1457 | | break; |
1458 | | } |
1459 | | #endif |
1460 | | |
1461 | | /* |
1462 | | * Initialize the atom values. |
1463 | | */ |
1464 | 682k | p = b->in_edges; |
1465 | 682k | if (p == 0) { |
1466 | | /* |
1467 | | * We have no predecessors, so everything is undefined |
1468 | | * upon entry to this block. |
1469 | | */ |
1470 | 38.7k | memset((char *)b->val, 0, sizeof(b->val)); |
1471 | 643k | } else { |
1472 | | /* |
1473 | | * Inherit values from our predecessors. |
1474 | | * |
1475 | | * First, get the values from the predecessor along the |
1476 | | * first edge leading to this node. |
1477 | | */ |
1478 | 643k | memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val)); |
1479 | | /* |
1480 | | * Now look at all the other nodes leading to this node. |
1481 | | * If, for the predecessor along that edge, a register |
1482 | | * has a different value from the one we have (i.e., |
1483 | | * control paths are merging, and the merging paths |
1484 | | * assign different values to that register), give the |
1485 | | * register the undefined value of 0. |
1486 | | */ |
1487 | 1.23M | while ((p = p->next) != NULL) { |
1488 | 11.1M | for (i = 0; i < N_ATOMS; ++i) |
1489 | 10.6M | if (b->val[i] != p->pred->val[i]) |
1490 | 680k | b->val[i] = 0; |
1491 | 588k | } |
1492 | 643k | } |
1493 | 682k | aval = b->val[A_ATOM]; |
1494 | 682k | xval = b->val[X_ATOM]; |
1495 | 5.58M | for (s = b->stmts; s; s = s->next) |
1496 | 4.90M | opt_stmt(opt_state, &s->s, b->val, do_stmts); |
1497 | | |
1498 | | /* |
1499 | | * This is a special case: if we don't use anything from this |
1500 | | * block, and we load the accumulator or index register with a |
1501 | | * value that is already there, or if this block is a return, |
1502 | | * eliminate all the statements. |
1503 | | * |
1504 | | * XXX - what if it does a store? Presumably that falls under |
1505 | | * the heading of "if we don't use anything from this block", |
1506 | | * i.e., if we use any memory location set to a different |
1507 | | * value by this block, then we use something from this block. |
1508 | | * |
1509 | | * XXX - why does it matter whether we use anything from this |
1510 | | * block? If the accumulator or index register doesn't change |
1511 | | * its value, isn't that OK even if we use that value? |
1512 | | * |
1513 | | * XXX - if we load the accumulator with a different value, |
1514 | | * and the block ends with a conditional branch, we obviously |
1515 | | * can't eliminate it, as the branch depends on that value. |
1516 | | * For the index register, the conditional branch only depends |
1517 | | * on the index register value if the test is against the index |
1518 | | * register value rather than a constant; if nothing uses the |
1519 | | * value we put into the index register, and we're not testing |
1520 | | * against the index register's value, and there aren't any |
1521 | | * other problems that would keep us from eliminating this |
1522 | | * block, can we eliminate it? |
1523 | | */ |
1524 | 682k | if (do_stmts && |
1525 | 682k | ((b->out_use == 0 && |
1526 | 233k | aval != VAL_UNKNOWN && b->val[A_ATOM] == aval && |
1527 | 233k | xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) || |
1528 | 233k | BPF_CLASS(b->s.code) == BPF_RET)) { |
1529 | 36.0k | if (b->stmts != 0) { |
1530 | 2.90k | b->stmts = 0; |
1531 | 2.90k | opt_state->done = 0; |
1532 | | /* |
1533 | | * XXX - optimizer loop detection. |
1534 | | */ |
1535 | 2.90k | opt_state->non_branch_movement_performed = 1; |
1536 | 2.90k | } |
1537 | 646k | } else { |
1538 | 646k | opt_peep(opt_state, b); |
1539 | 646k | opt_deadstores(opt_state, b); |
1540 | 646k | } |
1541 | | /* |
1542 | | * Set up values for branch optimizer. |
1543 | | */ |
1544 | 682k | if (BPF_SRC(b->s.code) == BPF_K) |
1545 | 642k | b->oval = K(b->s.k); |
1546 | 39.6k | else |
1547 | 39.6k | b->oval = b->val[X_ATOM]; |
1548 | 682k | b->et.code = b->s.code; |
1549 | 682k | b->ef.code = -b->s.code; |
1550 | 682k | } |
1551 | | |
1552 | | /* |
1553 | | * Return true if any register that is used on exit from 'succ', has |
1554 | | * an exit value that is different from the corresponding exit value |
1555 | | * from 'b'. |
1556 | | */ |
1557 | | static int |
1558 | | use_conflict(struct block *b, struct block *succ) |
1559 | 258k | { |
1560 | 258k | int atom; |
1561 | 258k | atomset use = succ->out_use; |
1562 | | |
1563 | 258k | if (use == 0) |
1564 | 233k | return 0; |
1565 | | |
1566 | 372k | for (atom = 0; atom < N_ATOMS; ++atom) |
1567 | 354k | if (ATOMELEM(use, atom)) |
1568 | 36.4k | if (b->val[atom] != succ->val[atom]) |
1569 | 6.15k | return 1; |
1570 | 18.2k | return 0; |
1571 | 24.3k | } |
1572 | | |
1573 | | /* |
1574 | | * Given a block that is the successor of an edge, and an edge that |
1575 | | * dominates that edge, return either a pointer to a child of that |
1576 | | * block (a block to which that block jumps) if that block is a |
1577 | | * candidate to replace the successor of the latter edge or NULL |
1578 | | * if neither of the children of the first block are candidates. |
1579 | | */ |
1580 | | static struct block * |
1581 | | fold_edge(struct block *child, struct edge *ep) |
1582 | 3.00M | { |
1583 | 3.00M | int sense; |
1584 | 3.00M | bpf_u_int32 aval0, aval1, oval0, oval1; |
1585 | 3.00M | int code = ep->code; |
1586 | | |
1587 | 3.00M | if (code < 0) { |
1588 | | /* |
1589 | | * This edge is a "branch if false" edge. |
1590 | | */ |
1591 | 1.89M | code = -code; |
1592 | 1.89M | sense = 0; |
1593 | 1.89M | } else { |
1594 | | /* |
1595 | | * This edge is a "branch if true" edge. |
1596 | | */ |
1597 | 1.11M | sense = 1; |
1598 | 1.11M | } |
1599 | | |
1600 | | /* |
1601 | | * If the opcode for the branch at the end of the block we |
1602 | | * were handed isn't the same as the opcode for the branch |
1603 | | * to which the edge we were handed corresponds, the tests |
1604 | | * for those branches aren't testing the same conditions, |
1605 | | * so the blocks to which the first block branches aren't |
1606 | | * candidates to replace the successor of the edge. |
1607 | | */ |
1608 | 3.00M | if (child->s.code != code) |
1609 | 602k | return 0; |
1610 | | |
1611 | 2.40M | aval0 = child->val[A_ATOM]; |
1612 | 2.40M | oval0 = child->oval; |
1613 | 2.40M | aval1 = ep->pred->val[A_ATOM]; |
1614 | 2.40M | oval1 = ep->pred->oval; |
1615 | | |
1616 | | /* |
1617 | | * If the A register value on exit from the successor block |
1618 | | * isn't the same as the A register value on exit from the |
1619 | | * predecessor of the edge, the blocks to which the first |
1620 | | * block branches aren't candidates to replace the successor |
1621 | | * of the edge. |
1622 | | */ |
1623 | 2.40M | if (aval0 != aval1) |
1624 | 1.70M | return 0; |
1625 | | |
1626 | 700k | if (oval0 == oval1) |
1627 | | /* |
1628 | | * The operands of the branch instructions are |
1629 | | * identical, so the branches are testing the |
1630 | | * same condition, and the result is true if a true |
1631 | | * branch was taken to get here, otherwise false. |
1632 | | */ |
1633 | 139k | return sense ? JT(child) : JF(child); |
1634 | | |
1635 | 561k | if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K)) |
1636 | | /* |
1637 | | * At this point, we only know the comparison if we |
1638 | | * came down the true branch, and it was an equality |
1639 | | * comparison with a constant. |
1640 | | * |
1641 | | * I.e., if we came down the true branch, and the branch |
1642 | | * was an equality comparison with a constant, we know the |
1643 | | * accumulator contains that constant. If we came down |
1644 | | * the false branch, or the comparison wasn't with a |
1645 | | * constant, we don't know what was in the accumulator. |
1646 | | * |
1647 | | * We rely on the fact that distinct constants have distinct |
1648 | | * value numbers. |
1649 | | */ |
1650 | 86.7k | return JF(child); |
1651 | | |
1652 | 474k | return 0; |
1653 | 561k | } |
1654 | | |
1655 | | /* |
1656 | | * If we can make this edge go directly to a child of the edge's current |
1657 | | * successor, do so. |
1658 | | */ |
1659 | | static void |
1660 | | opt_j(opt_state_t *opt_state, struct edge *ep) |
1661 | 831k | { |
1662 | 831k | register u_int i, k; |
1663 | 831k | register struct block *target; |
1664 | | |
1665 | | /* |
1666 | | * Does this edge go to a block where, if the test |
1667 | | * at the end of it succeeds, it goes to a block |
1668 | | * that's a leaf node of the DAG, i.e. a return |
1669 | | * statement? |
1670 | | * If so, there's nothing to optimize. |
1671 | | */ |
1672 | 831k | if (JT(ep->succ) == 0) |
1673 | 167k | return; |
1674 | | |
1675 | | /* |
1676 | | * Does this edge go to a block that goes, in turn, to |
1677 | | * the same block regardless of whether the test at the |
1678 | | * end succeeds or fails? |
1679 | | */ |
1680 | 663k | if (JT(ep->succ) == JF(ep->succ)) { |
1681 | | /* |
1682 | | * Common branch targets can be eliminated, provided |
1683 | | * there is no data dependency. |
1684 | | * |
1685 | | * Check whether any register used on exit from the |
1686 | | * block to which the successor of this edge goes |
1687 | | * has a value at that point that's different from |
1688 | | * the value it has on exit from the predecessor of |
1689 | | * this edge. If not, the predecessor of this edge |
1690 | | * can just go to the block to which the successor |
1691 | | * of this edge goes, bypassing the successor of this |
1692 | | * edge, as the successor of this edge isn't doing |
1693 | | * any calculations whose results are different |
1694 | | * from what the blocks before it did and isn't |
1695 | | * doing any tests the results of which matter. |
1696 | | */ |
1697 | 32.2k | if (!use_conflict(ep->pred, JT(ep->succ))) { |
1698 | | /* |
1699 | | * No, there isn't. |
1700 | | * Make this edge go to the block to |
1701 | | * which the successor of that edge |
1702 | | * goes. |
1703 | | */ |
1704 | 28.9k | opt_state->done = 0; |
1705 | 28.9k | ep->succ = JT(ep->succ); |
1706 | | /* |
1707 | | * XXX - optimizer loop detection. |
1708 | | */ |
1709 | 28.9k | opt_state->non_branch_movement_performed = 1; |
1710 | 28.9k | } |
1711 | 32.2k | } |
1712 | | /* |
1713 | | * For each edge dominator that matches the successor of this |
1714 | | * edge, promote the edge successor to the its grandchild. |
1715 | | * |
1716 | | * XXX We violate the set abstraction here in favor a reasonably |
1717 | | * efficient loop. |
1718 | | */ |
1719 | 846k | top: |
1720 | 14.8M | for (i = 0; i < opt_state->edgewords; ++i) { |
1721 | | /* i'th word in the bitset of dominators */ |
1722 | 14.2M | register bpf_u_int32 x = ep->edom[i]; |
1723 | | |
1724 | 17.0M | while (x != 0) { |
1725 | | /* Find the next dominator in that word and mark it as found */ |
1726 | 3.00M | k = lowest_set_bit(x); |
1727 | 3.00M | x &=~ ((bpf_u_int32)1 << k); |
1728 | 3.00M | k += i * BITS_PER_WORD; |
1729 | | |
1730 | 3.00M | target = fold_edge(ep->succ, opt_state->edges[k]); |
1731 | | /* |
1732 | | * We have a candidate to replace the successor |
1733 | | * of ep. |
1734 | | * |
1735 | | * Check that there is no data dependency between |
1736 | | * nodes that will be violated if we move the edge; |
1737 | | * i.e., if any register used on exit from the |
1738 | | * candidate has a value at that point different |
1739 | | * from the value it has when we exit the |
1740 | | * predecessor of that edge, there's a data |
1741 | | * dependency that will be violated. |
1742 | | */ |
1743 | 3.00M | if (target != 0 && !use_conflict(ep->pred, target)) { |
1744 | | /* |
1745 | | * It's safe to replace the successor of |
1746 | | * ep; do so, and note that we've made |
1747 | | * at least one change. |
1748 | | * |
1749 | | * XXX - this is one of the operations that |
1750 | | * happens when the optimizer gets into |
1751 | | * one of those infinite loops. |
1752 | | */ |
1753 | 223k | opt_state->done = 0; |
1754 | 223k | ep->succ = target; |
1755 | 223k | if (JT(target) != 0) |
1756 | | /* |
1757 | | * Start over unless we hit a leaf. |
1758 | | */ |
1759 | 182k | goto top; |
1760 | 40.4k | return; |
1761 | 223k | } |
1762 | 3.00M | } |
1763 | 14.2M | } |
1764 | 846k | } |
1765 | | |
1766 | | /* |
1767 | | * XXX - is this, and and_pullup(), what's described in section 6.1.2 |
1768 | | * "Predicate Assertion Propagation" in the BPF+ paper? |
1769 | | * |
1770 | | * Note that this looks at block dominators, not edge dominators. |
1771 | | * Don't think so. |
1772 | | * |
1773 | | * "A or B" compiles into |
1774 | | * |
1775 | | * A |
1776 | | * t / \ f |
1777 | | * / B |
1778 | | * / t / \ f |
1779 | | * \ / |
1780 | | * \ / |
1781 | | * X |
1782 | | * |
1783 | | * |
1784 | | */ |
1785 | | static void |
1786 | | or_pullup(opt_state_t *opt_state, struct block *b, struct block *root) |
1787 | 415k | { |
1788 | 415k | bpf_u_int32 val; |
1789 | 415k | int at_top; |
1790 | 415k | struct block *pull; |
1791 | 415k | struct block **diffp, **samep; |
1792 | 415k | struct edge *ep; |
1793 | | |
1794 | 415k | ep = b->in_edges; |
1795 | 415k | if (ep == 0) |
1796 | 56.2k | return; |
1797 | | |
1798 | | /* |
1799 | | * Make sure each predecessor loads the same value. |
1800 | | * XXX why? |
1801 | | */ |
1802 | 359k | val = ep->pred->val[A_ATOM]; |
1803 | 456k | for (ep = ep->next; ep != 0; ep = ep->next) |
1804 | 159k | if (val != ep->pred->val[A_ATOM]) |
1805 | 62.8k | return; |
1806 | | |
1807 | | /* |
1808 | | * For the first edge in the list of edges coming into this block, |
1809 | | * see whether the predecessor of that edge comes here via a true |
1810 | | * branch or a false branch. |
1811 | | */ |
1812 | 296k | if (JT(b->in_edges->pred) == b) |
1813 | 102k | diffp = &JT(b->in_edges->pred); /* jt */ |
1814 | 193k | else |
1815 | 193k | diffp = &JF(b->in_edges->pred); /* jf */ |
1816 | | |
1817 | | /* |
1818 | | * diffp is a pointer to a pointer to the block. |
1819 | | * |
1820 | | * Go down the false chain looking as far as you can, |
1821 | | * making sure that each jump-compare is doing the |
1822 | | * same as the original block. |
1823 | | * |
1824 | | * If you reach the bottom before you reach a |
1825 | | * different jump-compare, just exit. There's nothing |
1826 | | * to do here. XXX - no, this version is checking for |
1827 | | * the value leaving the block; that's from the BPF+ |
1828 | | * pullup routine. |
1829 | | */ |
1830 | 296k | at_top = 1; |
1831 | 439k | for (;;) { |
1832 | | /* |
1833 | | * Done if that's not going anywhere XXX |
1834 | | */ |
1835 | 439k | if (*diffp == 0) |
1836 | 0 | return; |
1837 | | |
1838 | | /* |
1839 | | * Done if that predecessor blah blah blah isn't |
1840 | | * going the same place we're going XXX |
1841 | | * |
1842 | | * Does the true edge of this block point to the same |
1843 | | * location as the true edge of b? |
1844 | | */ |
1845 | 439k | if (JT(*diffp) != JT(b)) |
1846 | 82.8k | return; |
1847 | | |
1848 | | /* |
1849 | | * Done if this node isn't a dominator of that |
1850 | | * node blah blah blah XXX |
1851 | | * |
1852 | | * Does b dominate diffp? |
1853 | | */ |
1854 | 356k | if (!SET_MEMBER((*diffp)->dom, b->id)) |
1855 | 4.62k | return; |
1856 | | |
1857 | | /* |
1858 | | * Break out of the loop if that node's value of A |
1859 | | * isn't the value of A above XXX |
1860 | | */ |
1861 | 351k | if ((*diffp)->val[A_ATOM] != val) |
1862 | 208k | break; |
1863 | | |
1864 | | /* |
1865 | | * Get the JF for that node XXX |
1866 | | * Go down the false path. |
1867 | | */ |
1868 | 143k | diffp = &JF(*diffp); |
1869 | 143k | at_top = 0; |
1870 | 143k | } |
1871 | | |
1872 | | /* |
1873 | | * Now that we've found a different jump-compare in a chain |
1874 | | * below b, search further down until we find another |
1875 | | * jump-compare that looks at the original value. This |
1876 | | * jump-compare should get pulled up. XXX again we're |
1877 | | * comparing values not jump-compares. |
1878 | | */ |
1879 | 208k | samep = &JF(*diffp); |
1880 | 294k | for (;;) { |
1881 | | /* |
1882 | | * Done if that's not going anywhere XXX |
1883 | | */ |
1884 | 294k | if (*samep == 0) |
1885 | 0 | return; |
1886 | | |
1887 | | /* |
1888 | | * Done if that predecessor blah blah blah isn't |
1889 | | * going the same place we're going XXX |
1890 | | */ |
1891 | 294k | if (JT(*samep) != JT(b)) |
1892 | 187k | return; |
1893 | | |
1894 | | /* |
1895 | | * Done if this node isn't a dominator of that |
1896 | | * node blah blah blah XXX |
1897 | | * |
1898 | | * Does b dominate samep? |
1899 | | */ |
1900 | 106k | if (!SET_MEMBER((*samep)->dom, b->id)) |
1901 | 16.1k | return; |
1902 | | |
1903 | | /* |
1904 | | * Break out of the loop if that node's value of A |
1905 | | * is the value of A above XXX |
1906 | | */ |
1907 | 90.8k | if ((*samep)->val[A_ATOM] == val) |
1908 | 5.34k | break; |
1909 | | |
1910 | | /* XXX Need to check that there are no data dependencies |
1911 | | between dp0 and dp1. Currently, the code generator |
1912 | | will not produce such dependencies. */ |
1913 | 85.5k | samep = &JF(*samep); |
1914 | 85.5k | } |
1915 | | #ifdef notdef |
1916 | | /* XXX This doesn't cover everything. */ |
1917 | | for (i = 0; i < N_ATOMS; ++i) |
1918 | | if ((*samep)->val[i] != pred->val[i]) |
1919 | | return; |
1920 | | #endif |
1921 | | /* Pull up the node. */ |
1922 | 5.34k | pull = *samep; |
1923 | 5.34k | *samep = JF(pull); |
1924 | 5.34k | JF(pull) = *diffp; |
1925 | | |
1926 | | /* |
1927 | | * At the top of the chain, each predecessor needs to point at the |
1928 | | * pulled up node. Inside the chain, there is only one predecessor |
1929 | | * to worry about. |
1930 | | */ |
1931 | 5.34k | if (at_top) { |
1932 | 11.6k | for (ep = b->in_edges; ep != 0; ep = ep->next) { |
1933 | 6.69k | if (JT(ep->pred) == b) |
1934 | 2.55k | JT(ep->pred) = pull; |
1935 | 4.14k | else |
1936 | 4.14k | JF(ep->pred) = pull; |
1937 | 6.69k | } |
1938 | 4.92k | } |
1939 | 421 | else |
1940 | 421 | *diffp = pull; |
1941 | | |
1942 | | /* |
1943 | | * XXX - this is one of the operations that happens when the |
1944 | | * optimizer gets into one of those infinite loops. |
1945 | | */ |
1946 | 5.34k | opt_state->done = 0; |
1947 | | |
1948 | | /* |
1949 | | * Recompute dominator sets as control flow graph has changed. |
1950 | | */ |
1951 | 5.34k | find_dom(opt_state, root); |
1952 | 5.34k | } |
1953 | | |
1954 | | static void |
1955 | | and_pullup(opt_state_t *opt_state, struct block *b, struct block *root) |
1956 | 415k | { |
1957 | 415k | bpf_u_int32 val; |
1958 | 415k | int at_top; |
1959 | 415k | struct block *pull; |
1960 | 415k | struct block **diffp, **samep; |
1961 | 415k | struct edge *ep; |
1962 | | |
1963 | 415k | ep = b->in_edges; |
1964 | 415k | if (ep == 0) |
1965 | 56.2k | return; |
1966 | | |
1967 | | /* |
1968 | | * Make sure each predecessor loads the same value. |
1969 | | */ |
1970 | 359k | val = ep->pred->val[A_ATOM]; |
1971 | 456k | for (ep = ep->next; ep != 0; ep = ep->next) |
1972 | 159k | if (val != ep->pred->val[A_ATOM]) |
1973 | 62.8k | return; |
1974 | | |
1975 | 296k | if (JT(b->in_edges->pred) == b) |
1976 | 102k | diffp = &JT(b->in_edges->pred); |
1977 | 194k | else |
1978 | 194k | diffp = &JF(b->in_edges->pred); |
1979 | | |
1980 | 296k | at_top = 1; |
1981 | 392k | for (;;) { |
1982 | 392k | if (*diffp == 0) |
1983 | 0 | return; |
1984 | | |
1985 | 392k | if (JF(*diffp) != JF(b)) |
1986 | 94.1k | return; |
1987 | | |
1988 | 298k | if (!SET_MEMBER((*diffp)->dom, b->id)) |
1989 | 2.52k | return; |
1990 | | |
1991 | 295k | if ((*diffp)->val[A_ATOM] != val) |
1992 | 199k | break; |
1993 | | |
1994 | 95.8k | diffp = &JT(*diffp); |
1995 | 95.8k | at_top = 0; |
1996 | 95.8k | } |
1997 | 199k | samep = &JT(*diffp); |
1998 | 235k | for (;;) { |
1999 | 235k | if (*samep == 0) |
2000 | 0 | return; |
2001 | | |
2002 | 235k | if (JF(*samep) != JF(b)) |
2003 | 195k | return; |
2004 | | |
2005 | 39.2k | if (!SET_MEMBER((*samep)->dom, b->id)) |
2006 | 1.51k | return; |
2007 | | |
2008 | 37.7k | if ((*samep)->val[A_ATOM] == val) |
2009 | 2.38k | break; |
2010 | | |
2011 | | /* XXX Need to check that there are no data dependencies |
2012 | | between diffp and samep. Currently, the code generator |
2013 | | will not produce such dependencies. */ |
2014 | 35.3k | samep = &JT(*samep); |
2015 | 35.3k | } |
2016 | | #ifdef notdef |
2017 | | /* XXX This doesn't cover everything. */ |
2018 | | for (i = 0; i < N_ATOMS; ++i) |
2019 | | if ((*samep)->val[i] != pred->val[i]) |
2020 | | return; |
2021 | | #endif |
2022 | | /* Pull up the node. */ |
2023 | 2.38k | pull = *samep; |
2024 | 2.38k | *samep = JT(pull); |
2025 | 2.38k | JT(pull) = *diffp; |
2026 | | |
2027 | | /* |
2028 | | * At the top of the chain, each predecessor needs to point at the |
2029 | | * pulled up node. Inside the chain, there is only one predecessor |
2030 | | * to worry about. |
2031 | | */ |
2032 | 2.38k | if (at_top) { |
2033 | 4.99k | for (ep = b->in_edges; ep != 0; ep = ep->next) { |
2034 | 2.65k | if (JT(ep->pred) == b) |
2035 | 2.44k | JT(ep->pred) = pull; |
2036 | 216 | else |
2037 | 216 | JF(ep->pred) = pull; |
2038 | 2.65k | } |
2039 | 2.33k | } |
2040 | 55 | else |
2041 | 55 | *diffp = pull; |
2042 | | |
2043 | | /* |
2044 | | * XXX - this is one of the operations that happens when the |
2045 | | * optimizer gets into one of those infinite loops. |
2046 | | */ |
2047 | 2.38k | opt_state->done = 0; |
2048 | | |
2049 | | /* |
2050 | | * Recompute dominator sets as control flow graph has changed. |
2051 | | */ |
2052 | 2.38k | find_dom(opt_state, root); |
2053 | 2.38k | } |
2054 | | |
2055 | | static void |
2056 | | opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts) |
2057 | 38.7k | { |
2058 | 38.7k | int i, maxlevel; |
2059 | 38.7k | struct block *p; |
2060 | | |
2061 | 38.7k | init_val(opt_state); |
2062 | 38.7k | maxlevel = ic->root->level; |
2063 | | |
2064 | 38.7k | find_inedges(opt_state, ic->root); |
2065 | 520k | for (i = maxlevel; i >= 0; --i) |
2066 | 1.16M | for (p = opt_state->levels[i]; p; p = p->link) |
2067 | 682k | opt_blk(opt_state, p, do_stmts); |
2068 | | |
2069 | 38.7k | if (do_stmts) |
2070 | | /* |
2071 | | * No point trying to move branches; it can't possibly |
2072 | | * make a difference at this point. |
2073 | | * |
2074 | | * XXX - this might be after we detect a loop where |
2075 | | * we were just looping infinitely moving branches |
2076 | | * in such a fashion that we went through two or more |
2077 | | * versions of the machine code, eventually returning |
2078 | | * to the first version. (We're really not doing a |
2079 | | * full loop detection, we're just testing for two |
2080 | | * passes in a row where we do nothing but |
2081 | | * move branches.) |
2082 | | */ |
2083 | 20.2k | return; |
2084 | | |
2085 | | /* |
2086 | | * Is this what the BPF+ paper describes in sections 6.1.1, |
2087 | | * 6.1.2, and 6.1.3? |
2088 | | */ |
2089 | 323k | for (i = 1; i <= maxlevel; ++i) { |
2090 | 720k | for (p = opt_state->levels[i]; p; p = p->link) { |
2091 | 415k | opt_j(opt_state, &p->et); |
2092 | 415k | opt_j(opt_state, &p->ef); |
2093 | 415k | } |
2094 | 305k | } |
2095 | | |
2096 | 18.4k | find_inedges(opt_state, ic->root); |
2097 | 323k | for (i = 1; i <= maxlevel; ++i) { |
2098 | 720k | for (p = opt_state->levels[i]; p; p = p->link) { |
2099 | 415k | or_pullup(opt_state, p, ic->root); |
2100 | 415k | and_pullup(opt_state, p, ic->root); |
2101 | 415k | } |
2102 | 305k | } |
2103 | 18.4k | } |
2104 | | |
2105 | | static inline void |
2106 | | link_inedge(struct edge *parent, struct block *child) |
2107 | 2.06M | { |
2108 | 2.06M | parent->next = child->in_edges; |
2109 | 2.06M | child->in_edges = parent; |
2110 | 2.06M | } |
2111 | | |
2112 | | static void |
2113 | | find_inedges(opt_state_t *opt_state, struct block *root) |
2114 | 57.1k | { |
2115 | 57.1k | u_int i; |
2116 | 57.1k | int level; |
2117 | 57.1k | struct block *b; |
2118 | | |
2119 | 1.82M | for (i = 0; i < opt_state->n_blocks; ++i) |
2120 | 1.76M | opt_state->blocks[i]->in_edges = 0; |
2121 | | |
2122 | | /* |
2123 | | * Traverse the graph, adding each edge to the predecessor |
2124 | | * list of its successors. Skip the leaves (i.e. level 0). |
2125 | | */ |
2126 | 805k | for (level = root->level; level > 0; --level) { |
2127 | 1.78M | for (b = opt_state->levels[level]; b != 0; b = b->link) { |
2128 | 1.03M | link_inedge(&b->et, JT(b)); |
2129 | 1.03M | link_inedge(&b->ef, JF(b)); |
2130 | 1.03M | } |
2131 | 748k | } |
2132 | 57.1k | } |
2133 | | |
2134 | | static void |
2135 | | opt_root(struct block **b) |
2136 | 7.29k | { |
2137 | 7.29k | struct slist *tmp, *s; |
2138 | | |
2139 | 7.29k | s = (*b)->stmts; |
2140 | 7.29k | (*b)->stmts = 0; |
2141 | 9.32k | while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b)) |
2142 | 2.03k | *b = JT(*b); |
2143 | | |
2144 | 7.29k | tmp = (*b)->stmts; |
2145 | 7.29k | if (tmp != 0) |
2146 | 306 | sappend(s, tmp); |
2147 | 7.29k | (*b)->stmts = s; |
2148 | | |
2149 | | /* |
2150 | | * If the root node is a return, then there is no |
2151 | | * point executing any statements (since the bpf machine |
2152 | | * has no side effects). |
2153 | | */ |
2154 | 7.29k | if (BPF_CLASS((*b)->s.code) == BPF_RET) |
2155 | 3.99k | (*b)->stmts = 0; |
2156 | 7.29k | } |
2157 | | |
2158 | | static void |
2159 | | opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts) |
2160 | 14.7k | { |
2161 | | |
2162 | | #ifdef BDEBUG |
2163 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2164 | | printf("%s(root, %d) begin\n", __func__, do_stmts); |
2165 | | opt_dump(opt_state, ic); |
2166 | | } |
2167 | | #endif |
2168 | | |
2169 | | /* |
2170 | | * XXX - optimizer loop detection. |
2171 | | */ |
2172 | 14.7k | int loop_count = 0; |
2173 | 38.7k | for (;;) { |
2174 | | /* |
2175 | | * XXX - optimizer loop detection. |
2176 | | */ |
2177 | 38.7k | opt_state->non_branch_movement_performed = 0; |
2178 | 38.7k | opt_state->done = 1; |
2179 | 38.7k | find_levels(opt_state, ic); |
2180 | 38.7k | find_dom(opt_state, ic->root); |
2181 | 38.7k | find_closure(opt_state, ic->root); |
2182 | 38.7k | find_ud(opt_state, ic->root); |
2183 | 38.7k | find_edom(opt_state, ic->root); |
2184 | 38.7k | opt_blks(opt_state, ic, do_stmts); |
2185 | | #ifdef BDEBUG |
2186 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2187 | | printf("%s(root, %d) bottom, done=%d\n", __func__, do_stmts, opt_state->done); |
2188 | | opt_dump(opt_state, ic); |
2189 | | } |
2190 | | #endif |
2191 | | |
2192 | | /* |
2193 | | * Was anything done in this optimizer pass? |
2194 | | */ |
2195 | 38.7k | if (opt_state->done) { |
2196 | | /* |
2197 | | * No, so we've reached a fixed point. |
2198 | | * We're done. |
2199 | | */ |
2200 | 14.6k | break; |
2201 | 14.6k | } |
2202 | | |
2203 | | /* |
2204 | | * XXX - was anything done other than branch movement |
2205 | | * in this pass? |
2206 | | */ |
2207 | 24.1k | if (opt_state->non_branch_movement_performed) { |
2208 | | /* |
2209 | | * Yes. Clear any loop-detection counter; |
2210 | | * we're making some form of progress (assuming |
2211 | | * we can't get into a cycle doing *other* |
2212 | | * optimizations...). |
2213 | | */ |
2214 | 19.0k | loop_count = 0; |
2215 | 19.0k | } else { |
2216 | | /* |
2217 | | * No - increment the counter, and quit if |
2218 | | * it's up to 100. |
2219 | | */ |
2220 | 5.05k | loop_count++; |
2221 | 5.05k | if (loop_count >= 100) { |
2222 | | /* |
2223 | | * We've done nothing but branch movement |
2224 | | * for 100 passes; we're probably |
2225 | | * in a cycle and will never reach a |
2226 | | * fixed point. |
2227 | | * |
2228 | | * XXX - yes, we really need a non- |
2229 | | * heuristic way of detecting a cycle. |
2230 | | */ |
2231 | 32 | opt_state->done = 1; |
2232 | 32 | break; |
2233 | 32 | } |
2234 | 5.05k | } |
2235 | 24.1k | } |
2236 | 14.7k | } |
2237 | | |
2238 | | /* |
2239 | | * Optimize the filter code in its dag representation. |
2240 | | * Return 0 on success, -1 on error. |
2241 | | */ |
2242 | | int |
2243 | | bpf_optimize(struct icode *ic, char *errbuf) |
2244 | 7.35k | { |
2245 | 7.35k | opt_state_t opt_state; |
2246 | | |
2247 | 7.35k | memset(&opt_state, 0, sizeof(opt_state)); |
2248 | 7.35k | opt_state.errbuf = errbuf; |
2249 | 7.35k | if (setjmp(opt_state.top_ctx)) { |
2250 | 60 | opt_cleanup(&opt_state); |
2251 | 60 | return -1; |
2252 | 60 | } |
2253 | 7.29k | opt_init(&opt_state, ic); |
2254 | 7.29k | opt_loop(&opt_state, ic, 0); |
2255 | 7.29k | opt_loop(&opt_state, ic, 1); |
2256 | 7.29k | intern_blocks(&opt_state, ic); |
2257 | | #ifdef BDEBUG |
2258 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2259 | | printf("after intern_blocks()\n"); |
2260 | | opt_dump(&opt_state, ic); |
2261 | | } |
2262 | | #endif |
2263 | 7.29k | opt_root(&ic->root); |
2264 | | #ifdef BDEBUG |
2265 | | if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) { |
2266 | | printf("after opt_root()\n"); |
2267 | | opt_dump(&opt_state, ic); |
2268 | | } |
2269 | | #endif |
2270 | 7.29k | opt_cleanup(&opt_state); |
2271 | 7.29k | return 0; |
2272 | 7.35k | } |
2273 | | |
2274 | | static void |
2275 | | make_marks(struct icode *ic, struct block *p) |
2276 | 832k | { |
2277 | 832k | if (!isMarked(ic, p)) { |
2278 | 426k | Mark(ic, p); |
2279 | 426k | if (BPF_CLASS(p->s.code) != BPF_RET) { |
2280 | 411k | make_marks(ic, JT(p)); |
2281 | 411k | make_marks(ic, JF(p)); |
2282 | 411k | } |
2283 | 426k | } |
2284 | 832k | } |
2285 | | |
2286 | | /* |
2287 | | * Mark code array such that isMarked(ic->cur_mark, i) is true |
2288 | | * only for nodes that are alive. |
2289 | | */ |
2290 | | static void |
2291 | | mark_code(struct icode *ic) |
2292 | 9.71k | { |
2293 | 9.71k | ic->cur_mark += 1; |
2294 | 9.71k | make_marks(ic, ic->root); |
2295 | 9.71k | } |
2296 | | |
2297 | | /* |
2298 | | * True iff the two stmt lists load the same value from the packet into |
2299 | | * the accumulator. |
2300 | | */ |
2301 | | static int |
2302 | | eq_slist(struct slist *x, struct slist *y) |
2303 | 10.1k | { |
2304 | 15.5k | for (;;) { |
2305 | 17.7k | while (x && x->s.code == NOP) |
2306 | 2.19k | x = x->next; |
2307 | 18.0k | while (y && y->s.code == NOP) |
2308 | 2.47k | y = y->next; |
2309 | 15.5k | if (x == 0) |
2310 | 4.01k | return y == 0; |
2311 | 11.5k | if (y == 0) |
2312 | 605 | return x == 0; |
2313 | 10.9k | if (x->s.code != y->s.code || x->s.k != y->s.k) |
2314 | 5.56k | return 0; |
2315 | 5.40k | x = x->next; |
2316 | 5.40k | y = y->next; |
2317 | 5.40k | } |
2318 | 10.1k | } |
2319 | | |
2320 | | static inline int |
2321 | | eq_blk(struct block *b0, struct block *b1) |
2322 | 55.5M | { |
2323 | 55.5M | if (b0->s.code == b1->s.code && |
2324 | 55.5M | b0->s.k == b1->s.k && |
2325 | 55.5M | b0->et.succ == b1->et.succ && |
2326 | 55.5M | b0->ef.succ == b1->ef.succ) |
2327 | 10.1k | return eq_slist(b0->stmts, b1->stmts); |
2328 | 55.5M | return 0; |
2329 | 55.5M | } |
2330 | | |
2331 | | static void |
2332 | | intern_blocks(opt_state_t *opt_state, struct icode *ic) |
2333 | 7.29k | { |
2334 | 7.29k | struct block *p; |
2335 | 7.29k | u_int i, j; |
2336 | 7.29k | int done1; /* don't shadow global */ |
2337 | 9.71k | top: |
2338 | 9.71k | done1 = 1; |
2339 | 857k | for (i = 0; i < opt_state->n_blocks; ++i) |
2340 | 848k | opt_state->blocks[i]->link = 0; |
2341 | | |
2342 | 9.71k | mark_code(ic); |
2343 | | |
2344 | 848k | for (i = opt_state->n_blocks - 1; i != 0; ) { |
2345 | 838k | --i; |
2346 | 838k | if (!isMarked(ic, opt_state->blocks[i])) |
2347 | 420k | continue; |
2348 | 90.0M | for (j = i + 1; j < opt_state->n_blocks; ++j) { |
2349 | 89.6M | if (!isMarked(ic, opt_state->blocks[j])) |
2350 | 34.0M | continue; |
2351 | 55.5M | if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) { |
2352 | 3.50k | opt_state->blocks[i]->link = opt_state->blocks[j]->link ? |
2353 | 3.12k | opt_state->blocks[j]->link : opt_state->blocks[j]; |
2354 | 3.50k | break; |
2355 | 3.50k | } |
2356 | 55.5M | } |
2357 | 417k | } |
2358 | 857k | for (i = 0; i < opt_state->n_blocks; ++i) { |
2359 | 848k | p = opt_state->blocks[i]; |
2360 | 848k | if (JT(p) == 0) |
2361 | 16.8k | continue; |
2362 | 831k | if (JT(p)->link) { |
2363 | 4.38k | done1 = 0; |
2364 | 4.38k | JT(p) = JT(p)->link; |
2365 | 4.38k | } |
2366 | 831k | if (JF(p)->link) { |
2367 | 3.75k | done1 = 0; |
2368 | 3.75k | JF(p) = JF(p)->link; |
2369 | 3.75k | } |
2370 | 831k | } |
2371 | 9.71k | if (!done1) |
2372 | 2.42k | goto top; |
2373 | 9.71k | } |
2374 | | |
2375 | | static void |
2376 | | opt_cleanup(opt_state_t *opt_state) |
2377 | 7.35k | { |
2378 | 7.35k | free((void *)opt_state->vnode_base); |
2379 | 7.35k | free((void *)opt_state->vmap); |
2380 | 7.35k | free((void *)opt_state->edges); |
2381 | 7.35k | free((void *)opt_state->space); |
2382 | 7.35k | free((void *)opt_state->levels); |
2383 | 7.35k | free((void *)opt_state->blocks); |
2384 | 7.35k | } |
2385 | | |
2386 | | /* |
2387 | | * For optimizer errors. |
2388 | | */ |
2389 | | static void PCAP_NORETURN |
2390 | | opt_error(opt_state_t *opt_state, const char *fmt, ...) |
2391 | 60 | { |
2392 | 60 | va_list ap; |
2393 | | |
2394 | 60 | if (opt_state->errbuf != NULL) { |
2395 | 60 | va_start(ap, fmt); |
2396 | 60 | (void)vsnprintf(opt_state->errbuf, |
2397 | 60 | PCAP_ERRBUF_SIZE, fmt, ap); |
2398 | 60 | va_end(ap); |
2399 | 60 | } |
2400 | 60 | longjmp(opt_state->top_ctx, 1); |
2401 | | /* NOTREACHED */ |
2402 | | #ifdef _AIX |
2403 | | PCAP_UNREACHABLE |
2404 | | #endif /* _AIX */ |
2405 | 60 | } |
2406 | | |
2407 | | /* |
2408 | | * Return the number of stmts in 's'. |
2409 | | */ |
2410 | | static u_int |
2411 | | slength(struct slist *s) |
2412 | 12.6M | { |
2413 | 12.6M | u_int n = 0; |
2414 | | |
2415 | 39.5M | for (; s; s = s->next) |
2416 | 26.8M | if (s->s.code != NOP) |
2417 | 24.2M | ++n; |
2418 | 12.6M | return n; |
2419 | 12.6M | } |
2420 | | |
2421 | | /* |
2422 | | * Return the number of nodes reachable by 'p'. |
2423 | | * All nodes should be initially unmarked. |
2424 | | */ |
2425 | | static int |
2426 | | count_blocks(struct icode *ic, struct block *p) |
2427 | 288k | { |
2428 | 288k | if (p == 0 || isMarked(ic, p)) |
2429 | 148k | return 0; |
2430 | 140k | Mark(ic, p); |
2431 | 140k | return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1; |
2432 | 288k | } |
2433 | | |
2434 | | /* |
2435 | | * Do a depth first search on the flow graph, numbering the |
2436 | | * the basic blocks, and entering them into the 'blocks' array.` |
2437 | | */ |
2438 | | static void |
2439 | | number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p) |
2440 | 288k | { |
2441 | 288k | u_int n; |
2442 | | |
2443 | 288k | if (p == 0 || isMarked(ic, p)) |
2444 | 148k | return; |
2445 | | |
2446 | 140k | Mark(ic, p); |
2447 | 140k | n = opt_state->n_blocks++; |
2448 | 140k | if (opt_state->n_blocks == 0) { |
2449 | | /* |
2450 | | * Overflow. |
2451 | | */ |
2452 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2453 | 0 | } |
2454 | 140k | p->id = n; |
2455 | 140k | opt_state->blocks[n] = p; |
2456 | | |
2457 | 140k | number_blks_r(opt_state, ic, JT(p)); |
2458 | 140k | number_blks_r(opt_state, ic, JF(p)); |
2459 | 140k | } |
2460 | | |
2461 | | /* |
2462 | | * Return the number of stmts in the flowgraph reachable by 'p'. |
2463 | | * The nodes should be unmarked before calling. |
2464 | | * |
2465 | | * Note that "stmts" means "instructions", and that this includes |
2466 | | * |
2467 | | * side-effect statements in 'p' (slength(p->stmts)); |
2468 | | * |
2469 | | * statements in the true branch from 'p' (count_stmts(JT(p))); |
2470 | | * |
2471 | | * statements in the false branch from 'p' (count_stmts(JF(p))); |
2472 | | * |
2473 | | * the conditional jump itself (1); |
2474 | | * |
2475 | | * an extra long jump if the true branch requires it (p->longjt); |
2476 | | * |
2477 | | * an extra long jump if the false branch requires it (p->longjf). |
2478 | | */ |
2479 | | static u_int |
2480 | | count_stmts(struct icode *ic, struct block *p) |
2481 | 15.6M | { |
2482 | 15.6M | u_int n; |
2483 | | |
2484 | 15.6M | if (p == 0 || isMarked(ic, p)) |
2485 | 7.85M | return 0; |
2486 | 7.83M | Mark(ic, p); |
2487 | 7.83M | n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p)); |
2488 | 7.83M | return slength(p->stmts) + n + 1 + p->longjt + p->longjf; |
2489 | 15.6M | } |
2490 | | |
2491 | | /* |
2492 | | * Allocate memory. All allocation is done before optimization |
2493 | | * is begun. A linear bound on the size of all data structures is computed |
2494 | | * from the total number of blocks and/or statements. |
2495 | | */ |
2496 | | static void |
2497 | | opt_init(opt_state_t *opt_state, struct icode *ic) |
2498 | 7.35k | { |
2499 | 7.35k | bpf_u_int32 *p; |
2500 | 7.35k | int i, n, max_stmts; |
2501 | 7.35k | u_int product; |
2502 | 7.35k | size_t block_memsize, edge_memsize; |
2503 | | |
2504 | | /* |
2505 | | * First, count the blocks, so we can malloc an array to map |
2506 | | * block number to block. Then, put the blocks into the array. |
2507 | | */ |
2508 | 7.35k | unMarkAll(ic); |
2509 | 7.35k | n = count_blocks(ic, ic->root); |
2510 | 7.35k | opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks)); |
2511 | 7.35k | if (opt_state->blocks == NULL) |
2512 | 0 | opt_error(opt_state, "malloc"); |
2513 | 7.35k | unMarkAll(ic); |
2514 | 7.35k | opt_state->n_blocks = 0; |
2515 | 7.35k | number_blks_r(opt_state, ic, ic->root); |
2516 | | |
2517 | | /* |
2518 | | * This "should not happen". |
2519 | | */ |
2520 | 7.35k | if (opt_state->n_blocks == 0) |
2521 | 0 | opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue"); |
2522 | | |
2523 | 7.35k | opt_state->n_edges = 2 * opt_state->n_blocks; |
2524 | 7.35k | if ((opt_state->n_edges / 2) != opt_state->n_blocks) { |
2525 | | /* |
2526 | | * Overflow. |
2527 | | */ |
2528 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2529 | 0 | } |
2530 | 7.35k | opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges)); |
2531 | 7.35k | if (opt_state->edges == NULL) { |
2532 | 0 | opt_error(opt_state, "malloc"); |
2533 | 0 | } |
2534 | | |
2535 | | /* |
2536 | | * The number of levels is bounded by the number of nodes. |
2537 | | */ |
2538 | 7.35k | opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels)); |
2539 | 7.35k | if (opt_state->levels == NULL) { |
2540 | 0 | opt_error(opt_state, "malloc"); |
2541 | 0 | } |
2542 | | |
2543 | 7.35k | opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1; |
2544 | 7.35k | opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1; |
2545 | | |
2546 | | /* |
2547 | | * Make sure opt_state->n_blocks * opt_state->nodewords fits |
2548 | | * in a u_int; we use it as a u_int number-of-iterations |
2549 | | * value. |
2550 | | */ |
2551 | 7.35k | product = opt_state->n_blocks * opt_state->nodewords; |
2552 | 7.35k | if ((product / opt_state->n_blocks) != opt_state->nodewords) { |
2553 | | /* |
2554 | | * XXX - just punt and don't try to optimize? |
2555 | | * In practice, this is unlikely to happen with |
2556 | | * a normal filter. |
2557 | | */ |
2558 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2559 | 0 | } |
2560 | | |
2561 | | /* |
2562 | | * Make sure the total memory required for that doesn't |
2563 | | * overflow. |
2564 | | */ |
2565 | 7.35k | block_memsize = (size_t)2 * product * sizeof(*opt_state->space); |
2566 | 7.35k | if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) { |
2567 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2568 | 0 | } |
2569 | | |
2570 | | /* |
2571 | | * Make sure opt_state->n_edges * opt_state->edgewords fits |
2572 | | * in a u_int; we use it as a u_int number-of-iterations |
2573 | | * value. |
2574 | | */ |
2575 | 7.35k | product = opt_state->n_edges * opt_state->edgewords; |
2576 | 7.35k | if ((product / opt_state->n_edges) != opt_state->edgewords) { |
2577 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2578 | 0 | } |
2579 | | |
2580 | | /* |
2581 | | * Make sure the total memory required for that doesn't |
2582 | | * overflow. |
2583 | | */ |
2584 | 7.35k | edge_memsize = (size_t)product * sizeof(*opt_state->space); |
2585 | 7.35k | if (edge_memsize / product != sizeof(*opt_state->space)) { |
2586 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2587 | 0 | } |
2588 | | |
2589 | | /* |
2590 | | * Make sure the total memory required for both of them doesn't |
2591 | | * overflow. |
2592 | | */ |
2593 | 7.35k | if (block_memsize > SIZE_MAX - edge_memsize) { |
2594 | 0 | opt_error(opt_state, "filter is too complex to optimize"); |
2595 | 0 | } |
2596 | | |
2597 | | /* XXX */ |
2598 | 7.35k | opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize); |
2599 | 7.35k | if (opt_state->space == NULL) { |
2600 | 0 | opt_error(opt_state, "malloc"); |
2601 | 0 | } |
2602 | 7.35k | p = opt_state->space; |
2603 | 7.35k | opt_state->all_dom_sets = p; |
2604 | 148k | for (i = 0; i < n; ++i) { |
2605 | 140k | opt_state->blocks[i]->dom = p; |
2606 | 140k | p += opt_state->nodewords; |
2607 | 140k | } |
2608 | 7.35k | opt_state->all_closure_sets = p; |
2609 | 148k | for (i = 0; i < n; ++i) { |
2610 | 140k | opt_state->blocks[i]->closure = p; |
2611 | 140k | p += opt_state->nodewords; |
2612 | 140k | } |
2613 | 7.35k | opt_state->all_edge_sets = p; |
2614 | 148k | for (i = 0; i < n; ++i) { |
2615 | 140k | register struct block *b = opt_state->blocks[i]; |
2616 | | |
2617 | 140k | b->et.edom = p; |
2618 | 140k | p += opt_state->edgewords; |
2619 | 140k | b->ef.edom = p; |
2620 | 140k | p += opt_state->edgewords; |
2621 | 140k | b->et.id = i; |
2622 | 140k | opt_state->edges[i] = &b->et; |
2623 | 140k | b->ef.id = opt_state->n_blocks + i; |
2624 | 140k | opt_state->edges[opt_state->n_blocks + i] = &b->ef; |
2625 | 140k | b->et.pred = b; |
2626 | 140k | b->ef.pred = b; |
2627 | 140k | } |
2628 | 7.35k | max_stmts = 0; |
2629 | 148k | for (i = 0; i < n; ++i) |
2630 | 140k | max_stmts += slength(opt_state->blocks[i]->stmts) + 1; |
2631 | | /* |
2632 | | * We allocate at most 3 value numbers per statement, |
2633 | | * so this is an upper bound on the number of valnodes |
2634 | | * we'll need. |
2635 | | */ |
2636 | 7.35k | opt_state->maxval = 3 * max_stmts; |
2637 | 7.35k | opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap)); |
2638 | 7.35k | if (opt_state->vmap == NULL) { |
2639 | 0 | opt_error(opt_state, "malloc"); |
2640 | 0 | } |
2641 | 7.35k | opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base)); |
2642 | 7.35k | if (opt_state->vnode_base == NULL) { |
2643 | 0 | opt_error(opt_state, "malloc"); |
2644 | 0 | } |
2645 | 7.35k | } |
2646 | | |
2647 | | /* |
2648 | | * This is only used when supporting optimizer debugging. It is |
2649 | | * global state, so do *not* do more than one compile in parallel |
2650 | | * and expect it to provide meaningful information. |
2651 | | */ |
2652 | | #ifdef BDEBUG |
2653 | | int bids[NBIDS]; |
2654 | | #endif |
2655 | | |
2656 | | static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...) |
2657 | | PCAP_PRINTFLIKE(2, 3); |
2658 | | |
2659 | | /* |
2660 | | * Returns true if successful. Returns false if a branch has |
2661 | | * an offset that is too large. If so, we have marked that |
2662 | | * branch so that on a subsequent iteration, it will be treated |
2663 | | * properly. |
2664 | | */ |
2665 | | static int |
2666 | | convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p) |
2667 | 11.1M | { |
2668 | 11.1M | struct bpf_insn *dst; |
2669 | 11.1M | struct slist *src; |
2670 | 11.1M | u_int slen; |
2671 | 11.1M | u_int off; |
2672 | 11.1M | struct slist **offset = NULL; |
2673 | | |
2674 | 11.1M | if (p == 0 || isMarked(ic, p)) |
2675 | 5.15M | return (1); |
2676 | 6.01M | Mark(ic, p); |
2677 | | |
2678 | 6.01M | if (convert_code_r(conv_state, ic, JF(p)) == 0) |
2679 | 889k | return (0); |
2680 | 5.12M | if (convert_code_r(conv_state, ic, JT(p)) == 0) |
2681 | 402k | return (0); |
2682 | | |
2683 | 4.72M | slen = slength(p->stmts); |
2684 | 4.72M | dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf); |
2685 | | /* inflate length by any extra jumps */ |
2686 | | |
2687 | 4.72M | p->offset = (int)(dst - conv_state->fstart); |
2688 | | |
2689 | | /* generate offset[] for convenience */ |
2690 | 4.72M | if (slen) { |
2691 | 3.96M | offset = (struct slist **)calloc(slen, sizeof(struct slist *)); |
2692 | 3.96M | if (!offset) { |
2693 | 0 | conv_error(conv_state, "not enough core"); |
2694 | | /*NOTREACHED*/ |
2695 | 0 | } |
2696 | 3.96M | } |
2697 | 4.72M | src = p->stmts; |
2698 | 13.6M | for (off = 0; off < slen && src; off++) { |
2699 | | #if 0 |
2700 | | printf("off=%d src=%x\n", off, src); |
2701 | | #endif |
2702 | 8.96M | offset[off] = src; |
2703 | 8.96M | src = src->next; |
2704 | 8.96M | } |
2705 | | |
2706 | 4.72M | off = 0; |
2707 | 14.7M | for (src = p->stmts; src; src = src->next) { |
2708 | 10.0M | if (src->s.code == NOP) |
2709 | 1.07M | continue; |
2710 | 8.96M | dst->code = (u_short)src->s.code; |
2711 | 8.96M | dst->k = src->s.k; |
2712 | | |
2713 | | /* fill block-local relative jump */ |
2714 | 8.96M | if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) { |
2715 | | #if 0 |
2716 | | if (src->s.jt || src->s.jf) { |
2717 | | free(offset); |
2718 | | conv_error(conv_state, "illegal jmp destination"); |
2719 | | /*NOTREACHED*/ |
2720 | | } |
2721 | | #endif |
2722 | 8.88M | goto filled; |
2723 | 8.88M | } |
2724 | 80.4k | if (off == slen - 2) /*???*/ |
2725 | 0 | goto filled; |
2726 | | |
2727 | 80.4k | { |
2728 | 80.4k | u_int i; |
2729 | 80.4k | int jt, jf; |
2730 | 80.4k | const char ljerr[] = "%s for block-local relative jump: off=%d"; |
2731 | | |
2732 | | #if 0 |
2733 | | printf("code=%x off=%d %x %x\n", src->s.code, |
2734 | | off, src->s.jt, src->s.jf); |
2735 | | #endif |
2736 | | |
2737 | 80.4k | if (!src->s.jt || !src->s.jf) { |
2738 | 0 | free(offset); |
2739 | 0 | conv_error(conv_state, ljerr, "no jmp destination", off); |
2740 | | /*NOTREACHED*/ |
2741 | 0 | } |
2742 | | |
2743 | 80.4k | jt = jf = 0; |
2744 | 2.24M | for (i = 0; i < slen; i++) { |
2745 | 2.16M | if (offset[i] == src->s.jt) { |
2746 | 80.4k | if (jt) { |
2747 | 0 | free(offset); |
2748 | 0 | conv_error(conv_state, ljerr, "multiple matches", off); |
2749 | | /*NOTREACHED*/ |
2750 | 0 | } |
2751 | | |
2752 | 80.4k | if (i - off - 1 >= 256) { |
2753 | 0 | free(offset); |
2754 | 0 | conv_error(conv_state, ljerr, "out-of-range jump", off); |
2755 | | /*NOTREACHED*/ |
2756 | 0 | } |
2757 | 80.4k | dst->jt = (u_char)(i - off - 1); |
2758 | 80.4k | jt++; |
2759 | 80.4k | } |
2760 | 2.16M | if (offset[i] == src->s.jf) { |
2761 | 80.4k | if (jf) { |
2762 | 0 | free(offset); |
2763 | 0 | conv_error(conv_state, ljerr, "multiple matches", off); |
2764 | | /*NOTREACHED*/ |
2765 | 0 | } |
2766 | 80.4k | if (i - off - 1 >= 256) { |
2767 | 0 | free(offset); |
2768 | 0 | conv_error(conv_state, ljerr, "out-of-range jump", off); |
2769 | | /*NOTREACHED*/ |
2770 | 0 | } |
2771 | 80.4k | dst->jf = (u_char)(i - off - 1); |
2772 | 80.4k | jf++; |
2773 | 80.4k | } |
2774 | 2.16M | } |
2775 | 80.4k | if (!jt || !jf) { |
2776 | 0 | free(offset); |
2777 | 0 | conv_error(conv_state, ljerr, "no destination found", off); |
2778 | | /*NOTREACHED*/ |
2779 | 0 | } |
2780 | 80.4k | } |
2781 | 8.96M | filled: |
2782 | 8.96M | ++dst; |
2783 | 8.96M | ++off; |
2784 | 8.96M | } |
2785 | 4.72M | if (offset) |
2786 | 3.96M | free(offset); |
2787 | | |
2788 | | #ifdef BDEBUG |
2789 | | if (dst - conv_state->fstart < NBIDS) |
2790 | | bids[dst - conv_state->fstart] = p->id + 1; |
2791 | | #endif |
2792 | 4.72M | dst->code = (u_short)p->s.code; |
2793 | 4.72M | dst->k = p->s.k; |
2794 | 4.72M | if (JT(p)) { |
2795 | | /* number of extra jumps inserted */ |
2796 | 4.68M | u_char extrajmps = 0; |
2797 | 4.68M | off = JT(p)->offset - (p->offset + slen) - 1; |
2798 | 4.68M | if (off >= 256) { |
2799 | | /* offset too large for branch, must add a jump */ |
2800 | 412k | if (p->longjt == 0) { |
2801 | | /* mark this instruction and retry */ |
2802 | 6.71k | p->longjt++; |
2803 | 6.71k | return(0); |
2804 | 6.71k | } |
2805 | 405k | dst->jt = extrajmps; |
2806 | 405k | extrajmps++; |
2807 | 405k | dst[extrajmps].code = BPF_JMP|BPF_JA; |
2808 | 405k | dst[extrajmps].k = off - extrajmps; |
2809 | 405k | } |
2810 | 4.27M | else |
2811 | 4.27M | dst->jt = (u_char)off; |
2812 | 4.68M | off = JF(p)->offset - (p->offset + slen) - 1; |
2813 | 4.68M | if (off >= 256) { |
2814 | | /* offset too large for branch, must add a jump */ |
2815 | 544k | if (p->longjf == 0) { |
2816 | | /* mark this instruction and retry */ |
2817 | 7.39k | p->longjf++; |
2818 | 7.39k | return(0); |
2819 | 7.39k | } |
2820 | | /* branch if F to following jump */ |
2821 | | /* if two jumps are inserted, F goes to second one */ |
2822 | 537k | dst->jf = extrajmps; |
2823 | 537k | extrajmps++; |
2824 | 537k | dst[extrajmps].code = BPF_JMP|BPF_JA; |
2825 | 537k | dst[extrajmps].k = off - extrajmps; |
2826 | 537k | } |
2827 | 4.13M | else |
2828 | 4.13M | dst->jf = (u_char)off; |
2829 | 4.68M | } |
2830 | 4.71M | return (1); |
2831 | 4.72M | } |
2832 | | |
2833 | | |
2834 | | /* |
2835 | | * Convert flowgraph intermediate representation to the |
2836 | | * BPF array representation. Set *lenp to the number of instructions. |
2837 | | * |
2838 | | * This routine does *NOT* leak the memory pointed to by fp. It *must |
2839 | | * not* do free(fp) before returning fp; doing so would make no sense, |
2840 | | * as the BPF array pointed to by the return value of icode_to_fcode() |
2841 | | * must be valid - it's being returned for use in a bpf_program structure. |
2842 | | * |
2843 | | * If it appears that icode_to_fcode() is leaking, the problem is that |
2844 | | * the program using pcap_compile() is failing to free the memory in |
2845 | | * the BPF program when it's done - the leak is in the program, not in |
2846 | | * the routine that happens to be allocating the memory. (By analogy, if |
2847 | | * a program calls fopen() without ever calling fclose() on the FILE *, |
2848 | | * it will leak the FILE structure; the leak is not in fopen(), it's in |
2849 | | * the program.) Change the program to use pcap_freecode() when it's |
2850 | | * done with the filter program. See the pcap man page. |
2851 | | */ |
2852 | | struct bpf_insn * |
2853 | | icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp, |
2854 | | char *errbuf) |
2855 | 7.31k | { |
2856 | 7.31k | u_int n; |
2857 | 7.31k | struct bpf_insn *fp; |
2858 | 7.31k | conv_state_t conv_state; |
2859 | | |
2860 | 7.31k | conv_state.fstart = NULL; |
2861 | 7.31k | conv_state.errbuf = errbuf; |
2862 | 7.31k | if (setjmp(conv_state.top_ctx) != 0) { |
2863 | 0 | free(conv_state.fstart); |
2864 | 0 | return NULL; |
2865 | 0 | } |
2866 | | |
2867 | | /* |
2868 | | * Loop doing convert_code_r() until no branches remain |
2869 | | * with too-large offsets. |
2870 | | */ |
2871 | 21.4k | for (;;) { |
2872 | 21.4k | unMarkAll(ic); |
2873 | 21.4k | n = *lenp = count_stmts(ic, root); |
2874 | | |
2875 | 21.4k | fp = (struct bpf_insn *)malloc(sizeof(*fp) * n); |
2876 | 21.4k | if (fp == NULL) { |
2877 | 0 | (void)snprintf(errbuf, PCAP_ERRBUF_SIZE, |
2878 | 0 | "malloc"); |
2879 | 0 | return NULL; |
2880 | 0 | } |
2881 | 21.4k | memset((char *)fp, 0, sizeof(*fp) * n); |
2882 | 21.4k | conv_state.fstart = fp; |
2883 | 21.4k | conv_state.ftail = fp + n; |
2884 | | |
2885 | 21.4k | unMarkAll(ic); |
2886 | 21.4k | if (convert_code_r(&conv_state, ic, root)) |
2887 | 7.31k | break; |
2888 | 14.1k | free(fp); |
2889 | 14.1k | } |
2890 | | |
2891 | 7.31k | return fp; |
2892 | 7.31k | } |
2893 | | |
2894 | | /* |
2895 | | * For iconv_to_fconv() errors. |
2896 | | */ |
2897 | | static void PCAP_NORETURN |
2898 | | conv_error(conv_state_t *conv_state, const char *fmt, ...) |
2899 | 0 | { |
2900 | 0 | va_list ap; |
2901 | |
|
2902 | 0 | va_start(ap, fmt); |
2903 | 0 | (void)vsnprintf(conv_state->errbuf, |
2904 | 0 | PCAP_ERRBUF_SIZE, fmt, ap); |
2905 | 0 | va_end(ap); |
2906 | 0 | longjmp(conv_state->top_ctx, 1); |
2907 | | /* NOTREACHED */ |
2908 | | #ifdef _AIX |
2909 | | PCAP_UNREACHABLE |
2910 | | #endif /* _AIX */ |
2911 | 0 | } |
2912 | | |
2913 | | /* |
2914 | | * Make a copy of a BPF program and put it in the "fcode" member of |
2915 | | * a "pcap_t". |
2916 | | * |
2917 | | * If we fail to allocate memory for the copy, fill in the "errbuf" |
2918 | | * member of the "pcap_t" with an error message, and return -1; |
2919 | | * otherwise, return 0. |
2920 | | */ |
2921 | | int |
2922 | | pcapint_install_bpf_program(pcap_t *p, struct bpf_program *fp) |
2923 | 0 | { |
2924 | 0 | size_t prog_size; |
2925 | | |
2926 | | /* |
2927 | | * Validate the program. |
2928 | | */ |
2929 | 0 | if (!pcapint_validate_filter(fp->bf_insns, fp->bf_len)) { |
2930 | 0 | snprintf(p->errbuf, sizeof(p->errbuf), |
2931 | 0 | "BPF program is not valid"); |
2932 | 0 | return (-1); |
2933 | 0 | } |
2934 | | |
2935 | | /* |
2936 | | * Free up any already installed program. |
2937 | | */ |
2938 | 0 | pcap_freecode(&p->fcode); |
2939 | |
|
2940 | 0 | prog_size = sizeof(*fp->bf_insns) * fp->bf_len; |
2941 | 0 | p->fcode.bf_len = fp->bf_len; |
2942 | 0 | p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size); |
2943 | 0 | if (p->fcode.bf_insns == NULL) { |
2944 | 0 | pcapint_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf), |
2945 | 0 | errno, "malloc"); |
2946 | 0 | return (-1); |
2947 | 0 | } |
2948 | 0 | memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size); |
2949 | 0 | return (0); |
2950 | 0 | } |
2951 | | |
2952 | | #ifdef BDEBUG |
2953 | | static void |
2954 | | dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog, |
2955 | | FILE *out) |
2956 | | { |
2957 | | int icount, noffset; |
2958 | | int i; |
2959 | | |
2960 | | if (block == NULL || isMarked(ic, block)) |
2961 | | return; |
2962 | | Mark(ic, block); |
2963 | | |
2964 | | icount = slength(block->stmts) + 1 + block->longjt + block->longjf; |
2965 | | noffset = min(block->offset + icount, (int)prog->bf_len); |
2966 | | |
2967 | | fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id); |
2968 | | for (i = block->offset; i < noffset; i++) { |
2969 | | fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i)); |
2970 | | } |
2971 | | fprintf(out, "\" tooltip=\""); |
2972 | | for (i = 0; i < BPF_MEMWORDS; i++) |
2973 | | if (block->val[i] != VAL_UNKNOWN) |
2974 | | fprintf(out, "val[%d]=%d ", i, block->val[i]); |
2975 | | fprintf(out, "val[A]=%d ", block->val[A_ATOM]); |
2976 | | fprintf(out, "val[X]=%d", block->val[X_ATOM]); |
2977 | | fprintf(out, "\""); |
2978 | | if (JT(block) == NULL) |
2979 | | fprintf(out, ", peripheries=2"); |
2980 | | fprintf(out, "];\n"); |
2981 | | |
2982 | | dot_dump_node(ic, JT(block), prog, out); |
2983 | | dot_dump_node(ic, JF(block), prog, out); |
2984 | | } |
2985 | | |
2986 | | static void |
2987 | | dot_dump_edge(struct icode *ic, struct block *block, FILE *out) |
2988 | | { |
2989 | | if (block == NULL || isMarked(ic, block)) |
2990 | | return; |
2991 | | Mark(ic, block); |
2992 | | |
2993 | | if (JT(block)) { |
2994 | | fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n", |
2995 | | block->id, JT(block)->id); |
2996 | | fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n", |
2997 | | block->id, JF(block)->id); |
2998 | | } |
2999 | | dot_dump_edge(ic, JT(block), out); |
3000 | | dot_dump_edge(ic, JF(block), out); |
3001 | | } |
3002 | | |
3003 | | /* Output the block CFG using graphviz/DOT language |
3004 | | * In the CFG, block's code, value index for each registers at EXIT, |
3005 | | * and the jump relationship is show. |
3006 | | * |
3007 | | * example DOT for BPF `ip src host 1.1.1.1' is: |
3008 | | digraph BPF { |
3009 | | block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"]; |
3010 | | block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"]; |
3011 | | block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2]; |
3012 | | block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2]; |
3013 | | "block0":se -> "block1":n [label="T"]; |
3014 | | "block0":sw -> "block3":n [label="F"]; |
3015 | | "block1":se -> "block2":n [label="T"]; |
3016 | | "block1":sw -> "block3":n [label="F"]; |
3017 | | } |
3018 | | * |
3019 | | * After install graphviz on https://www.graphviz.org/, save it as bpf.dot |
3020 | | * and run `dot -Tpng -O bpf.dot' to draw the graph. |
3021 | | */ |
3022 | | static int |
3023 | | dot_dump(struct icode *ic, char *errbuf) |
3024 | | { |
3025 | | struct bpf_program f; |
3026 | | FILE *out = stdout; |
3027 | | |
3028 | | memset(bids, 0, sizeof bids); |
3029 | | f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); |
3030 | | if (f.bf_insns == NULL) |
3031 | | return -1; |
3032 | | |
3033 | | fprintf(out, "digraph BPF {\n"); |
3034 | | unMarkAll(ic); |
3035 | | dot_dump_node(ic, ic->root, &f, out); |
3036 | | unMarkAll(ic); |
3037 | | dot_dump_edge(ic, ic->root, out); |
3038 | | fprintf(out, "}\n"); |
3039 | | |
3040 | | free((char *)f.bf_insns); |
3041 | | return 0; |
3042 | | } |
3043 | | |
3044 | | static int |
3045 | | plain_dump(struct icode *ic, char *errbuf) |
3046 | | { |
3047 | | struct bpf_program f; |
3048 | | |
3049 | | memset(bids, 0, sizeof bids); |
3050 | | f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf); |
3051 | | if (f.bf_insns == NULL) |
3052 | | return -1; |
3053 | | bpf_dump(&f, 1); |
3054 | | putchar('\n'); |
3055 | | free((char *)f.bf_insns); |
3056 | | return 0; |
3057 | | } |
3058 | | |
3059 | | static void |
3060 | | opt_dump(opt_state_t *opt_state, struct icode *ic) |
3061 | | { |
3062 | | int status; |
3063 | | char errbuf[PCAP_ERRBUF_SIZE]; |
3064 | | |
3065 | | /* |
3066 | | * If the CFG, in DOT format, is requested, output it rather than |
3067 | | * the code that would be generated from that graph. |
3068 | | */ |
3069 | | if (pcap_print_dot_graph) |
3070 | | status = dot_dump(ic, errbuf); |
3071 | | else |
3072 | | status = plain_dump(ic, errbuf); |
3073 | | if (status == -1) |
3074 | | opt_error(opt_state, "%s: icode_to_fcode failed: %s", __func__, errbuf); |
3075 | | } |
3076 | | #endif |