/src/libplist/src/time64.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | |
3 | | Copyright (c) 2007-2010 Michael G Schwern |
4 | | |
5 | | This software originally derived from Paul Sheer's pivotal_gmtime_r.c. |
6 | | |
7 | | The MIT License: |
8 | | |
9 | | Permission is hereby granted, free of charge, to any person obtaining a copy |
10 | | of this software and associated documentation files (the "Software"), to deal |
11 | | in the Software without restriction, including without limitation the rights |
12 | | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
13 | | copies of the Software, and to permit persons to whom the Software is |
14 | | furnished to do so, subject to the following conditions: |
15 | | |
16 | | The above copyright notice and this permission notice shall be included in |
17 | | all copies or substantial portions of the Software. |
18 | | |
19 | | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 | | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 | | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
22 | | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 | | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 | | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
25 | | THE SOFTWARE. |
26 | | |
27 | | */ |
28 | | |
29 | | /* |
30 | | |
31 | | Programmers who have available to them 64-bit time values as a 'long |
32 | | long' type can use localtime64_r() and gmtime64_r() which correctly |
33 | | converts the time even on 32-bit systems. Whether you have 64-bit time |
34 | | values will depend on the operating system. |
35 | | |
36 | | localtime64_r() is a 64-bit equivalent of localtime_r(). |
37 | | |
38 | | gmtime64_r() is a 64-bit equivalent of gmtime_r(). |
39 | | |
40 | | */ |
41 | | |
42 | | #include <assert.h> |
43 | | #include <stdlib.h> |
44 | | #include <stdio.h> |
45 | | #include <string.h> |
46 | | #include <time.h> |
47 | | #include <errno.h> |
48 | | #include "time64.h" |
49 | | #include "time64_limits.h" |
50 | | |
51 | | |
52 | | static const char days_in_month[2][12] = { |
53 | | {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
54 | | {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
55 | | }; |
56 | | |
57 | | static const short julian_days_by_month[2][12] = { |
58 | | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, |
59 | | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, |
60 | | }; |
61 | | |
62 | | static const char wday_name[7][4] = { |
63 | | "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" |
64 | | }; |
65 | | |
66 | | static const char mon_name[12][4] = { |
67 | | "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
68 | | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
69 | | }; |
70 | | |
71 | | static const short length_of_year[2] = { 365, 366 }; |
72 | | |
73 | | /* Some numbers relating to the gregorian cycle */ |
74 | | static const Year years_in_gregorian_cycle = 400; |
75 | 0 | #define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1) |
76 | | static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; |
77 | | |
78 | | /* Year range we can trust the time funcitons with */ |
79 | 0 | #define MAX_SAFE_YEAR 2037 |
80 | 0 | #define MIN_SAFE_YEAR 1971 |
81 | | |
82 | | /* 28 year Julian calendar cycle */ |
83 | 0 | #define SOLAR_CYCLE_LENGTH 28 |
84 | | |
85 | | /* Year cycle from MAX_SAFE_YEAR down. */ |
86 | | static const short safe_years_high[SOLAR_CYCLE_LENGTH] = { |
87 | | 2016, 2017, 2018, 2019, |
88 | | 2020, 2021, 2022, 2023, |
89 | | 2024, 2025, 2026, 2027, |
90 | | 2028, 2029, 2030, 2031, |
91 | | 2032, 2033, 2034, 2035, |
92 | | 2036, 2037, 2010, 2011, |
93 | | 2012, 2013, 2014, 2015 |
94 | | }; |
95 | | |
96 | | /* Year cycle from MIN_SAFE_YEAR up */ |
97 | | static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { |
98 | | 1996, 1997, 1998, 1971, |
99 | | 1972, 1973, 1974, 1975, |
100 | | 1976, 1977, 1978, 1979, |
101 | | 1980, 1981, 1982, 1983, |
102 | | 1984, 1985, 1986, 1987, |
103 | | 1988, 1989, 1990, 1991, |
104 | | 1992, 1993, 1994, 1995, |
105 | | }; |
106 | | |
107 | | /* This isn't used, but it's handy to look at */ |
108 | | #if 0 |
109 | | static const char dow_year_start[SOLAR_CYCLE_LENGTH] = { |
110 | | 5, 0, 1, 2, /* 0 2016 - 2019 */ |
111 | | 3, 5, 6, 0, /* 4 */ |
112 | | 1, 3, 4, 5, /* 8 1996 - 1998, 1971*/ |
113 | | 6, 1, 2, 3, /* 12 1972 - 1975 */ |
114 | | 4, 6, 0, 1, /* 16 */ |
115 | | 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */ |
116 | | 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */ |
117 | | }; |
118 | | #endif |
119 | | |
120 | | /* Let's assume people are going to be looking for dates in the future. |
121 | | Let's provide some cheats so you can skip ahead. |
122 | | This has a 4x speed boost when near 2008. |
123 | | */ |
124 | | /* Number of days since epoch on Jan 1st, 2008 GMT */ |
125 | 0 | #define CHEAT_DAYS (1199145600 / 24 / 60 / 60) |
126 | 0 | #define CHEAT_YEARS 108 |
127 | | |
128 | 0 | #define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) |
129 | 0 | #define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) |
130 | | |
131 | | #ifdef USE_SYSTEM_LOCALTIME |
132 | | # define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ |
133 | | (a) <= SYSTEM_LOCALTIME_MAX && \ |
134 | | (a) >= SYSTEM_LOCALTIME_MIN \ |
135 | | ) |
136 | | #else |
137 | 0 | # define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) |
138 | | #endif |
139 | | |
140 | | #ifdef USE_SYSTEM_GMTIME |
141 | | # define SHOULD_USE_SYSTEM_GMTIME(a) ( \ |
142 | | (a) <= SYSTEM_GMTIME_MAX && \ |
143 | | (a) >= SYSTEM_GMTIME_MIN \ |
144 | | ) |
145 | | #else |
146 | 0 | # define SHOULD_USE_SYSTEM_GMTIME(a) (0) |
147 | | #endif |
148 | | |
149 | | /* Multi varadic macros are a C99 thing, alas */ |
150 | | #ifdef TIME_64_DEBUG |
151 | | # define TIME64_TRACE(format) (fprintf(stderr, format)) |
152 | | # define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1)) |
153 | | # define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) |
154 | | # define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) |
155 | | #else |
156 | | # define TIME64_TRACE(format) ((void)0) |
157 | 0 | # define TIME64_TRACE1(format, var1) ((void)0) |
158 | 0 | # define TIME64_TRACE2(format, var1, var2) ((void)0) |
159 | 0 | # define TIME64_TRACE3(format, var1, var2, var3) ((void)0) |
160 | | #endif |
161 | | |
162 | | |
163 | | static int is_exception_century(Year year) |
164 | 0 | { |
165 | 0 | int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); |
166 | 0 | TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); |
167 | |
|
168 | 0 | return(is_exception); |
169 | 0 | } |
170 | | |
171 | | |
172 | | /* Compare two dates. |
173 | | The result is like cmp. |
174 | | Ignores things like gmtoffset and dst |
175 | | */ |
176 | 0 | static int cmp_date( const struct TM* left, const struct tm* right ) { |
177 | 0 | if( left->tm_year > right->tm_year ) |
178 | 0 | return 1; |
179 | 0 | if( left->tm_year < right->tm_year ) |
180 | 0 | return -1; |
181 | 0 | if( left->tm_mon > right->tm_mon ) |
182 | 0 | return 1; |
183 | 0 | if( left->tm_mon < right->tm_mon ) |
184 | 0 | return -1; |
185 | 0 | if( left->tm_mday > right->tm_mday ) |
186 | 0 | return 1; |
187 | 0 | if( left->tm_mday < right->tm_mday ) |
188 | 0 | return -1; |
189 | 0 | if( left->tm_hour > right->tm_hour ) |
190 | 0 | return 1; |
191 | 0 | if( left->tm_hour < right->tm_hour ) |
192 | 0 | return -1; |
193 | 0 | if( left->tm_min > right->tm_min ) |
194 | 0 | return 1; |
195 | 0 | if( left->tm_min < right->tm_min ) |
196 | 0 | return -1; |
197 | 0 | if( left->tm_sec > right->tm_sec ) |
198 | 0 | return 1; |
199 | 0 | if( left->tm_sec < right->tm_sec ) |
200 | 0 | return -1; |
201 | 0 | return 0; |
202 | 0 | } |
203 | | |
204 | | |
205 | | /* Check if a date is safely inside a range. |
206 | | The intention is to check if its a few days inside. |
207 | | */ |
208 | 0 | static int date_in_safe_range( const struct TM* date, const struct tm* min, const struct tm* max ) { |
209 | 0 | if( cmp_date(date, min) == -1 ) |
210 | 0 | return 0; |
211 | | |
212 | 0 | if( cmp_date(date, max) == 1 ) |
213 | 0 | return 0; |
214 | | |
215 | 0 | return 1; |
216 | 0 | } |
217 | | |
218 | | |
219 | | /* timegm() is not in the C or POSIX spec, but it is such a useful |
220 | | extension I would be remiss in leaving it out. Also I need it |
221 | | for localtime64() |
222 | | */ |
223 | 0 | Time64_T timegm64(const struct TM *date) { |
224 | 0 | Time64_T days = 0; |
225 | 0 | Time64_T seconds = 0; |
226 | 0 | Year year; |
227 | 0 | Year orig_year = (Year)date->tm_year; |
228 | 0 | int cycles = 0; |
229 | |
|
230 | 0 | if( (orig_year > 100) || (orig_year < -300) ) { |
231 | 0 | cycles = (orig_year - 100) / 400; |
232 | 0 | orig_year -= cycles * 400; |
233 | 0 | days += (Time64_T)cycles * days_in_gregorian_cycle; |
234 | 0 | } |
235 | 0 | TIME64_TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); |
236 | |
|
237 | 0 | if( orig_year > 70 ) { |
238 | 0 | year = 70; |
239 | 0 | while( year < orig_year ) { |
240 | 0 | days += length_of_year[IS_LEAP(year)]; |
241 | 0 | year++; |
242 | 0 | } |
243 | 0 | } |
244 | 0 | else if ( orig_year < 70 ) { |
245 | 0 | year = 69; |
246 | 0 | do { |
247 | 0 | days -= length_of_year[IS_LEAP(year)]; |
248 | 0 | year--; |
249 | 0 | } while( year >= orig_year ); |
250 | 0 | } |
251 | |
|
252 | 0 | days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; |
253 | 0 | days += date->tm_mday - 1; |
254 | |
|
255 | 0 | seconds = days * 60 * 60 * 24; |
256 | |
|
257 | 0 | seconds += date->tm_hour * 60 * 60; |
258 | 0 | seconds += date->tm_min * 60; |
259 | 0 | seconds += date->tm_sec; |
260 | |
|
261 | 0 | return(seconds); |
262 | 0 | } |
263 | | |
264 | | |
265 | | static int check_tm(struct TM *tm) |
266 | 0 | { |
267 | | /* Don't forget leap seconds */ |
268 | 0 | assert(tm->tm_sec >= 0); |
269 | 0 | assert(tm->tm_sec <= 61); |
270 | | |
271 | 0 | assert(tm->tm_min >= 0); |
272 | 0 | assert(tm->tm_min <= 59); |
273 | | |
274 | 0 | assert(tm->tm_hour >= 0); |
275 | 0 | assert(tm->tm_hour <= 23); |
276 | | |
277 | 0 | assert(tm->tm_mday >= 1); |
278 | 0 | assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); |
279 | | |
280 | 0 | assert(tm->tm_mon >= 0); |
281 | 0 | assert(tm->tm_mon <= 11); |
282 | | |
283 | 0 | assert(tm->tm_wday >= 0); |
284 | 0 | assert(tm->tm_wday <= 6); |
285 | | |
286 | 0 | assert(tm->tm_yday >= 0); |
287 | 0 | assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); |
288 | | |
289 | 0 | #ifdef HAVE_TM_TM_GMTOFF |
290 | 0 | assert(tm->tm_gmtoff >= -24 * 60 * 60); |
291 | 0 | assert(tm->tm_gmtoff <= 24 * 60 * 60); |
292 | 0 | #endif |
293 | | |
294 | 0 | return 1; |
295 | 0 | } |
296 | | |
297 | | |
298 | | /* The exceptional centuries without leap years cause the cycle to |
299 | | shift by 16 |
300 | | */ |
301 | | static Year cycle_offset(Year year) |
302 | 0 | { |
303 | 0 | const Year start_year = 2000; |
304 | 0 | Year year_diff = year - start_year; |
305 | 0 | Year exceptions; |
306 | |
|
307 | 0 | if( year > start_year ) |
308 | 0 | year_diff--; |
309 | |
|
310 | 0 | exceptions = year_diff / 100; |
311 | 0 | exceptions -= year_diff / 400; |
312 | |
|
313 | 0 | TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", |
314 | 0 | year, exceptions, year_diff); |
315 | |
|
316 | 0 | return exceptions * 16; |
317 | 0 | } |
318 | | |
319 | | /* For a given year after 2038, pick the latest possible matching |
320 | | year in the 28 year calendar cycle. |
321 | | |
322 | | A matching year... |
323 | | 1) Starts on the same day of the week. |
324 | | 2) Has the same leap year status. |
325 | | |
326 | | This is so the calendars match up. |
327 | | |
328 | | Also the previous year must match. When doing Jan 1st you might |
329 | | wind up on Dec 31st the previous year when doing a -UTC time zone. |
330 | | |
331 | | Finally, the next year must have the same start day of week. This |
332 | | is for Dec 31st with a +UTC time zone. |
333 | | It doesn't need the same leap year status since we only care about |
334 | | January 1st. |
335 | | */ |
336 | | static int safe_year(const Year year) |
337 | 0 | { |
338 | 0 | int _safe_year = (int)year; |
339 | 0 | Year year_cycle; |
340 | |
|
341 | 0 | if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { |
342 | 0 | return _safe_year; |
343 | 0 | } |
344 | | |
345 | 0 | year_cycle = year + cycle_offset(year); |
346 | | |
347 | | /* safe_years_low is off from safe_years_high by 8 years */ |
348 | 0 | if( year < MIN_SAFE_YEAR ) |
349 | 0 | year_cycle -= 8; |
350 | | |
351 | | /* Change non-leap xx00 years to an equivalent */ |
352 | 0 | if( is_exception_century(year) ) |
353 | 0 | year_cycle += 11; |
354 | | |
355 | | /* Also xx01 years, since the previous year will be wrong */ |
356 | 0 | if( is_exception_century(year - 1) ) |
357 | 0 | year_cycle += 17; |
358 | |
|
359 | 0 | year_cycle %= SOLAR_CYCLE_LENGTH; |
360 | 0 | if( year_cycle < 0 ) |
361 | 0 | year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; |
362 | |
|
363 | 0 | assert( year_cycle >= 0 ); |
364 | 0 | assert( year_cycle < SOLAR_CYCLE_LENGTH ); |
365 | 0 | if( year < MIN_SAFE_YEAR ) |
366 | 0 | _safe_year = safe_years_low[year_cycle]; |
367 | 0 | else if( year > MAX_SAFE_YEAR ) |
368 | 0 | _safe_year = safe_years_high[year_cycle]; |
369 | 0 | else |
370 | 0 | assert(0); |
371 | | |
372 | 0 | TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", |
373 | 0 | year, year_cycle, _safe_year); |
374 | |
|
375 | 0 | assert(_safe_year <= MAX_SAFE_YEAR && _safe_year >= MIN_SAFE_YEAR); |
376 | | |
377 | 0 | return _safe_year; |
378 | 0 | } |
379 | | |
380 | | |
381 | 0 | void copy_tm_to_TM64(const struct tm *src, struct TM *dest) { |
382 | 0 | if( src == NULL ) { |
383 | 0 | memset(dest, 0, sizeof(*dest)); |
384 | 0 | } |
385 | 0 | else { |
386 | | # ifdef USE_TM64 |
387 | | dest->tm_sec = src->tm_sec; |
388 | | dest->tm_min = src->tm_min; |
389 | | dest->tm_hour = src->tm_hour; |
390 | | dest->tm_mday = src->tm_mday; |
391 | | dest->tm_mon = src->tm_mon; |
392 | | dest->tm_year = (Year)src->tm_year; |
393 | | dest->tm_wday = src->tm_wday; |
394 | | dest->tm_yday = src->tm_yday; |
395 | | dest->tm_isdst = src->tm_isdst; |
396 | | |
397 | | # ifdef HAVE_TM_TM_GMTOFF |
398 | | dest->tm_gmtoff = src->tm_gmtoff; |
399 | | # endif |
400 | | |
401 | | # ifdef HAVE_TM_TM_ZONE |
402 | | dest->tm_zone = src->tm_zone; |
403 | | # endif |
404 | | |
405 | | # else |
406 | | /* They're the same type */ |
407 | 0 | memcpy(dest, src, sizeof(*dest)); |
408 | 0 | # endif |
409 | 0 | } |
410 | 0 | } |
411 | | |
412 | | |
413 | 0 | void copy_TM64_to_tm(const struct TM *src, struct tm *dest) { |
414 | 0 | if( src == NULL ) { |
415 | 0 | memset(dest, 0, sizeof(*dest)); |
416 | 0 | } |
417 | 0 | else { |
418 | | # ifdef USE_TM64 |
419 | | dest->tm_sec = src->tm_sec; |
420 | | dest->tm_min = src->tm_min; |
421 | | dest->tm_hour = src->tm_hour; |
422 | | dest->tm_mday = src->tm_mday; |
423 | | dest->tm_mon = src->tm_mon; |
424 | | dest->tm_year = (int)src->tm_year; |
425 | | dest->tm_wday = src->tm_wday; |
426 | | dest->tm_yday = src->tm_yday; |
427 | | dest->tm_isdst = src->tm_isdst; |
428 | | |
429 | | # ifdef HAVE_TM_TM_GMTOFF |
430 | | dest->tm_gmtoff = src->tm_gmtoff; |
431 | | # endif |
432 | | |
433 | | # ifdef HAVE_TM_TM_ZONE |
434 | | dest->tm_zone = src->tm_zone; |
435 | | # endif |
436 | | |
437 | | # else |
438 | | /* They're the same type */ |
439 | 0 | memcpy(dest, src, sizeof(*dest)); |
440 | 0 | # endif |
441 | 0 | } |
442 | 0 | } |
443 | | |
444 | | |
445 | | #ifndef HAVE_LOCALTIME_R |
446 | | /* Simulate localtime_r() to the best of our ability */ |
447 | | static struct tm * fake_localtime_r(const time_t *time, struct tm *result) { |
448 | | const struct tm *static_result = localtime(time); |
449 | | |
450 | | assert(result != NULL); |
451 | | |
452 | | if( static_result == NULL ) { |
453 | | memset(result, 0, sizeof(*result)); |
454 | | return NULL; |
455 | | } |
456 | | else { |
457 | | memcpy(result, static_result, sizeof(*result)); |
458 | | return result; |
459 | | } |
460 | | } |
461 | | #endif |
462 | | |
463 | | |
464 | | #ifndef HAVE_GMTIME_R |
465 | | /* Simulate gmtime_r() to the best of our ability */ |
466 | | static struct tm * fake_gmtime_r(const time_t *time, struct tm *result) { |
467 | | const struct tm *static_result = gmtime(time); |
468 | | |
469 | | assert(result != NULL); |
470 | | |
471 | | if( static_result == NULL ) { |
472 | | memset(result, 0, sizeof(*result)); |
473 | | return NULL; |
474 | | } |
475 | | else { |
476 | | memcpy(result, static_result, sizeof(*result)); |
477 | | return result; |
478 | | } |
479 | | } |
480 | | #endif |
481 | | |
482 | | |
483 | 0 | static Time64_T seconds_between_years(Year left_year, Year right_year) { |
484 | 0 | int increment = (left_year > right_year) ? 1 : -1; |
485 | 0 | Time64_T seconds = 0; |
486 | 0 | int cycles; |
487 | |
|
488 | 0 | if( left_year > 2400 ) { |
489 | 0 | cycles = (left_year - 2400) / 400; |
490 | 0 | left_year -= cycles * 400; |
491 | 0 | seconds += cycles * seconds_in_gregorian_cycle; |
492 | 0 | } |
493 | 0 | else if( left_year < 1600 ) { |
494 | 0 | cycles = (left_year - 1600) / 400; |
495 | 0 | left_year += cycles * 400; |
496 | 0 | seconds += cycles * seconds_in_gregorian_cycle; |
497 | 0 | } |
498 | |
|
499 | 0 | while( left_year != right_year ) { |
500 | 0 | seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; |
501 | 0 | right_year += increment; |
502 | 0 | } |
503 | |
|
504 | 0 | return seconds * increment; |
505 | 0 | } |
506 | | |
507 | | |
508 | 0 | Time64_T mktime64(struct TM *input_date) { |
509 | 0 | struct tm safe_date; |
510 | 0 | struct TM date; |
511 | 0 | Time64_T timev; |
512 | 0 | Year year = input_date->tm_year + 1900; |
513 | |
|
514 | 0 | if( date_in_safe_range(input_date, &SYSTEM_MKTIME_MIN, &SYSTEM_MKTIME_MAX) ) |
515 | 0 | { |
516 | 0 | copy_TM64_to_tm(input_date, &safe_date); |
517 | 0 | timev = (Time64_T)mktime(&safe_date); |
518 | | |
519 | | /* Correct the possibly out of bound input date */ |
520 | 0 | copy_tm_to_TM64(&safe_date, input_date); |
521 | 0 | return timev; |
522 | 0 | } |
523 | | |
524 | | /* Have to make the year safe in date else it won't fit in safe_date */ |
525 | 0 | date = *input_date; |
526 | 0 | date.tm_year = safe_year(year) - 1900; |
527 | 0 | copy_TM64_to_tm(&date, &safe_date); |
528 | |
|
529 | 0 | timev = (Time64_T)mktime(&safe_date); |
530 | | |
531 | | /* Correct the user's possibly out of bound input date */ |
532 | 0 | copy_tm_to_TM64(&safe_date, input_date); |
533 | |
|
534 | 0 | timev += seconds_between_years(year, (Year)(safe_date.tm_year) + 1900); |
535 | |
|
536 | 0 | return timev; |
537 | 0 | } |
538 | | |
539 | | |
540 | | /* Because I think mktime() is a crappy name */ |
541 | 0 | Time64_T timelocal64(struct TM *date) { |
542 | 0 | return mktime64(date); |
543 | 0 | } |
544 | | |
545 | | |
546 | | struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p) |
547 | 0 | { |
548 | 0 | int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; |
549 | 0 | Time64_T v_tm_tday; |
550 | 0 | int leap; |
551 | 0 | Time64_T m; |
552 | 0 | Time64_T timev = *in_time; |
553 | 0 | Year year = 70; |
554 | 0 | int cycles = 0; |
555 | |
|
556 | 0 | assert(p != NULL); |
557 | | |
558 | | /* Use the system gmtime() if time_t is small enough */ |
559 | 0 | if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { |
560 | 0 | time_t safe_time = (time_t)*in_time; |
561 | 0 | struct tm safe_date; |
562 | 0 | GMTIME_R(&safe_time, &safe_date); |
563 | |
|
564 | 0 | copy_tm_to_TM64(&safe_date, p); |
565 | 0 | assert(check_tm(p)); |
566 | | |
567 | 0 | return p; |
568 | 0 | } |
569 | | |
570 | 0 | #ifdef HAVE_TM_TM_GMTOFF |
571 | 0 | p->tm_gmtoff = 0; |
572 | 0 | #endif |
573 | 0 | p->tm_isdst = 0; |
574 | |
|
575 | 0 | #ifdef HAVE_TM_TM_ZONE |
576 | 0 | p->tm_zone = (char*)"UTC"; |
577 | 0 | #endif |
578 | |
|
579 | 0 | v_tm_sec = (int)(timev % 60); |
580 | 0 | timev /= 60; |
581 | 0 | v_tm_min = (int)(timev % 60); |
582 | 0 | timev /= 60; |
583 | 0 | v_tm_hour = (int)(timev % 24); |
584 | 0 | timev /= 24; |
585 | 0 | v_tm_tday = timev; |
586 | |
|
587 | 0 | WRAP (v_tm_sec, v_tm_min, 60); |
588 | 0 | WRAP (v_tm_min, v_tm_hour, 60); |
589 | 0 | WRAP (v_tm_hour, v_tm_tday, 24); |
590 | |
|
591 | 0 | v_tm_wday = (int)((v_tm_tday + 4) % 7); |
592 | 0 | if (v_tm_wday < 0) |
593 | 0 | v_tm_wday += 7; |
594 | 0 | m = v_tm_tday; |
595 | |
|
596 | 0 | if (m >= CHEAT_DAYS) { |
597 | 0 | year = CHEAT_YEARS; |
598 | 0 | m -= CHEAT_DAYS; |
599 | 0 | } |
600 | |
|
601 | 0 | if (m >= 0) { |
602 | | /* Gregorian cycles, this is huge optimization for distant times */ |
603 | 0 | cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); |
604 | 0 | if( cycles ) { |
605 | 0 | m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
606 | 0 | year += (cycles * years_in_gregorian_cycle); |
607 | 0 | } |
608 | | |
609 | | /* Years */ |
610 | 0 | leap = IS_LEAP (year); |
611 | 0 | while (m >= (Time64_T) length_of_year[leap]) { |
612 | 0 | m -= (Time64_T) length_of_year[leap]; |
613 | 0 | year++; |
614 | 0 | leap = IS_LEAP (year); |
615 | 0 | } |
616 | | |
617 | | /* Months */ |
618 | 0 | v_tm_mon = 0; |
619 | 0 | while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { |
620 | 0 | m -= (Time64_T) days_in_month[leap][v_tm_mon]; |
621 | 0 | v_tm_mon++; |
622 | 0 | } |
623 | 0 | } else { |
624 | 0 | year--; |
625 | | |
626 | | /* Gregorian cycles */ |
627 | 0 | cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); |
628 | 0 | if( cycles ) { |
629 | 0 | m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
630 | 0 | year += (cycles * years_in_gregorian_cycle); |
631 | 0 | } |
632 | | |
633 | | /* Years */ |
634 | 0 | leap = IS_LEAP (year); |
635 | 0 | while (m < (Time64_T) -length_of_year[leap]) { |
636 | 0 | m += (Time64_T) length_of_year[leap]; |
637 | 0 | year--; |
638 | 0 | leap = IS_LEAP (year); |
639 | 0 | } |
640 | | |
641 | | /* Months */ |
642 | 0 | v_tm_mon = 11; |
643 | 0 | while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { |
644 | 0 | m += (Time64_T) days_in_month[leap][v_tm_mon]; |
645 | 0 | v_tm_mon--; |
646 | 0 | } |
647 | 0 | m += (Time64_T) days_in_month[leap][v_tm_mon]; |
648 | 0 | } |
649 | |
|
650 | 0 | p->tm_year = year; |
651 | 0 | if( p->tm_year != year ) { |
652 | 0 | #ifdef EOVERFLOW |
653 | 0 | errno = EOVERFLOW; |
654 | 0 | #endif |
655 | 0 | return NULL; |
656 | 0 | } |
657 | | |
658 | | /* At this point m is less than a year so casting to an int is safe */ |
659 | 0 | p->tm_mday = (int) m + 1; |
660 | 0 | p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; |
661 | 0 | p->tm_sec = v_tm_sec; |
662 | 0 | p->tm_min = v_tm_min; |
663 | 0 | p->tm_hour = v_tm_hour; |
664 | 0 | p->tm_mon = v_tm_mon; |
665 | 0 | p->tm_wday = v_tm_wday; |
666 | |
|
667 | 0 | assert(check_tm(p)); |
668 | | |
669 | 0 | return p; |
670 | 0 | } |
671 | | |
672 | | |
673 | | struct TM *localtime64_r (const Time64_T *timev, struct TM *local_tm) |
674 | 0 | { |
675 | 0 | time_t safe_time; |
676 | 0 | struct tm safe_date; |
677 | 0 | struct TM gm_tm; |
678 | 0 | Year orig_year; |
679 | 0 | int month_diff; |
680 | |
|
681 | 0 | assert(local_tm != NULL); |
682 | | |
683 | | /* Use the system localtime() if time_t is small enough */ |
684 | 0 | if( SHOULD_USE_SYSTEM_LOCALTIME(*timev) ) { |
685 | 0 | safe_time = (time_t)*timev; |
686 | |
|
687 | 0 | TIME64_TRACE1("Using system localtime for %lld\n", *timev); |
688 | |
|
689 | 0 | LOCALTIME_R(&safe_time, &safe_date); |
690 | |
|
691 | 0 | copy_tm_to_TM64(&safe_date, local_tm); |
692 | 0 | assert(check_tm(local_tm)); |
693 | | |
694 | 0 | return local_tm; |
695 | 0 | } |
696 | | |
697 | 0 | if( gmtime64_r(timev, &gm_tm) == NULL ) { |
698 | 0 | TIME64_TRACE1("gmtime64_r returned null for %lld\n", *timev); |
699 | 0 | return NULL; |
700 | 0 | } |
701 | | |
702 | 0 | orig_year = gm_tm.tm_year; |
703 | |
|
704 | 0 | if (gm_tm.tm_year > (2037 - 1900) || |
705 | 0 | gm_tm.tm_year < (1970 - 1900) |
706 | 0 | ) |
707 | 0 | { |
708 | 0 | TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); |
709 | 0 | gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year) + 1900) - 1900; |
710 | 0 | } |
711 | |
|
712 | 0 | safe_time = (time_t)timegm64(&gm_tm); |
713 | 0 | if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { |
714 | 0 | TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); |
715 | 0 | return NULL; |
716 | 0 | } |
717 | | |
718 | 0 | copy_tm_to_TM64(&safe_date, local_tm); |
719 | |
|
720 | 0 | local_tm->tm_year = orig_year; |
721 | 0 | if( local_tm->tm_year != orig_year ) { |
722 | 0 | TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", |
723 | 0 | (Year)local_tm->tm_year, (Year)orig_year); |
724 | |
|
725 | 0 | #ifdef EOVERFLOW |
726 | 0 | errno = EOVERFLOW; |
727 | 0 | #endif |
728 | 0 | return NULL; |
729 | 0 | } |
730 | | |
731 | | |
732 | 0 | month_diff = local_tm->tm_mon - gm_tm.tm_mon; |
733 | | |
734 | | /* When localtime is Dec 31st previous year and |
735 | | gmtime is Jan 1st next year. |
736 | | */ |
737 | 0 | if( month_diff == 11 ) { |
738 | 0 | local_tm->tm_year--; |
739 | 0 | } |
740 | | |
741 | | /* When localtime is Jan 1st, next year and |
742 | | gmtime is Dec 31st, previous year. |
743 | | */ |
744 | 0 | if( month_diff == -11 ) { |
745 | 0 | local_tm->tm_year++; |
746 | 0 | } |
747 | | |
748 | | /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st |
749 | | in a non-leap xx00. There is one point in the cycle |
750 | | we can't account for which the safe xx00 year is a leap |
751 | | year. So we need to correct for Dec 31st comming out as |
752 | | the 366th day of the year. |
753 | | */ |
754 | 0 | if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) |
755 | 0 | local_tm->tm_yday--; |
756 | |
|
757 | 0 | assert(check_tm(local_tm)); |
758 | | |
759 | 0 | return local_tm; |
760 | 0 | } |
761 | | |
762 | | |
763 | 0 | static int valid_tm_wday( const struct TM* date ) { |
764 | 0 | if( 0 <= date->tm_wday && date->tm_wday <= 6 ) |
765 | 0 | return 1; |
766 | | |
767 | 0 | return 0; |
768 | 0 | } |
769 | | |
770 | 0 | static int valid_tm_mon( const struct TM* date ) { |
771 | 0 | if( 0 <= date->tm_mon && date->tm_mon <= 11 ) |
772 | 0 | return 1; |
773 | | |
774 | 0 | return 0; |
775 | 0 | } |
776 | | |
777 | | |
778 | 0 | char *asctime64_r( const struct TM* date, char *result ) { |
779 | | /* I figure everything else can be displayed, even hour 25, but if |
780 | | these are out of range we walk off the name arrays */ |
781 | 0 | if( !valid_tm_wday(date) || !valid_tm_mon(date) ) |
782 | 0 | return NULL; |
783 | | |
784 | 0 | sprintf(result, TM64_ASCTIME_FORMAT, |
785 | 0 | wday_name[date->tm_wday], |
786 | 0 | mon_name[date->tm_mon], |
787 | 0 | date->tm_mday, date->tm_hour, |
788 | 0 | date->tm_min, date->tm_sec, |
789 | 0 | 1900 + date->tm_year); |
790 | |
|
791 | 0 | return result; |
792 | 0 | } |
793 | | |
794 | | |
795 | 0 | char *ctime64_r( const Time64_T* timev, char* result ) { |
796 | 0 | struct TM date; |
797 | |
|
798 | 0 | if (!localtime64_r( timev, &date )) |
799 | 0 | return NULL; |
800 | | |
801 | 0 | return asctime64_r( &date, result ); |
802 | 0 | } |
803 | | |