/src/LPM/external.protobuf/include/google/protobuf/parse_context.h
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // Protocol Buffers - Google's data interchange format  | 
2  |  | // Copyright 2008 Google Inc.  All rights reserved.  | 
3  |  | //  | 
4  |  | // Use of this source code is governed by a BSD-style  | 
5  |  | // license that can be found in the LICENSE file or at  | 
6  |  | // https://developers.google.com/open-source/licenses/bsd  | 
7  |  |  | 
8  |  | #ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__  | 
9  |  | #define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__  | 
10  |  |  | 
11  |  | #include <cstdint>  | 
12  |  | #include <cstring>  | 
13  |  | #include <string>  | 
14  |  | #include <type_traits>  | 
15  |  | #include <utility>  | 
16  |  |  | 
17  |  | #include "absl/base/config.h"  | 
18  |  | #include "absl/log/absl_check.h"  | 
19  |  | #include "absl/log/absl_log.h"  | 
20  |  | #include "absl/strings/cord.h"  | 
21  |  | #include "absl/strings/internal/resize_uninitialized.h"  | 
22  |  | #include "absl/strings/string_view.h"  | 
23  |  | #include "absl/types/optional.h"  | 
24  |  | #include "google/protobuf/arena.h"  | 
25  |  | #include "google/protobuf/arenastring.h"  | 
26  |  | #include "google/protobuf/endian.h"  | 
27  |  | #include "google/protobuf/inlined_string_field.h"  | 
28  |  | #include "google/protobuf/io/coded_stream.h"  | 
29  |  | #include "google/protobuf/io/zero_copy_stream.h"  | 
30  |  | #include "google/protobuf/metadata_lite.h"  | 
31  |  | #include "google/protobuf/port.h"  | 
32  |  | #include "google/protobuf/repeated_field.h"  | 
33  |  | #include "google/protobuf/wire_format_lite.h"  | 
34  |  |  | 
35  |  |  | 
36  |  | // Must be included last.  | 
37  |  | #include "google/protobuf/port_def.inc"  | 
38  |  |  | 
39  |  |  | 
40  |  | namespace google { | 
41  |  | namespace protobuf { | 
42  |  |  | 
43  |  | class UnknownFieldSet;  | 
44  |  | class DescriptorPool;  | 
45  |  | class MessageFactory;  | 
46  |  |  | 
47  |  | namespace internal { | 
48  |  |  | 
49  |  | // Template code below needs to know about the existence of these functions.  | 
50  |  | PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s);  | 
51  |  | PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, absl::string_view val,  | 
52  |  |                                           std::string* s);  | 
53  |  | // Inline because it is just forwarding to s->WriteVarint  | 
54  |  | inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s);  | 
55  |  | inline void WriteLengthDelimited(uint32_t num, absl::string_view val,  | 
56  |  |                                  UnknownFieldSet* s);  | 
57  |  |  | 
58  |  |  | 
59  |  | // The basic abstraction the parser is designed for is a slight modification  | 
60  |  | // of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized  | 
61  |  | // stream as a series of buffers that concatenate to the full stream.  | 
62  |  | // Pictorially a ZCIS presents a stream in chunks like so  | 
63  |  | // [---------------------------------------------------------------]  | 
64  |  | // [---------------------] chunk 1  | 
65  |  | //                      [----------------------------] chunk 2  | 
66  |  | //                                          chunk 3 [--------------]  | 
67  |  | //  | 
68  |  | // Where the '-' represent the bytes which are vertically lined up with the  | 
69  |  | // bytes of the stream. The proto parser requires its input to be presented  | 
70  |  | // similarly with the extra  | 
71  |  | // property that each chunk has kSlopBytes past its end that overlaps with the  | 
72  |  | // first kSlopBytes of the next chunk, or if there is no next chunk at least its  | 
73  |  | // still valid to read those bytes. Again, pictorially, we now have  | 
74  |  | //  | 
75  |  | // [---------------------------------------------------------------]  | 
76  |  | // [-------------------....] chunk 1  | 
77  |  | //                    [------------------------....] chunk 2  | 
78  |  | //                                    chunk 3 [------------------..**]  | 
79  |  | //                                                      chunk 4 [--****]  | 
80  |  | // Here '-' mean the bytes of the stream or chunk and '.' means bytes past the  | 
81  |  | // chunk that match up with the start of the next chunk. Above each chunk has  | 
82  |  | // 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes  | 
83  |  | // past the stream, indicated by '*' above, their values are unspecified. It is  | 
84  |  | // still legal to read them (ie. should not segfault). Reading past the  | 
85  |  | // end should be detected by the user and indicated as an error.  | 
86  |  | //  | 
87  |  | // The reason for this, admittedly, unconventional invariant is to ruthlessly  | 
88  |  | // optimize the protobuf parser. Having an overlap helps in two important ways.  | 
89  |  | // Firstly it alleviates having to performing bounds checks if a piece of code  | 
90  |  | // is guaranteed to not read more than kSlopBytes. Secondly, and more  | 
91  |  | // importantly, the protobuf wireformat is such that reading a key/value pair is  | 
92  |  | // always less than 16 bytes. This removes the need to change to next buffer in  | 
93  |  | // the middle of reading primitive values. Hence there is no need to store and  | 
94  |  | // load the current position.  | 
95  |  |  | 
96  |  | class PROTOBUF_EXPORT EpsCopyInputStream { | 
97  |  |  public:  | 
98  |  |   enum { kMaxCordBytesToCopy = 512 }; | 
99  |  |   explicit EpsCopyInputStream(bool enable_aliasing)  | 
100  | 0  |       : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {} | 
101  |  |  | 
102  | 0  |   void BackUp(const char* ptr) { | 
103  | 0  |     ABSL_DCHECK(ptr <= buffer_end_ + kSlopBytes);  | 
104  | 0  |     int count;  | 
105  | 0  |     if (next_chunk_ == patch_buffer_) { | 
106  | 0  |       count = static_cast<int>(buffer_end_ + kSlopBytes - ptr);  | 
107  | 0  |     } else { | 
108  | 0  |       count = size_ + static_cast<int>(buffer_end_ - ptr);  | 
109  | 0  |     }  | 
110  | 0  |     if (count > 0) StreamBackUp(count);  | 
111  | 0  |   }  | 
112  |  |  | 
113  |  |   // In sanitizer mode we use memory poisoning to guarantee that:  | 
114  |  |   //  - We do not read an uninitialized token.  | 
115  |  |   //  - We would like to verify that this token was consumed, but unfortunately  | 
116  |  |   //    __asan_address_is_poisoned is allowed to have false negatives.  | 
117  |  |   class LimitToken { | 
118  |  |    public:  | 
119  | 0  |     LimitToken() { PROTOBUF_POISON_MEMORY_REGION(&token_, sizeof(token_)); } | 
120  |  |  | 
121  | 0  |     explicit LimitToken(int token) : token_(token) { | 
122  | 0  |       PROTOBUF_UNPOISON_MEMORY_REGION(&token_, sizeof(token_));  | 
123  | 0  |     }  | 
124  |  |  | 
125  |  |     LimitToken(const LimitToken&) = delete;  | 
126  |  |     LimitToken& operator=(const LimitToken&) = delete;  | 
127  |  |  | 
128  | 0  |     LimitToken(LimitToken&& other) { *this = std::move(other); } | 
129  |  |  | 
130  | 0  |     LimitToken& operator=(LimitToken&& other) { | 
131  | 0  |       PROTOBUF_UNPOISON_MEMORY_REGION(&token_, sizeof(token_));  | 
132  | 0  |       token_ = other.token_;  | 
133  | 0  |       PROTOBUF_POISON_MEMORY_REGION(&other.token_, sizeof(token_));  | 
134  | 0  |       return *this;  | 
135  | 0  |     }  | 
136  |  |  | 
137  | 0  |     ~LimitToken() { PROTOBUF_UNPOISON_MEMORY_REGION(&token_, sizeof(token_)); } | 
138  |  |  | 
139  | 0  |     int token() && { | 
140  | 0  |       int t = token_;  | 
141  | 0  |       PROTOBUF_POISON_MEMORY_REGION(&token_, sizeof(token_));  | 
142  | 0  |       return t;  | 
143  | 0  |     }  | 
144  |  |  | 
145  |  |    private:  | 
146  |  |     int token_;  | 
147  |  |   };  | 
148  |  |  | 
149  |  |   // If return value is negative it's an error  | 
150  | 0  |   PROTOBUF_NODISCARD LimitToken PushLimit(const char* ptr, int limit) { | 
151  | 0  |     ABSL_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes);  | 
152  | 0  |     // This add is safe due to the invariant above, because  | 
153  | 0  |     // ptr - buffer_end_ <= kSlopBytes.  | 
154  | 0  |     limit += static_cast<int>(ptr - buffer_end_);  | 
155  | 0  |     limit_end_ = buffer_end_ + (std::min)(0, limit);  | 
156  | 0  |     auto old_limit = limit_;  | 
157  | 0  |     limit_ = limit;  | 
158  | 0  |     return LimitToken(old_limit - limit);  | 
159  | 0  |   }  | 
160  |  |  | 
161  | 0  |   PROTOBUF_NODISCARD bool PopLimit(LimitToken delta) { | 
162  | 0  |     // We must update the limit first before the early return. Otherwise, we can  | 
163  | 0  |     // end up with an invalid limit and it can lead to integer overflows.  | 
164  | 0  |     limit_ = limit_ + std::move(delta).token();  | 
165  | 0  |     if (PROTOBUF_PREDICT_FALSE(!EndedAtLimit())) return false;  | 
166  | 0  |     // TODO We could remove this line and hoist the code to  | 
167  | 0  |     // DoneFallback. Study the perf/bin-size effects.  | 
168  | 0  |     limit_end_ = buffer_end_ + (std::min)(0, limit_);  | 
169  | 0  |     return true;  | 
170  | 0  |   }  | 
171  |  |  | 
172  | 0  |   PROTOBUF_NODISCARD const char* Skip(const char* ptr, int size) { | 
173  | 0  |     if (size <= buffer_end_ + kSlopBytes - ptr) { | 
174  | 0  |       return ptr + size;  | 
175  | 0  |     }  | 
176  | 0  |     return SkipFallback(ptr, size);  | 
177  | 0  |   }  | 
178  |  |   PROTOBUF_NODISCARD const char* ReadString(const char* ptr, int size,  | 
179  | 0  |                                             std::string* s) { | 
180  | 0  |     if (size <= buffer_end_ + kSlopBytes - ptr) { | 
181  | 0  |       // Fundamentally we just want to do assign to the string.  | 
182  | 0  |       // However micro-benchmarks regress on string reading cases. So we copy  | 
183  | 0  |       // the same logic from the old CodedInputStream ReadString. Note: as of  | 
184  | 0  |       // Apr 2021, this is still a significant win over `assign()`.  | 
185  | 0  |       absl::strings_internal::STLStringResizeUninitialized(s, size);  | 
186  | 0  |       char* z = &(*s)[0];  | 
187  | 0  |       memcpy(z, ptr, size);  | 
188  | 0  |       return ptr + size;  | 
189  | 0  |     }  | 
190  | 0  |     return ReadStringFallback(ptr, size, s);  | 
191  | 0  |   }  | 
192  |  |   PROTOBUF_NODISCARD const char* AppendString(const char* ptr, int size,  | 
193  | 0  |                                               std::string* s) { | 
194  | 0  |     if (size <= buffer_end_ + kSlopBytes - ptr) { | 
195  | 0  |       s->append(ptr, size);  | 
196  | 0  |       return ptr + size;  | 
197  | 0  |     }  | 
198  | 0  |     return AppendStringFallback(ptr, size, s);  | 
199  | 0  |   }  | 
200  |  |   // Implemented in arenastring.cc  | 
201  |  |   PROTOBUF_NODISCARD const char* ReadArenaString(const char* ptr,  | 
202  |  |                                                  ArenaStringPtr* s,  | 
203  |  |                                                  Arena* arena);  | 
204  |  |  | 
205  |  |   PROTOBUF_NODISCARD const char* ReadCord(const char* ptr, int size,  | 
206  | 0  |                                           ::absl::Cord* cord) { | 
207  | 0  |     if (size <= std::min<int>(static_cast<int>(buffer_end_ + kSlopBytes - ptr),  | 
208  | 0  |                               kMaxCordBytesToCopy)) { | 
209  | 0  |       *cord = absl::string_view(ptr, size);  | 
210  | 0  |       return ptr + size;  | 
211  | 0  |     }  | 
212  | 0  |     return ReadCordFallback(ptr, size, cord);  | 
213  | 0  |   }  | 
214  |  |  | 
215  |  |  | 
216  |  |   template <typename Tag, typename T>  | 
217  |  |   PROTOBUF_NODISCARD const char* ReadRepeatedFixed(const char* ptr,  | 
218  |  |                                                    Tag expected_tag,  | 
219  |  |                                                    RepeatedField<T>* out);  | 
220  |  |  | 
221  |  |   template <typename T>  | 
222  |  |   PROTOBUF_NODISCARD const char* ReadPackedFixed(const char* ptr, int size,  | 
223  |  |                                                  RepeatedField<T>* out);  | 
224  |  |   template <typename Add>  | 
225  |  |   PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add) { | 
226  |  |     return ReadPackedVarint(ptr, add, [](int) {}); | 
227  |  |   }  | 
228  |  |   template <typename Add, typename SizeCb>  | 
229  |  |   PROTOBUF_NODISCARD const char* ReadPackedVarint(const char* ptr, Add add,  | 
230  |  |                                                   SizeCb size_callback);  | 
231  |  |  | 
232  | 0  |   uint32_t LastTag() const { return last_tag_minus_1_ + 1; } | 
233  | 0  |   bool ConsumeEndGroup(uint32_t start_tag) { | 
234  | 0  |     bool res = last_tag_minus_1_ == start_tag;  | 
235  | 0  |     last_tag_minus_1_ = 0;  | 
236  | 0  |     return res;  | 
237  | 0  |   }  | 
238  | 0  |   bool EndedAtLimit() const { return last_tag_minus_1_ == 0; } | 
239  | 0  |   bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; } | 
240  | 0  |   void SetLastTag(uint32_t tag) { last_tag_minus_1_ = tag - 1; } | 
241  | 0  |   void SetEndOfStream() { last_tag_minus_1_ = 1; } | 
242  | 0  |   bool IsExceedingLimit(const char* ptr) { | 
243  | 0  |     return ptr > limit_end_ &&  | 
244  | 0  |            (next_chunk_ == nullptr || ptr - buffer_end_ > limit_);  | 
245  | 0  |   }  | 
246  | 0  |   bool AliasingEnabled() const { return aliasing_ != kNoAliasing; } | 
247  | 0  |   int BytesUntilLimit(const char* ptr) const { | 
248  | 0  |     return limit_ + static_cast<int>(buffer_end_ - ptr);  | 
249  | 0  |   }  | 
250  |  |   // Maximum number of sequential bytes that can be read starting from `ptr`.  | 
251  | 0  |   int MaximumReadSize(const char* ptr) const { | 
252  | 0  |     return static_cast<int>(limit_end_ - ptr) + kSlopBytes;  | 
253  | 0  |   }  | 
254  |  |   // Returns true if more data is available, if false is returned one has to  | 
255  |  |   // call Done for further checks.  | 
256  | 0  |   bool DataAvailable(const char* ptr) { return ptr < limit_end_; } | 
257  |  |  | 
258  |  |  protected:  | 
259  |  |   // Returns true if limit (either an explicit limit or end of stream) is  | 
260  |  |   // reached. It aligns *ptr across buffer seams.  | 
261  |  |   // If limit is exceeded, it returns true and ptr is set to null.  | 
262  | 0  |   bool DoneWithCheck(const char** ptr, int d) { | 
263  | 0  |     ABSL_DCHECK(*ptr);  | 
264  | 0  |     if (PROTOBUF_PREDICT_TRUE(*ptr < limit_end_)) return false;  | 
265  | 0  |     int overrun = static_cast<int>(*ptr - buffer_end_);  | 
266  | 0  |     ABSL_DCHECK_LE(overrun, kSlopBytes);  // Guaranteed by parse loop.  | 
267  | 0  |     if (overrun ==  | 
268  | 0  |         limit_) {  //  No need to flip buffers if we ended on a limit. | 
269  | 0  |       // If we actually overrun the buffer and next_chunk_ is null, it means  | 
270  | 0  |       // the stream ended and we passed the stream end.  | 
271  | 0  |       if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr;  | 
272  | 0  |       return true;  | 
273  | 0  |     }  | 
274  | 0  |     auto res = DoneFallback(overrun, d);  | 
275  | 0  |     *ptr = res.first;  | 
276  | 0  |     return res.second;  | 
277  | 0  |   }  | 
278  |  |  | 
279  | 0  |   const char* InitFrom(absl::string_view flat) { | 
280  | 0  |     overall_limit_ = 0;  | 
281  | 0  |     if (flat.size() > kSlopBytes) { | 
282  | 0  |       limit_ = kSlopBytes;  | 
283  | 0  |       limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes;  | 
284  | 0  |       next_chunk_ = patch_buffer_;  | 
285  | 0  |       if (aliasing_ == kOnPatch) aliasing_ = kNoDelta;  | 
286  | 0  |       return flat.data();  | 
287  | 0  |     } else { | 
288  | 0  |       if (!flat.empty()) { | 
289  | 0  |         std::memcpy(patch_buffer_, flat.data(), flat.size());  | 
290  | 0  |       }  | 
291  | 0  |       limit_ = 0;  | 
292  | 0  |       limit_end_ = buffer_end_ = patch_buffer_ + flat.size();  | 
293  | 0  |       next_chunk_ = nullptr;  | 
294  | 0  |       if (aliasing_ == kOnPatch) { | 
295  | 0  |         aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) -  | 
296  | 0  |                     reinterpret_cast<std::uintptr_t>(patch_buffer_);  | 
297  | 0  |       }  | 
298  | 0  |       return patch_buffer_;  | 
299  | 0  |     }  | 
300  | 0  |   }  | 
301  |  |  | 
302  |  |   const char* InitFrom(io::ZeroCopyInputStream* zcis);  | 
303  |  |  | 
304  | 0  |   const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) { | 
305  | 0  |     if (limit == -1) return InitFrom(zcis);  | 
306  | 0  |     overall_limit_ = limit;  | 
307  | 0  |     auto res = InitFrom(zcis);  | 
308  | 0  |     limit_ = limit - static_cast<int>(buffer_end_ - res);  | 
309  | 0  |     limit_end_ = buffer_end_ + (std::min)(0, limit_);  | 
310  | 0  |     return res;  | 
311  | 0  |   }  | 
312  |  |  | 
313  |  |  private:  | 
314  |  |   enum { kSlopBytes = 16, kPatchBufferSize = 32 }; | 
315  |  |   static_assert(kPatchBufferSize >= kSlopBytes * 2,  | 
316  |  |                 "Patch buffer needs to be at least large enough to hold all "  | 
317  |  |                 "the slop bytes from the previous buffer, plus the first "  | 
318  |  |                 "kSlopBytes from the next buffer.");  | 
319  |  |  | 
320  |  |   const char* limit_end_;  // buffer_end_ + min(limit_, 0)  | 
321  |  |   const char* buffer_end_;  | 
322  |  |   const char* next_chunk_;  | 
323  |  |   int size_;  | 
324  |  |   int limit_;  // relative to buffer_end_;  | 
325  |  |   io::ZeroCopyInputStream* zcis_ = nullptr;  | 
326  |  |   char patch_buffer_[kPatchBufferSize] = {}; | 
327  |  |   enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 }; | 
328  |  |   std::uintptr_t aliasing_ = kNoAliasing;  | 
329  |  |   // This variable is used to communicate how the parse ended, in order to  | 
330  |  |   // completely verify the parsed data. A wire-format parse can end because of  | 
331  |  |   // one of the following conditions:  | 
332  |  |   // 1) A parse can end on a pushed limit.  | 
333  |  |   // 2) A parse can end on End Of Stream (EOS).  | 
334  |  |   // 3) A parse can end on 0 tag (only valid for toplevel message).  | 
335  |  |   // 4) A parse can end on an end-group tag.  | 
336  |  |   // This variable should always be set to 0, which indicates case 1. If the  | 
337  |  |   // parse terminated due to EOS (case 2), it's set to 1. In case the parse  | 
338  |  |   // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1).  | 
339  |  |   // This var doesn't really belong in EpsCopyInputStream and should be part of  | 
340  |  |   // the ParseContext, but case 2 is most easily and optimally implemented in  | 
341  |  |   // DoneFallback.  | 
342  |  |   uint32_t last_tag_minus_1_ = 0;  | 
343  |  |   int overall_limit_ = INT_MAX;  // Overall limit independent of pushed limits.  | 
344  |  |   // Pretty random large number that seems like a safe allocation on most  | 
345  |  |   // systems. TODO do we need to set this as build flag?  | 
346  |  |   enum { kSafeStringSize = 50000000 }; | 
347  |  |  | 
348  |  |   // Advances to next buffer chunk returns a pointer to the same logical place  | 
349  |  |   // in the stream as set by overrun. Overrun indicates the position in the slop  | 
350  |  |   // region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at  | 
351  |  |   // limit, at which point the returned pointer maybe null if there was an  | 
352  |  |   // error. The invariant of this function is that it's guaranteed that  | 
353  |  |   // kSlopBytes bytes can be accessed from the returned ptr. This function might  | 
354  |  |   // advance more buffers than one in the underlying ZeroCopyInputStream.  | 
355  |  |   std::pair<const char*, bool> DoneFallback(int overrun, int depth);  | 
356  |  |   // Advances to the next buffer, at most one call to Next() on the underlying  | 
357  |  |   // ZeroCopyInputStream is made. This function DOES NOT match the returned  | 
358  |  |   // pointer to where in the slop region the parse ends, hence no overrun  | 
359  |  |   // parameter. This is useful for string operations where you always copy  | 
360  |  |   // to the end of the buffer (including the slop region).  | 
361  |  |   const char* Next();  | 
362  |  |   // overrun is the location in the slop region the stream currently is  | 
363  |  |   // (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of  | 
364  |  |   // the ZeroCopyInputStream in the case the parse will end in the last  | 
365  |  |   // kSlopBytes of the current buffer. depth is the current depth of nested  | 
366  |  |   // groups (or negative if the use case does not need careful tracking).  | 
367  |  |   inline const char* NextBuffer(int overrun, int depth);  | 
368  |  |   const char* SkipFallback(const char* ptr, int size);  | 
369  |  |   const char* AppendStringFallback(const char* ptr, int size, std::string* str);  | 
370  |  |   const char* ReadStringFallback(const char* ptr, int size, std::string* str);  | 
371  |  |   const char* ReadCordFallback(const char* ptr, int size, absl::Cord* cord);  | 
372  |  |   static bool ParseEndsInSlopRegion(const char* begin, int overrun, int depth);  | 
373  | 0  |   bool StreamNext(const void** data) { | 
374  | 0  |     bool res = zcis_->Next(data, &size_);  | 
375  | 0  |     if (res) overall_limit_ -= size_;  | 
376  | 0  |     return res;  | 
377  | 0  |   }  | 
378  | 0  |   void StreamBackUp(int count) { | 
379  | 0  |     zcis_->BackUp(count);  | 
380  | 0  |     overall_limit_ += count;  | 
381  | 0  |   }  | 
382  |  |  | 
383  |  |   template <typename A>  | 
384  |  |   const char* AppendSize(const char* ptr, int size, const A& append) { | 
385  |  |     int chunk_size = static_cast<int>(buffer_end_ + kSlopBytes - ptr);  | 
386  |  |     do { | 
387  |  |       ABSL_DCHECK(size > chunk_size);  | 
388  |  |       if (next_chunk_ == nullptr) return nullptr;  | 
389  |  |       append(ptr, chunk_size);  | 
390  |  |       ptr += chunk_size;  | 
391  |  |       size -= chunk_size;  | 
392  |  |       // TODO Next calls NextBuffer which generates buffers with  | 
393  |  |       // overlap and thus incurs cost of copying the slop regions. This is not  | 
394  |  |       // necessary for reading strings. We should just call Next buffers.  | 
395  |  |       if (limit_ <= kSlopBytes) return nullptr;  | 
396  |  |       ptr = Next();  | 
397  |  |       if (ptr == nullptr) return nullptr;  // passed the limit  | 
398  |  |       ptr += kSlopBytes;  | 
399  |  |       chunk_size = static_cast<int>(buffer_end_ + kSlopBytes - ptr);  | 
400  |  |     } while (size > chunk_size);  | 
401  |  |     append(ptr, size);  | 
402  |  |     return ptr + size;  | 
403  |  |   }  | 
404  |  |  | 
405  |  |   // AppendUntilEnd appends data until a limit (either a PushLimit or end of  | 
406  |  |   // stream. Normal payloads are from length delimited fields which have an  | 
407  |  |   // explicit size. Reading until limit only comes when the string takes  | 
408  |  |   // the place of a protobuf, ie RawMessage, lazy fields and implicit weak  | 
409  |  |   // messages. We keep these methods private and friend them.  | 
410  |  |   template <typename A>  | 
411  | 0  |   const char* AppendUntilEnd(const char* ptr, const A& append) { | 
412  | 0  |     if (ptr - buffer_end_ > limit_) return nullptr;  | 
413  | 0  |     while (limit_ > kSlopBytes) { | 
414  | 0  |       size_t chunk_size = buffer_end_ + kSlopBytes - ptr;  | 
415  | 0  |       append(ptr, chunk_size);  | 
416  | 0  |       ptr = Next();  | 
417  | 0  |       if (ptr == nullptr) return limit_end_;  | 
418  | 0  |       ptr += kSlopBytes;  | 
419  | 0  |     }  | 
420  | 0  |     auto end = buffer_end_ + limit_;  | 
421  | 0  |     ABSL_DCHECK(end >= ptr);  | 
422  | 0  |     append(ptr, end - ptr);  | 
423  | 0  |     return end;  | 
424  | 0  |   }  | 
425  |  |  | 
426  |  |   PROTOBUF_NODISCARD const char* AppendString(const char* ptr,  | 
427  | 0  |                                               std::string* str) { | 
428  | 0  |     return AppendUntilEnd(  | 
429  | 0  |         ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); }); | 
430  | 0  |   }  | 
431  |  |   friend class ImplicitWeakMessage;  | 
432  |  |  | 
433  |  |   // Needs access to kSlopBytes.  | 
434  |  |   friend PROTOBUF_EXPORT std::pair<const char*, int32_t> ReadSizeFallback(  | 
435  |  |       const char* p, uint32_t res);  | 
436  |  | };  | 
437  |  |  | 
438  |  | using LazyEagerVerifyFnType = const char* (*)(const char* ptr,  | 
439  |  |                                               ParseContext* ctx);  | 
440  |  | using LazyEagerVerifyFnRef = std::remove_pointer<LazyEagerVerifyFnType>::type&;  | 
441  |  |  | 
442  |  | // ParseContext holds all data that is global to the entire parse. Most  | 
443  |  | // importantly it contains the input stream, but also recursion depth and also  | 
444  |  | // stores the end group tag, in case a parser ended on a endgroup, to verify  | 
445  |  | // matching start/end group tags.  | 
446  |  | class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream { | 
447  |  |  public:  | 
448  |  |   struct Data { | 
449  |  |     const DescriptorPool* pool = nullptr;  | 
450  |  |     MessageFactory* factory = nullptr;  | 
451  |  |   };  | 
452  |  |  | 
453  |  |   template <typename... T>  | 
454  |  |   ParseContext(int depth, bool aliasing, const char** start, T&&... args)  | 
455  |  |       : EpsCopyInputStream(aliasing), depth_(depth) { | 
456  |  |     *start = InitFrom(std::forward<T>(args)...);  | 
457  |  |   }  | 
458  |  |  | 
459  |  |   struct Spawn {}; | 
460  |  |   static constexpr Spawn kSpawn = {}; | 
461  |  |  | 
462  |  |   // Creates a new context from a given "ctx" to inherit a few attributes to  | 
463  |  |   // emulate continued parsing. For example, recursion depth or descriptor pools  | 
464  |  |   // must be passed down to a new "spawned" context to maintain the same parse  | 
465  |  |   // context. Note that the spawned context always disables aliasing (different  | 
466  |  |   // input).  | 
467  |  |   template <typename... T>  | 
468  |  |   ParseContext(Spawn, const ParseContext& ctx, const char** start, T&&... args)  | 
469  |  |       : EpsCopyInputStream(false),  | 
470  |  |         depth_(ctx.depth_),  | 
471  |  |         data_(ctx.data_)  | 
472  |  |   { | 
473  |  |     *start = InitFrom(std::forward<T>(args)...);  | 
474  |  |   }  | 
475  |  |  | 
476  |  |   // Move constructor and assignment operator are not supported because "ptr"  | 
477  |  |   // for parsing may have pointed to an inlined buffer (patch_buffer_) which can  | 
478  |  |   // be invalid afterwards.  | 
479  |  |   ParseContext(ParseContext&&) = delete;  | 
480  |  |   ParseContext& operator=(ParseContext&&) = delete;  | 
481  |  |   ParseContext& operator=(const ParseContext&) = delete;  | 
482  |  |  | 
483  | 0  |   void TrackCorrectEnding() { group_depth_ = 0; } | 
484  |  |  | 
485  |  |   // Done should only be called when the parsing pointer is pointing to the  | 
486  |  |   // beginning of field data - that is, at a tag.  Or if it is NULL.  | 
487  | 0  |   bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); } | 
488  |  |  | 
489  | 0  |   int depth() const { return depth_; } | 
490  |  |  | 
491  | 0  |   Data& data() { return data_; } | 
492  | 0  |   const Data& data() const { return data_; } | 
493  |  |  | 
494  |  |   const char* ParseMessage(MessageLite* msg, const char* ptr);  | 
495  |  |  | 
496  |  |   // Read the length prefix, push the new limit, call the func(ptr), and then  | 
497  |  |   // pop the limit. Useful for situations that don't have an actual message.  | 
498  |  |   template <typename Func>  | 
499  |  |   PROTOBUF_NODISCARD const char* ParseLengthDelimitedInlined(const char*,  | 
500  |  |                                                              const Func& func);  | 
501  |  |  | 
502  |  |   // Push the recursion depth, call the func(ptr), and then pop depth. Useful  | 
503  |  |   // for situations that don't have an actual message.  | 
504  |  |   template <typename Func>  | 
505  |  |   PROTOBUF_NODISCARD const char* ParseGroupInlined(const char* ptr,  | 
506  |  |                                                    uint32_t start_tag,  | 
507  |  |                                                    const Func& func);  | 
508  |  |  | 
509  |  |   // Use a template to avoid the strong dep into TcParser. All callers will have  | 
510  |  |   // the dep.  | 
511  |  |   template <typename Parser = TcParser>  | 
512  |  |   PROTOBUF_ALWAYS_INLINE const char* ParseMessage(  | 
513  |  |       MessageLite* msg, const TcParseTableBase* tc_table, const char* ptr) { | 
514  |  |     return ParseLengthDelimitedInlined(ptr, [&](const char* ptr) { | 
515  |  |       return Parser::ParseLoop(msg, ptr, this, tc_table);  | 
516  |  |     });  | 
517  |  |   }  | 
518  |  |   template <typename Parser = TcParser>  | 
519  |  |   PROTOBUF_ALWAYS_INLINE const char* ParseGroup(  | 
520  |  |       MessageLite* msg, const TcParseTableBase* tc_table, const char* ptr,  | 
521  |  |       uint32_t start_tag) { | 
522  |  |     return ParseGroupInlined(ptr, start_tag, [&](const char* ptr) { | 
523  |  |       return Parser::ParseLoop(msg, ptr, this, tc_table);  | 
524  |  |     });  | 
525  |  |   }  | 
526  |  |  | 
527  |  |   PROTOBUF_NODISCARD PROTOBUF_NDEBUG_INLINE const char* ParseGroup(  | 
528  | 0  |       MessageLite* msg, const char* ptr, uint32_t tag) { | 
529  | 0  |     if (--depth_ < 0) return nullptr;  | 
530  | 0  |     group_depth_++;  | 
531  | 0  |     auto old_depth = depth_;  | 
532  | 0  |     auto old_group_depth = group_depth_;  | 
533  | 0  |     ptr = msg->_InternalParse(ptr, this);  | 
534  | 0  |     if (ptr != nullptr) { | 
535  | 0  |       ABSL_DCHECK_EQ(old_depth, depth_);  | 
536  | 0  |       ABSL_DCHECK_EQ(old_group_depth, group_depth_);  | 
537  | 0  |     }  | 
538  | 0  |     group_depth_--;  | 
539  | 0  |     depth_++;  | 
540  | 0  |     if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr;  | 
541  | 0  |     return ptr;  | 
542  | 0  |   }  | 
543  |  |  | 
544  |  |  private:  | 
545  |  |   // Out-of-line routine to save space in ParseContext::ParseMessage<T>  | 
546  |  |   //   LimitToken old;  | 
547  |  |   //   ptr = ReadSizeAndPushLimitAndDepth(ptr, &old)  | 
548  |  |   // is equivalent to:  | 
549  |  |   //   int size = ReadSize(&ptr);  | 
550  |  |   //   if (!ptr) return nullptr;  | 
551  |  |   //   LimitToken old = PushLimit(ptr, size);  | 
552  |  |   //   if (--depth_ < 0) return nullptr;  | 
553  |  |   PROTOBUF_NODISCARD const char* ReadSizeAndPushLimitAndDepth(  | 
554  |  |       const char* ptr, LimitToken* old_limit);  | 
555  |  |  | 
556  |  |   // As above, but fully inlined for the cases where we care about performance  | 
557  |  |   // more than size. eg TcParser.  | 
558  |  |   PROTOBUF_NODISCARD PROTOBUF_ALWAYS_INLINE const char*  | 
559  |  |   ReadSizeAndPushLimitAndDepthInlined(const char* ptr, LimitToken* old_limit);  | 
560  |  |  | 
561  |  |   // The context keeps an internal stack to keep track of the recursive  | 
562  |  |   // part of the parse state.  | 
563  |  |   // Current depth of the active parser, depth counts down.  | 
564  |  |   // This is used to limit recursion depth (to prevent overflow on malicious  | 
565  |  |   // data), but is also used to index in stack_ to store the current state.  | 
566  |  |   int depth_;  | 
567  |  |   // Unfortunately necessary for the fringe case of ending on 0 or end-group tag  | 
568  |  |   // in the last kSlopBytes of a ZeroCopyInputStream chunk.  | 
569  |  |   int group_depth_ = INT_MIN;  | 
570  |  |   Data data_;  | 
571  |  | };  | 
572  |  |  | 
573  |  | template <int>  | 
574  |  | struct EndianHelper;  | 
575  |  |  | 
576  |  | template <>  | 
577  |  | struct EndianHelper<1> { | 
578  | 0  |   static uint8_t Load(const void* p) { return *static_cast<const uint8_t*>(p); } | 
579  |  | };  | 
580  |  |  | 
581  |  | template <>  | 
582  |  | struct EndianHelper<2> { | 
583  | 0  |   static uint16_t Load(const void* p) { | 
584  | 0  |     uint16_t tmp;  | 
585  | 0  |     std::memcpy(&tmp, p, 2);  | 
586  | 0  |     return little_endian::ToHost(tmp);  | 
587  | 0  |   }  | 
588  |  | };  | 
589  |  |  | 
590  |  | template <>  | 
591  |  | struct EndianHelper<4> { | 
592  | 0  |   static uint32_t Load(const void* p) { | 
593  | 0  |     uint32_t tmp;  | 
594  | 0  |     std::memcpy(&tmp, p, 4);  | 
595  | 0  |     return little_endian::ToHost(tmp);  | 
596  | 0  |   }  | 
597  |  | };  | 
598  |  |  | 
599  |  | template <>  | 
600  |  | struct EndianHelper<8> { | 
601  | 0  |   static uint64_t Load(const void* p) { | 
602  | 0  |     uint64_t tmp;  | 
603  | 0  |     std::memcpy(&tmp, p, 8);  | 
604  | 0  |     return little_endian::ToHost(tmp);  | 
605  | 0  |   }  | 
606  |  | };  | 
607  |  |  | 
608  |  | template <typename T>  | 
609  | 0  | T UnalignedLoad(const char* p) { | 
610  | 0  |   auto tmp = EndianHelper<sizeof(T)>::Load(p);  | 
611  | 0  |   T res;  | 
612  | 0  |   memcpy(&res, &tmp, sizeof(T));  | 
613  | 0  |   return res;  | 
614  | 0  | }  | 
615  |  | template <typename T, typename Void,  | 
616  |  |           typename = std::enable_if_t<std::is_same<Void, void>::value>>  | 
617  |  | T UnalignedLoad(const Void* p) { | 
618  |  |   return UnalignedLoad<T>(reinterpret_cast<const char*>(p));  | 
619  |  | }  | 
620  |  |  | 
621  |  | PROTOBUF_EXPORT  | 
622  |  | std::pair<const char*, uint32_t> VarintParseSlow32(const char* p, uint32_t res);  | 
623  |  | PROTOBUF_EXPORT  | 
624  |  | std::pair<const char*, uint64_t> VarintParseSlow64(const char* p, uint32_t res);  | 
625  |  |  | 
626  | 0  | inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) { | 
627  | 0  |   auto tmp = VarintParseSlow32(p, res);  | 
628  | 0  |   *out = tmp.second;  | 
629  | 0  |   return tmp.first;  | 
630  | 0  | }  | 
631  |  |  | 
632  | 0  | inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) { | 
633  | 0  |   auto tmp = VarintParseSlow64(p, res);  | 
634  | 0  |   *out = tmp.second;  | 
635  | 0  |   return tmp.first;  | 
636  | 0  | }  | 
637  |  |  | 
638  |  | #if defined(__aarch64__) && !defined(_MSC_VER)  | 
639  |  | // Generally, speaking, the ARM-optimized Varint decode algorithm is to extract  | 
640  |  | // and concatenate all potentially valid data bits, compute the actual length  | 
641  |  | // of the Varint, and mask off the data bits which are not actually part of the  | 
642  |  | // result.  More detail on the two main parts is shown below.  | 
643  |  | //  | 
644  |  | // 1) Extract and concatenate all potentially valid data bits.  | 
645  |  | //    Two ARM-specific features help significantly:  | 
646  |  | //    a) Efficient and non-destructive bit extraction (UBFX)  | 
647  |  | //    b) A single instruction can perform both an OR with a shifted  | 
648  |  | //       second operand in one cycle.  E.g., the following two lines do the same  | 
649  |  | //       thing  | 
650  |  | //       ```result = operand_1 | (operand2 << 7);```  | 
651  |  | //       ```ORR %[result], %[operand_1], %[operand_2], LSL #7```  | 
652  |  | //    The figure below shows the implementation for handling four chunks.  | 
653  |  | //  | 
654  |  | // Bits   32    31-24    23   22-16    15    14-8      7     6-0  | 
655  |  | //      +----+---------+----+---------+----+---------+----+---------+  | 
656  |  | //      |CB 3| Chunk 3 |CB 2| Chunk 2 |CB 1| Chunk 1 |CB 0| Chunk 0 |  | 
657  |  | //      +----+---------+----+---------+----+---------+----+---------+  | 
658  |  | //                |              |              |              |  | 
659  |  | //               UBFX           UBFX           UBFX           UBFX    -- cycle 1  | 
660  |  | //                |              |              |              |  | 
661  |  | //                V              V              V              V  | 
662  |  | //               Combined LSL #7 and ORR     Combined LSL #7 and ORR  -- cycle 2  | 
663  |  | //                                 |             |  | 
664  |  | //                                 V             V  | 
665  |  | //                            Combined LSL #14 and ORR                -- cycle 3  | 
666  |  | //                                       |  | 
667  |  | //                                       V  | 
668  |  | //                                Parsed bits 0-27  | 
669  |  | //  | 
670  |  | //  | 
671  |  | // 2) Calculate the index of the cleared continuation bit in order to determine  | 
672  |  | //    where the encoded Varint ends and the size of the decoded value.  The  | 
673  |  | //    easiest way to do this is mask off all data bits, leaving just the  | 
674  |  | //    continuation bits.  We actually need to do the masking on an inverted  | 
675  |  | //    copy of the data, which leaves a 1 in all continuation bits which were  | 
676  |  | //    originally clear.  The number of trailing zeroes in this value indicates  | 
677  |  | //    the size of the Varint.  | 
678  |  | //  | 
679  |  | //  AND  0x80    0x80    0x80    0x80    0x80    0x80    0x80    0x80  | 
680  |  | //  | 
681  |  | // Bits   63      55      47      39      31      23      15       7  | 
682  |  | //      +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+  | 
683  |  | // ~    |CB 7|  |CB 6|  |CB 5|  |CB 4|  |CB 3|  |CB 2|  |CB 1|  |CB 0|  |  | 
684  |  | //      +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+  | 
685  |  | //         |       |       |       |       |       |       |       |  | 
686  |  | //         V       V       V       V       V       V       V       V  | 
687  |  | // Bits   63      55      47      39      31      23      15       7  | 
688  |  | //      +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+  | 
689  |  | //      |~CB 7|0|~CB 6|0|~CB 5|0|~CB 4|0|~CB 3|0|~CB 2|0|~CB 1|0|~CB 0|0|  | 
690  |  | //      +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+  | 
691  |  | //                                      |  | 
692  |  | //                                     CTZ  | 
693  |  | //                                      V  | 
694  |  | //                     Index of first cleared continuation bit  | 
695  |  | //  | 
696  |  | //  | 
697  |  | // While this is implemented in C++ significant care has been taken to ensure  | 
698  |  | // the compiler emits the best instruction sequence.  In some cases we use the  | 
699  |  | // following two functions to manipulate the compiler's scheduling decisions.  | 
700  |  | //  | 
701  |  | // Controls compiler scheduling by telling it that the first value is modified  | 
702  |  | // by the second value the callsite.  This is useful if non-critical path  | 
703  |  | // instructions are too aggressively scheduled, resulting in a slowdown of the  | 
704  |  | // actual critical path due to opportunity costs.  An example usage is shown  | 
705  |  | // where a false dependence of num_bits on result is added to prevent checking  | 
706  |  | // for a very unlikely error until all critical path instructions have been  | 
707  |  | // fetched.  | 
708  |  | //  | 
709  |  | // ```  | 
710  |  | // num_bits = <multiple operations to calculate new num_bits value>  | 
711  |  | // result = <multiple operations to calculate result>  | 
712  |  | // num_bits = ValueBarrier(num_bits, result);  | 
713  |  | // if (num_bits == 63) { | 
714  |  | //   ABSL_LOG(FATAL) << "Invalid num_bits value";  | 
715  |  | // }  | 
716  |  | // ```  | 
717  |  | // Falsely indicate that the specific value is modified at this location.  This  | 
718  |  | // prevents code which depends on this value from being scheduled earlier.  | 
719  |  | template <typename V1Type>  | 
720  |  | PROTOBUF_ALWAYS_INLINE inline V1Type ValueBarrier(V1Type value1) { | 
721  |  |   asm("" : "+r"(value1)); | 
722  |  |   return value1;  | 
723  |  | }  | 
724  |  |  | 
725  |  | template <typename V1Type, typename V2Type>  | 
726  |  | PROTOBUF_ALWAYS_INLINE inline V1Type ValueBarrier(V1Type value1,  | 
727  |  |                                                   V2Type value2) { | 
728  |  |   asm("" : "+r"(value1) : "r"(value2)); | 
729  |  |   return value1;  | 
730  |  | }  | 
731  |  |  | 
732  |  | // Performs a 7 bit UBFX (Unsigned Bit Extract) starting at the indicated bit.  | 
733  |  | static PROTOBUF_ALWAYS_INLINE inline uint64_t Ubfx7(uint64_t data,  | 
734  |  |                                                     uint64_t start) { | 
735  |  |   return ValueBarrier((data >> start) & 0x7f);  | 
736  |  | }  | 
737  |  |  | 
738  |  | PROTOBUF_ALWAYS_INLINE inline uint64_t ExtractAndMergeTwoChunks(  | 
739  |  |     uint64_t data, uint64_t first_byte) { | 
740  |  |   ABSL_DCHECK_LE(first_byte, 6U);  | 
741  |  |   uint64_t first = Ubfx7(data, first_byte * 8);  | 
742  |  |   uint64_t second = Ubfx7(data, (first_byte + 1) * 8);  | 
743  |  |   return ValueBarrier(first | (second << 7));  | 
744  |  | }  | 
745  |  |  | 
746  |  | struct SlowPathEncodedInfo { | 
747  |  |   const char* p;  | 
748  |  |   uint64_t last8;  | 
749  |  |   uint64_t valid_bits;  | 
750  |  |   uint64_t valid_chunk_bits;  | 
751  |  |   uint64_t masked_cont_bits;  | 
752  |  | };  | 
753  |  |  | 
754  |  | // Performs multiple actions which are identical between 32 and 64 bit Varints  | 
755  |  | // in order to compute the length of the encoded Varint and compute the new  | 
756  |  | // of p.  | 
757  |  | PROTOBUF_ALWAYS_INLINE inline SlowPathEncodedInfo ComputeLengthAndUpdateP(  | 
758  |  |     const char* p) { | 
759  |  |   SlowPathEncodedInfo result;  | 
760  |  |   // Load the last two bytes of the encoded Varint.  | 
761  |  |   std::memcpy(&result.last8, p + 2, sizeof(result.last8));  | 
762  |  |   uint64_t mask = ValueBarrier(0x8080808080808080);  | 
763  |  |   // Only set continuation bits remain  | 
764  |  |   result.masked_cont_bits = ValueBarrier(mask & ~result.last8);  | 
765  |  |   // The first cleared continuation bit is the most significant 1 in the  | 
766  |  |   // reversed value.  Result is undefined for an input of 0 and we handle that  | 
767  |  |   // case below.  | 
768  |  |   result.valid_bits = absl::countr_zero(result.masked_cont_bits);  | 
769  |  |   // Calculates the number of chunks in the encoded Varint.  This value is low  | 
770  |  |   // by three as neither the cleared continuation chunk nor the first two chunks  | 
771  |  |   // are counted.  | 
772  |  |   uint64_t set_continuation_bits = result.valid_bits >> 3;  | 
773  |  |   // Update p to point past the encoded Varint.  | 
774  |  |   result.p = p + set_continuation_bits + 3;  | 
775  |  |   // Calculate number of valid data bits in the decoded value so invalid bits  | 
776  |  |   // can be masked off.  Value is too low by 14 but we account for that when  | 
777  |  |   // calculating the mask.  | 
778  |  |   result.valid_chunk_bits = result.valid_bits - set_continuation_bits;  | 
779  |  |   return result;  | 
780  |  | }  | 
781  |  |  | 
782  |  | inline PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint64_t>  | 
783  |  | VarintParseSlowArm64(const char* p, uint64_t first8) { | 
784  |  |   constexpr uint64_t kResultMaskUnshifted = 0xffffffffffffc000ULL;  | 
785  |  |   constexpr uint64_t kFirstResultBitChunk2 = 2 * 7;  | 
786  |  |   constexpr uint64_t kFirstResultBitChunk4 = 4 * 7;  | 
787  |  |   constexpr uint64_t kFirstResultBitChunk6 = 6 * 7;  | 
788  |  |   constexpr uint64_t kFirstResultBitChunk8 = 8 * 7;  | 
789  |  |  | 
790  |  |   SlowPathEncodedInfo info = ComputeLengthAndUpdateP(p);  | 
791  |  |   // Extract data bits from the low six chunks.  This includes chunks zero and  | 
792  |  |   // one which we already know are valid.  | 
793  |  |   uint64_t merged_01 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/0);  | 
794  |  |   uint64_t merged_23 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/2);  | 
795  |  |   uint64_t merged_45 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/4);  | 
796  |  |   // Low 42 bits of decoded value.  | 
797  |  |   uint64_t result = merged_01 | (merged_23 << kFirstResultBitChunk2) |  | 
798  |  |                     (merged_45 << kFirstResultBitChunk4);  | 
799  |  |   // This immediate ends in 14 zeroes since valid_chunk_bits is too low by 14.  | 
800  |  |   uint64_t result_mask = kResultMaskUnshifted << info.valid_chunk_bits;  | 
801  |  |   //  iff the Varint i invalid.  | 
802  |  |   if (PROTOBUF_PREDICT_FALSE(info.masked_cont_bits == 0)) { | 
803  |  |     return {nullptr, 0}; | 
804  |  |   }  | 
805  |  |   // Test for early exit if Varint does not exceed 6 chunks.  Branching on one  | 
806  |  |   // bit is faster on ARM than via a compare and branch.  | 
807  |  |   if (PROTOBUF_PREDICT_FALSE((info.valid_bits & 0x20) != 0)) { | 
808  |  |     // Extract data bits from high four chunks.  | 
809  |  |     uint64_t merged_67 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/6);  | 
810  |  |     // Last two chunks come from last two bytes of info.last8.  | 
811  |  |     uint64_t merged_89 =  | 
812  |  |         ExtractAndMergeTwoChunks(info.last8, /*first_chunk=*/6);  | 
813  |  |     result |= merged_67 << kFirstResultBitChunk6;  | 
814  |  |     result |= merged_89 << kFirstResultBitChunk8;  | 
815  |  |     // Handle an invalid Varint with all 10 continuation bits set.  | 
816  |  |   }  | 
817  |  |   // Mask off invalid data bytes.  | 
818  |  |   result &= ~result_mask;  | 
819  |  |   return {info.p, result}; | 
820  |  | }  | 
821  |  |  | 
822  |  | // See comments in VarintParseSlowArm64 for a description of the algorithm.  | 
823  |  | // Differences in the 32 bit version are noted below.  | 
824  |  | inline PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint32_t>  | 
825  |  | VarintParseSlowArm32(const char* p, uint64_t first8) { | 
826  |  |   constexpr uint64_t kResultMaskUnshifted = 0xffffffffffffc000ULL;  | 
827  |  |   constexpr uint64_t kFirstResultBitChunk1 = 1 * 7;  | 
828  |  |   constexpr uint64_t kFirstResultBitChunk3 = 3 * 7;  | 
829  |  |  | 
830  |  |   // This also skips the slop bytes.  | 
831  |  |   SlowPathEncodedInfo info = ComputeLengthAndUpdateP(p);  | 
832  |  |   // Extract data bits from chunks 1-4.  Chunk zero is merged in below.  | 
833  |  |   uint64_t merged_12 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/1);  | 
834  |  |   uint64_t merged_34 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/3);  | 
835  |  |   first8 = ValueBarrier(first8, p);  | 
836  |  |   uint64_t result = Ubfx7(first8, /*start=*/0);  | 
837  |  |   result = ValueBarrier(result | merged_12 << kFirstResultBitChunk1);  | 
838  |  |   result = ValueBarrier(result | merged_34 << kFirstResultBitChunk3);  | 
839  |  |   uint64_t result_mask = kResultMaskUnshifted << info.valid_chunk_bits;  | 
840  |  |   result &= ~result_mask;  | 
841  |  |   // It is extremely unlikely that a Varint is invalid so checking that  | 
842  |  |   // condition isn't on the critical path. Here we make sure that we don't do so  | 
843  |  |   // until result has been computed.  | 
844  |  |   info.masked_cont_bits = ValueBarrier(info.masked_cont_bits, result);  | 
845  |  |   if (PROTOBUF_PREDICT_FALSE(info.masked_cont_bits == 0)) { | 
846  |  |     return {nullptr, 0}; | 
847  |  |   }  | 
848  |  |   return {info.p, result}; | 
849  |  | }  | 
850  |  |  | 
851  |  | static const char* VarintParseSlowArm(const char* p, uint32_t* out,  | 
852  |  |                                       uint64_t first8) { | 
853  |  |   auto tmp = VarintParseSlowArm32(p, first8);  | 
854  |  |   *out = tmp.second;  | 
855  |  |   return tmp.first;  | 
856  |  | }  | 
857  |  |  | 
858  |  | static const char* VarintParseSlowArm(const char* p, uint64_t* out,  | 
859  |  |                                       uint64_t first8) { | 
860  |  |   auto tmp = VarintParseSlowArm64(p, first8);  | 
861  |  |   *out = tmp.second;  | 
862  |  |   return tmp.first;  | 
863  |  | }  | 
864  |  | #endif  | 
865  |  |  | 
866  |  | // The caller must ensure that p points to at least 10 valid bytes.  | 
867  |  | template <typename T>  | 
868  | 0  | PROTOBUF_NODISCARD const char* VarintParse(const char* p, T* out) { | 
869  | 0  | #if defined(__aarch64__) && defined(ABSL_IS_LITTLE_ENDIAN) && !defined(_MSC_VER)  | 
870  | 0  |   // This optimization is not supported in big endian mode  | 
871  | 0  |   uint64_t first8;  | 
872  | 0  |   std::memcpy(&first8, p, sizeof(first8));  | 
873  | 0  |   if (PROTOBUF_PREDICT_TRUE((first8 & 0x80) == 0)) { | 
874  | 0  |     *out = static_cast<uint8_t>(first8);  | 
875  | 0  |     return p + 1;  | 
876  | 0  |   }  | 
877  | 0  |   if (PROTOBUF_PREDICT_TRUE((first8 & 0x8000) == 0)) { | 
878  | 0  |     uint64_t chunk1;  | 
879  | 0  |     uint64_t chunk2;  | 
880  | 0  |     // Extracting the two chunks this way gives a speedup for this path.  | 
881  | 0  |     chunk1 = Ubfx7(first8, 0);  | 
882  | 0  |     chunk2 = Ubfx7(first8, 8);  | 
883  | 0  |     *out = chunk1 | (chunk2 << 7);  | 
884  | 0  |     return p + 2;  | 
885  | 0  |   }  | 
886  | 0  |   return VarintParseSlowArm(p, out, first8);  | 
887  | 0  | #else   // __aarch64__  | 
888  | 0  |   auto ptr = reinterpret_cast<const uint8_t*>(p);  | 
889  | 0  |   uint32_t res = ptr[0];  | 
890  | 0  |   if ((res & 0x80) == 0) { | 
891  | 0  |     *out = res;  | 
892  | 0  |     return p + 1;  | 
893  | 0  |   }  | 
894  | 0  |   return VarintParseSlow(p, res, out);  | 
895  | 0  | #endif  // __aarch64__  | 
896  | 0  | } Unexecuted instantiation: char const* google::protobuf::internal::VarintParse<unsigned long>(char const*, unsigned long*) Unexecuted instantiation: char const* google::protobuf::internal::VarintParse<unsigned int>(char const*, unsigned int*)  | 
897  |  |  | 
898  |  | // Used for tags, could read up to 5 bytes which must be available.  | 
899  |  | // Caller must ensure it's safe to call.  | 
900  |  |  | 
901  |  | PROTOBUF_EXPORT  | 
902  |  | std::pair<const char*, uint32_t> ReadTagFallback(const char* p, uint32_t res);  | 
903  |  |  | 
904  |  | // Same as ParseVarint but only accept 5 bytes at most.  | 
905  |  | inline const char* ReadTag(const char* p, uint32_t* out,  | 
906  | 0  |                            uint32_t /*max_tag*/ = 0) { | 
907  | 0  |   uint32_t res = static_cast<uint8_t>(p[0]);  | 
908  | 0  |   if (res < 128) { | 
909  | 0  |     *out = res;  | 
910  | 0  |     return p + 1;  | 
911  | 0  |   }  | 
912  | 0  |   uint32_t second = static_cast<uint8_t>(p[1]);  | 
913  | 0  |   res += (second - 1) << 7;  | 
914  | 0  |   if (second < 128) { | 
915  | 0  |     *out = res;  | 
916  | 0  |     return p + 2;  | 
917  | 0  |   }  | 
918  | 0  |   auto tmp = ReadTagFallback(p, res);  | 
919  | 0  |   *out = tmp.second;  | 
920  | 0  |   return tmp.first;  | 
921  | 0  | }  | 
922  |  |  | 
923  |  | // As above, but optimized to consume very few registers while still being fast,  | 
924  |  | // ReadTagInlined is useful for callers that don't mind the extra code but would  | 
925  |  | // like to avoid an extern function call causing spills into the stack.  | 
926  |  | //  | 
927  |  | // Two support routines for ReadTagInlined come first...  | 
928  |  | template <class T>  | 
929  |  | PROTOBUF_NODISCARD PROTOBUF_ALWAYS_INLINE constexpr T RotateLeft(  | 
930  | 0  |     T x, int s) noexcept { | 
931  | 0  |   return static_cast<T>(x << (s & (std::numeric_limits<T>::digits - 1))) |  | 
932  | 0  |          static_cast<T>(x >> ((-s) & (std::numeric_limits<T>::digits - 1)));  | 
933  | 0  | }  | 
934  |  |  | 
935  |  | PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE uint64_t  | 
936  | 0  | RotRight7AndReplaceLowByte(uint64_t res, const char& byte) { | 
937  | 0  |   // TODO: remove the inline assembly  | 
938  | 0  | #if defined(__x86_64__) && defined(__GNUC__)  | 
939  | 0  |   // This will only use one register for `res`.  | 
940  | 0  |   // `byte` comes as a reference to allow the compiler to generate code like:  | 
941  | 0  |   //  | 
942  | 0  |   //   rorq    $7, %rcx  | 
943  | 0  |   //   movb    1(%rax), %cl  | 
944  | 0  |   //  | 
945  | 0  |   // which avoids loading the incoming bytes into a separate register first.  | 
946  | 0  |   asm("ror $7,%0\n\t" | 
947  | 0  |       "movb %1,%b0"  | 
948  | 0  |       : "+r"(res)  | 
949  | 0  |       : "m"(byte));  | 
950  | 0  | #else  | 
951  | 0  |   res = RotateLeft(res, -7);  | 
952  | 0  |   res = res & ~0xFF;  | 
953  | 0  |   res |= 0xFF & byte;  | 
954  | 0  | #endif  | 
955  | 0  |   return res;  | 
956  | 0  | }  | 
957  |  |  | 
958  |  | inline PROTOBUF_ALWAYS_INLINE const char* ReadTagInlined(const char* ptr,  | 
959  | 0  |                                                          uint32_t* out) { | 
960  | 0  |   uint64_t res = 0xFF & ptr[0];  | 
961  | 0  |   if (PROTOBUF_PREDICT_FALSE(res >= 128)) { | 
962  | 0  |     res = RotRight7AndReplaceLowByte(res, ptr[1]);  | 
963  | 0  |     if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { | 
964  | 0  |       res = RotRight7AndReplaceLowByte(res, ptr[2]);  | 
965  | 0  |       if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { | 
966  | 0  |         res = RotRight7AndReplaceLowByte(res, ptr[3]);  | 
967  | 0  |         if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { | 
968  | 0  |           // Note: this wouldn't work if res were 32-bit,  | 
969  | 0  |           // because then replacing the low byte would overwrite  | 
970  | 0  |           // the bottom 4 bits of the result.  | 
971  | 0  |           res = RotRight7AndReplaceLowByte(res, ptr[4]);  | 
972  | 0  |           if (PROTOBUF_PREDICT_FALSE(res & 0x80)) { | 
973  | 0  |             // The proto format does not permit longer than 5-byte encodings for  | 
974  | 0  |             // tags.  | 
975  | 0  |             *out = 0;  | 
976  | 0  |             return nullptr;  | 
977  | 0  |           }  | 
978  | 0  |           *out = static_cast<uint32_t>(RotateLeft(res, 28));  | 
979  | 0  | #if defined(__GNUC__)  | 
980  | 0  |           // Note: this asm statement prevents the compiler from  | 
981  | 0  |           // trying to share the "return ptr + constant" among all  | 
982  | 0  |           // branches.  | 
983  | 0  |           asm("" : "+r"(ptr)); | 
984  | 0  | #endif  | 
985  | 0  |           return ptr + 5;  | 
986  | 0  |         }  | 
987  | 0  |         *out = static_cast<uint32_t>(RotateLeft(res, 21));  | 
988  | 0  |         return ptr + 4;  | 
989  | 0  |       }  | 
990  | 0  |       *out = static_cast<uint32_t>(RotateLeft(res, 14));  | 
991  | 0  |       return ptr + 3;  | 
992  | 0  |     }  | 
993  | 0  |     *out = static_cast<uint32_t>(RotateLeft(res, 7));  | 
994  | 0  |     return ptr + 2;  | 
995  | 0  |   }  | 
996  | 0  |   *out = static_cast<uint32_t>(res);  | 
997  | 0  |   return ptr + 1;  | 
998  | 0  | }  | 
999  |  |  | 
1000  |  | // Decode 2 consecutive bytes of a varint and returns the value, shifted left  | 
1001  |  | // by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the  | 
1002  |  | // first byte's continuation bit is set.  | 
1003  |  | // If bit 15 of return value is set (equivalent to the continuation bits of both  | 
1004  |  | // bytes being set) the varint continues, otherwise the parse is done. On x86  | 
1005  |  | // movsx eax, dil  | 
1006  |  | // and edi, eax  | 
1007  |  | // add eax, edi  | 
1008  |  | // adc [rsi], 1  | 
1009  | 0  | inline uint32_t DecodeTwoBytes(const char** ptr) { | 
1010  | 0  |   uint32_t value = UnalignedLoad<uint16_t>(*ptr);  | 
1011  | 0  |   // Sign extend the low byte continuation bit  | 
1012  | 0  |   uint32_t x = static_cast<int8_t>(value);  | 
1013  | 0  |   value &= x;  // Mask out the high byte iff no continuation  | 
1014  | 0  |   // This add is an amazing operation, it cancels the low byte continuation bit  | 
1015  | 0  |   // from y transferring it to the carry. Simultaneously it also shifts the 7  | 
1016  | 0  |   // LSB left by one tightly against high byte varint bits. Hence value now  | 
1017  | 0  |   // contains the unpacked value shifted left by 1.  | 
1018  | 0  |   value += x;  | 
1019  | 0  |   // Use the carry to update the ptr appropriately.  | 
1020  | 0  |   *ptr += value < x ? 2 : 1;  | 
1021  | 0  |   return value;  | 
1022  | 0  | }  | 
1023  |  |  | 
1024  |  | // More efficient varint parsing for big varints  | 
1025  | 0  | inline const char* ParseBigVarint(const char* p, uint64_t* out) { | 
1026  | 0  |   auto pnew = p;  | 
1027  | 0  |   auto tmp = DecodeTwoBytes(&pnew);  | 
1028  | 0  |   uint64_t res = tmp >> 1;  | 
1029  | 0  |   if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { | 
1030  | 0  |     *out = res;  | 
1031  | 0  |     return pnew;  | 
1032  | 0  |   }  | 
1033  | 0  |   for (std::uint32_t i = 1; i < 5; i++) { | 
1034  | 0  |     pnew = p + 2 * i;  | 
1035  | 0  |     tmp = DecodeTwoBytes(&pnew);  | 
1036  | 0  |     res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1);  | 
1037  | 0  |     if (PROTOBUF_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { | 
1038  | 0  |       *out = res;  | 
1039  | 0  |       return pnew;  | 
1040  | 0  |     }  | 
1041  | 0  |   }  | 
1042  | 0  |   return nullptr;  | 
1043  | 0  | }  | 
1044  |  |  | 
1045  |  | PROTOBUF_EXPORT  | 
1046  |  | std::pair<const char*, int32_t> ReadSizeFallback(const char* p, uint32_t first);  | 
1047  |  | // Used for tags, could read up to 5 bytes which must be available. Additionally  | 
1048  |  | // it makes sure the unsigned value fits a int32_t, otherwise returns nullptr.  | 
1049  |  | // Caller must ensure its safe to call.  | 
1050  | 0  | inline uint32_t ReadSize(const char** pp) { | 
1051  | 0  |   auto p = *pp;  | 
1052  | 0  |   uint32_t res = static_cast<uint8_t>(p[0]);  | 
1053  | 0  |   if (res < 128) { | 
1054  | 0  |     *pp = p + 1;  | 
1055  | 0  |     return res;  | 
1056  | 0  |   }  | 
1057  | 0  |   auto x = ReadSizeFallback(p, res);  | 
1058  | 0  |   *pp = x.first;  | 
1059  | 0  |   return x.second;  | 
1060  | 0  | }  | 
1061  |  |  | 
1062  |  | // Some convenience functions to simplify the generated parse loop code.  | 
1063  |  | // Returning the value and updating the buffer pointer allows for nicer  | 
1064  |  | // function composition. We rely on the compiler to inline this.  | 
1065  |  | // Also in debug compiles having local scoped variables tend to generated  | 
1066  |  | // stack frames that scale as O(num fields).  | 
1067  | 0  | inline uint64_t ReadVarint64(const char** p) { | 
1068  | 0  |   uint64_t tmp;  | 
1069  | 0  |   *p = VarintParse(*p, &tmp);  | 
1070  | 0  |   return tmp;  | 
1071  | 0  | }  | 
1072  |  |  | 
1073  | 0  | inline uint32_t ReadVarint32(const char** p) { | 
1074  | 0  |   uint32_t tmp;  | 
1075  | 0  |   *p = VarintParse(*p, &tmp);  | 
1076  | 0  |   return tmp;  | 
1077  | 0  | }  | 
1078  |  |  | 
1079  | 0  | inline int64_t ReadVarintZigZag64(const char** p) { | 
1080  | 0  |   uint64_t tmp;  | 
1081  | 0  |   *p = VarintParse(*p, &tmp);  | 
1082  | 0  |   return WireFormatLite::ZigZagDecode64(tmp);  | 
1083  | 0  | }  | 
1084  |  |  | 
1085  | 0  | inline int32_t ReadVarintZigZag32(const char** p) { | 
1086  | 0  |   uint64_t tmp;  | 
1087  | 0  |   *p = VarintParse(*p, &tmp);  | 
1088  | 0  |   return WireFormatLite::ZigZagDecode32(static_cast<uint32_t>(tmp));  | 
1089  | 0  | }  | 
1090  |  |  | 
1091  |  | template <typename Func>  | 
1092  |  | PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE const char*  | 
1093  | 0  | ParseContext::ParseLengthDelimitedInlined(const char* ptr, const Func& func) { | 
1094  | 0  |   LimitToken old;  | 
1095  | 0  |   ptr = ReadSizeAndPushLimitAndDepthInlined(ptr, &old);  | 
1096  | 0  |   if (ptr == nullptr) return ptr;  | 
1097  | 0  |   auto old_depth = depth_;  | 
1098  | 0  |   PROTOBUF_ALWAYS_INLINE_CALL ptr = func(ptr);  | 
1099  | 0  |   if (ptr != nullptr) ABSL_DCHECK_EQ(old_depth, depth_);  | 
1100  | 0  |   depth_++;  | 
1101  | 0  |   if (!PopLimit(std::move(old))) return nullptr;  | 
1102  | 0  |   return ptr;  | 
1103  | 0  | }  | 
1104  |  |  | 
1105  |  | template <typename Func>  | 
1106  |  | PROTOBUF_NODISCARD inline PROTOBUF_ALWAYS_INLINE const char*  | 
1107  |  | ParseContext::ParseGroupInlined(const char* ptr, uint32_t start_tag,  | 
1108  | 0  |                                 const Func& func) { | 
1109  | 0  |   if (--depth_ < 0) return nullptr;  | 
1110  | 0  |   group_depth_++;  | 
1111  | 0  |   auto old_depth = depth_;  | 
1112  | 0  |   auto old_group_depth = group_depth_;  | 
1113  | 0  |   PROTOBUF_ALWAYS_INLINE_CALL ptr = func(ptr);  | 
1114  | 0  |   if (ptr != nullptr) { | 
1115  | 0  |     ABSL_DCHECK_EQ(old_depth, depth_);  | 
1116  | 0  |     ABSL_DCHECK_EQ(old_group_depth, group_depth_);  | 
1117  | 0  |   }  | 
1118  | 0  |   group_depth_--;  | 
1119  | 0  |   depth_++;  | 
1120  | 0  |   if (PROTOBUF_PREDICT_FALSE(!ConsumeEndGroup(start_tag))) return nullptr;  | 
1121  | 0  |   return ptr;  | 
1122  | 0  | }  | 
1123  |  |  | 
1124  |  | inline const char* ParseContext::ReadSizeAndPushLimitAndDepthInlined(  | 
1125  | 0  |     const char* ptr, LimitToken* old_limit) { | 
1126  | 0  |   int size = ReadSize(&ptr);  | 
1127  | 0  |   if (PROTOBUF_PREDICT_FALSE(!ptr) || depth_ <= 0) { | 
1128  | 0  |     return nullptr;  | 
1129  | 0  |   }  | 
1130  | 0  |   *old_limit = PushLimit(ptr, size);  | 
1131  | 0  |   --depth_;  | 
1132  | 0  |   return ptr;  | 
1133  | 0  | }  | 
1134  |  |  | 
1135  |  | template <typename Tag, typename T>  | 
1136  |  | const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr,  | 
1137  |  |                                                   Tag expected_tag,  | 
1138  |  |                                                   RepeatedField<T>* out) { | 
1139  |  |   do { | 
1140  |  |     out->Add(UnalignedLoad<T>(ptr));  | 
1141  |  |     ptr += sizeof(T);  | 
1142  |  |     if (PROTOBUF_PREDICT_FALSE(ptr >= limit_end_)) return ptr;  | 
1143  |  |   } while (UnalignedLoad<Tag>(ptr) == expected_tag && (ptr += sizeof(Tag)));  | 
1144  |  |   return ptr;  | 
1145  |  | }  | 
1146  |  |  | 
1147  |  | // Add any of the following lines to debug which parse function is failing.  | 
1148  |  |  | 
1149  |  | #define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \  | 
1150  |  |   if (!(predicate)) {                                  \ | 
1151  |  |     /*  ::raise(SIGINT);  */                           \  | 
1152  |  |     /*  ABSL_LOG(ERROR) << "Parse failure";  */        \  | 
1153  |  |     return ret;                                        \  | 
1154  |  |   }  | 
1155  |  |  | 
1156  |  | #define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \  | 
1157  |  |   GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr)  | 
1158  |  |  | 
1159  |  | template <typename T>  | 
1160  |  | const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size,  | 
1161  |  |                                                 RepeatedField<T>* out) { | 
1162  |  |   GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);  | 
1163  |  |   int nbytes = static_cast<int>(buffer_end_ + kSlopBytes - ptr);  | 
1164  |  |   while (size > nbytes) { | 
1165  |  |     int num = nbytes / sizeof(T);  | 
1166  |  |     int old_entries = out->size();  | 
1167  |  |     out->Reserve(old_entries + num);  | 
1168  |  |     int block_size = num * sizeof(T);  | 
1169  |  |     auto dst = out->AddNAlreadyReserved(num);  | 
1170  |  | #ifdef ABSL_IS_LITTLE_ENDIAN  | 
1171  |  |     std::memcpy(dst, ptr, block_size);  | 
1172  |  | #else  | 
1173  |  |     for (int i = 0; i < num; i++)  | 
1174  |  |       dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T));  | 
1175  |  | #endif  | 
1176  |  |     size -= block_size;  | 
1177  |  |     if (limit_ <= kSlopBytes) return nullptr;  | 
1178  |  |     ptr = Next();  | 
1179  |  |     if (ptr == nullptr) return nullptr;  | 
1180  |  |     ptr += kSlopBytes - (nbytes - block_size);  | 
1181  |  |     nbytes = static_cast<int>(buffer_end_ + kSlopBytes - ptr);  | 
1182  |  |   }  | 
1183  |  |   int num = size / sizeof(T);  | 
1184  |  |   int block_size = num * sizeof(T);  | 
1185  |  |   if (num == 0) return size == block_size ? ptr : nullptr;  | 
1186  |  |   int old_entries = out->size();  | 
1187  |  |   out->Reserve(old_entries + num);  | 
1188  |  |   auto dst = out->AddNAlreadyReserved(num);  | 
1189  |  | #ifdef ABSL_IS_LITTLE_ENDIAN  | 
1190  |  |   ABSL_CHECK(dst != nullptr) << out << "," << num;  | 
1191  |  |   std::memcpy(dst, ptr, block_size);  | 
1192  |  | #else  | 
1193  |  |   for (int i = 0; i < num; i++) dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T));  | 
1194  |  | #endif  | 
1195  |  |   ptr += block_size;  | 
1196  |  |   if (size != block_size) return nullptr;  | 
1197  |  |   return ptr;  | 
1198  |  | }  | 
1199  |  |  | 
1200  |  | template <typename Add>  | 
1201  |  | const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) { | 
1202  |  |   while (ptr < end) { | 
1203  |  |     uint64_t varint;  | 
1204  |  |     ptr = VarintParse(ptr, &varint);  | 
1205  |  |     if (ptr == nullptr) return nullptr;  | 
1206  |  |     add(varint);  | 
1207  |  |   }  | 
1208  |  |   return ptr;  | 
1209  |  | }  | 
1210  |  |  | 
1211  |  | template <typename Add, typename SizeCb>  | 
1212  |  | const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add,  | 
1213  |  |                                                  SizeCb size_callback) { | 
1214  |  |   int size = ReadSize(&ptr);  | 
1215  |  |   size_callback(size);  | 
1216  |  |  | 
1217  |  |   GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);  | 
1218  |  |   int chunk_size = static_cast<int>(buffer_end_ - ptr);  | 
1219  |  |   while (size > chunk_size) { | 
1220  |  |     ptr = ReadPackedVarintArray(ptr, buffer_end_, add);  | 
1221  |  |     if (ptr == nullptr) return nullptr;  | 
1222  |  |     int overrun = static_cast<int>(ptr - buffer_end_);  | 
1223  |  |     ABSL_DCHECK(overrun >= 0 && overrun <= kSlopBytes);  | 
1224  |  |     if (size - chunk_size <= kSlopBytes) { | 
1225  |  |       // The current buffer contains all the information needed, we don't need  | 
1226  |  |       // to flip buffers. However we must parse from a buffer with enough space  | 
1227  |  |       // so we are not prone to a buffer overflow.  | 
1228  |  |       char buf[kSlopBytes + 10] = {}; | 
1229  |  |       std::memcpy(buf, buffer_end_, kSlopBytes);  | 
1230  |  |       ABSL_CHECK_LE(size - chunk_size, kSlopBytes);  | 
1231  |  |       auto end = buf + (size - chunk_size);  | 
1232  |  |       auto res = ReadPackedVarintArray(buf + overrun, end, add);  | 
1233  |  |       if (res == nullptr || res != end) return nullptr;  | 
1234  |  |       return buffer_end_ + (res - buf);  | 
1235  |  |     }  | 
1236  |  |     size -= overrun + chunk_size;  | 
1237  |  |     ABSL_DCHECK_GT(size, 0);  | 
1238  |  |     // We must flip buffers  | 
1239  |  |     if (limit_ <= kSlopBytes) return nullptr;  | 
1240  |  |     ptr = Next();  | 
1241  |  |     if (ptr == nullptr) return nullptr;  | 
1242  |  |     ptr += overrun;  | 
1243  |  |     chunk_size = static_cast<int>(buffer_end_ - ptr);  | 
1244  |  |   }  | 
1245  |  |   auto end = ptr + size;  | 
1246  |  |   ptr = ReadPackedVarintArray(ptr, end, add);  | 
1247  |  |   return end == ptr ? ptr : nullptr;  | 
1248  |  | }  | 
1249  |  |  | 
1250  |  | // Helper for verification of utf8  | 
1251  |  | PROTOBUF_EXPORT  | 
1252  |  | bool VerifyUTF8(absl::string_view s, const char* field_name);  | 
1253  |  |  | 
1254  | 0  | inline bool VerifyUTF8(const std::string* s, const char* field_name) { | 
1255  | 0  |   return VerifyUTF8(*s, field_name);  | 
1256  | 0  | }  | 
1257  |  |  | 
1258  |  | // All the string parsers with or without UTF checking and for all CTypes.  | 
1259  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* InlineGreedyStringParser(  | 
1260  |  |     std::string* s, const char* ptr, ParseContext* ctx);  | 
1261  |  |  | 
1262  |  | PROTOBUF_NODISCARD inline const char* InlineCordParser(::absl::Cord* cord,  | 
1263  |  |                                                        const char* ptr,  | 
1264  | 0  |                                                        ParseContext* ctx) { | 
1265  | 0  |   int size = ReadSize(&ptr);  | 
1266  | 0  |   if (!ptr) return nullptr;  | 
1267  | 0  |   return ctx->ReadCord(ptr, size, cord);  | 
1268  | 0  | }  | 
1269  |  |  | 
1270  |  |  | 
1271  |  | template <typename T>  | 
1272  |  | PROTOBUF_NODISCARD const char* FieldParser(uint64_t tag, T& field_parser,  | 
1273  |  |                                            const char* ptr, ParseContext* ctx) { | 
1274  |  |   uint32_t number = tag >> 3;  | 
1275  |  |   GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0);  | 
1276  |  |   using WireType = internal::WireFormatLite::WireType;  | 
1277  |  |   switch (tag & 7) { | 
1278  |  |     case WireType::WIRETYPE_VARINT: { | 
1279  |  |       uint64_t value;  | 
1280  |  |       ptr = VarintParse(ptr, &value);  | 
1281  |  |       GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);  | 
1282  |  |       field_parser.AddVarint(number, value);  | 
1283  |  |       break;  | 
1284  |  |     }  | 
1285  |  |     case WireType::WIRETYPE_FIXED64: { | 
1286  |  |       uint64_t value = UnalignedLoad<uint64_t>(ptr);  | 
1287  |  |       ptr += 8;  | 
1288  |  |       field_parser.AddFixed64(number, value);  | 
1289  |  |       break;  | 
1290  |  |     }  | 
1291  |  |     case WireType::WIRETYPE_LENGTH_DELIMITED: { | 
1292  |  |       ptr = field_parser.ParseLengthDelimited(number, ptr, ctx);  | 
1293  |  |       GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);  | 
1294  |  |       break;  | 
1295  |  |     }  | 
1296  |  |     case WireType::WIRETYPE_START_GROUP: { | 
1297  |  |       ptr = field_parser.ParseGroup(number, ptr, ctx);  | 
1298  |  |       GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);  | 
1299  |  |       break;  | 
1300  |  |     }  | 
1301  |  |     case WireType::WIRETYPE_END_GROUP: { | 
1302  |  |       ABSL_LOG(FATAL) << "Can't happen";  | 
1303  |  |       break;  | 
1304  |  |     }  | 
1305  |  |     case WireType::WIRETYPE_FIXED32: { | 
1306  |  |       uint32_t value = UnalignedLoad<uint32_t>(ptr);  | 
1307  |  |       ptr += 4;  | 
1308  |  |       field_parser.AddFixed32(number, value);  | 
1309  |  |       break;  | 
1310  |  |     }  | 
1311  |  |     default:  | 
1312  |  |       return nullptr;  | 
1313  |  |   }  | 
1314  |  |   return ptr;  | 
1315  |  | }  | 
1316  |  |  | 
1317  |  | template <typename T>  | 
1318  |  | PROTOBUF_NODISCARD const char* WireFormatParser(T& field_parser,  | 
1319  |  |                                                 const char* ptr,  | 
1320  |  |                                                 ParseContext* ctx) { | 
1321  |  |   while (!ctx->Done(&ptr)) { | 
1322  |  |     uint32_t tag;  | 
1323  |  |     ptr = ReadTag(ptr, &tag);  | 
1324  |  |     GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr);  | 
1325  |  |     if (tag == 0 || (tag & 7) == 4) { | 
1326  |  |       ctx->SetLastTag(tag);  | 
1327  |  |       return ptr;  | 
1328  |  |     }  | 
1329  |  |     ptr = FieldParser(tag, field_parser, ptr, ctx);  | 
1330  |  |     GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr);  | 
1331  |  |   }  | 
1332  |  |   return ptr;  | 
1333  |  | }  | 
1334  |  |  | 
1335  |  | // The packed parsers parse repeated numeric primitives directly into  the  | 
1336  |  | // corresponding field  | 
1337  |  |  | 
1338  |  | // These are packed varints  | 
1339  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt32Parser(  | 
1340  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1341  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt32Parser(  | 
1342  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1343  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedInt64Parser(  | 
1344  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1345  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedUInt64Parser(  | 
1346  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1347  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt32Parser(  | 
1348  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1349  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSInt64Parser(  | 
1350  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1351  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedEnumParser(  | 
1352  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1353  |  |  | 
1354  |  | template <typename T>  | 
1355  |  | PROTOBUF_NODISCARD const char* PackedEnumParser(void* object, const char* ptr,  | 
1356  |  |                                                 ParseContext* ctx,  | 
1357  |  |                                                 bool (*is_valid)(int),  | 
1358  |  |                                                 InternalMetadata* metadata,  | 
1359  |  |                                                 int field_num) { | 
1360  |  |   return ctx->ReadPackedVarint(  | 
1361  |  |       ptr, [object, is_valid, metadata, field_num](int32_t val) { | 
1362  |  |         if (is_valid(val)) { | 
1363  |  |           static_cast<RepeatedField<int>*>(object)->Add(val);  | 
1364  |  |         } else { | 
1365  |  |           WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>());  | 
1366  |  |         }  | 
1367  |  |       });  | 
1368  |  | }  | 
1369  |  |  | 
1370  |  | template <typename T>  | 
1371  |  | PROTOBUF_NODISCARD const char* PackedEnumParserArg(  | 
1372  |  |     void* object, const char* ptr, ParseContext* ctx,  | 
1373  |  |     bool (*is_valid)(const void*, int), const void* data,  | 
1374  |  |     InternalMetadata* metadata, int field_num) { | 
1375  |  |   return ctx->ReadPackedVarint(  | 
1376  |  |       ptr, [object, is_valid, data, metadata, field_num](int32_t val) { | 
1377  |  |         if (is_valid(data, val)) { | 
1378  |  |           static_cast<RepeatedField<int>*>(object)->Add(val);  | 
1379  |  |         } else { | 
1380  |  |           WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>());  | 
1381  |  |         }  | 
1382  |  |       });  | 
1383  |  | }  | 
1384  |  |  | 
1385  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedBoolParser(  | 
1386  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1387  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed32Parser(  | 
1388  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1389  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed32Parser(  | 
1390  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1391  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFixed64Parser(  | 
1392  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1393  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedSFixed64Parser(  | 
1394  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1395  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedFloatParser(  | 
1396  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1397  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* PackedDoubleParser(  | 
1398  |  |     void* object, const char* ptr, ParseContext* ctx);  | 
1399  |  |  | 
1400  |  | // This is the only recursive parser.  | 
1401  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownGroupLiteParse(  | 
1402  |  |     std::string* unknown, const char* ptr, ParseContext* ctx);  | 
1403  |  | // This is a helper to for the UnknownGroupLiteParse but is actually also  | 
1404  |  | // useful in the generated code. It uses overload on std::string* vs  | 
1405  |  | // UnknownFieldSet* to make the generated code isomorphic between full and lite.  | 
1406  |  | PROTOBUF_NODISCARD PROTOBUF_EXPORT const char* UnknownFieldParse(  | 
1407  |  |     uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx);  | 
1408  |  |  | 
1409  |  | }  // namespace internal  | 
1410  |  | }  // namespace protobuf  | 
1411  |  | }  // namespace google  | 
1412  |  |  | 
1413  |  | #include "google/protobuf/port_undef.inc"  | 
1414  |  |  | 
1415  |  | #endif  // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__  |