/src/libprotobuf-mutator/build/external.protobuf/src/external.protobuf/third_party/abseil-cpp/absl/synchronization/mutex.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2017 The Abseil Authors. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // https://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "absl/synchronization/mutex.h" |
16 | | |
17 | | #ifdef _WIN32 |
18 | | #include <windows.h> |
19 | | #ifdef ERROR |
20 | | #undef ERROR |
21 | | #endif |
22 | | #else |
23 | | #include <fcntl.h> |
24 | | #include <pthread.h> |
25 | | #include <sched.h> |
26 | | #include <sys/time.h> |
27 | | #endif |
28 | | |
29 | | #include <assert.h> |
30 | | #include <errno.h> |
31 | | #include <stdio.h> |
32 | | #include <stdlib.h> |
33 | | #include <string.h> |
34 | | #include <time.h> |
35 | | |
36 | | #include <algorithm> |
37 | | #include <atomic> |
38 | | #include <cinttypes> |
39 | | #include <cstddef> |
40 | | #include <cstring> |
41 | | #include <iterator> |
42 | | #include <thread> // NOLINT(build/c++11) |
43 | | |
44 | | #include "absl/base/attributes.h" |
45 | | #include "absl/base/call_once.h" |
46 | | #include "absl/base/config.h" |
47 | | #include "absl/base/dynamic_annotations.h" |
48 | | #include "absl/base/internal/atomic_hook.h" |
49 | | #include "absl/base/internal/cycleclock.h" |
50 | | #include "absl/base/internal/hide_ptr.h" |
51 | | #include "absl/base/internal/low_level_alloc.h" |
52 | | #include "absl/base/internal/raw_logging.h" |
53 | | #include "absl/base/internal/spinlock.h" |
54 | | #include "absl/base/internal/sysinfo.h" |
55 | | #include "absl/base/internal/thread_identity.h" |
56 | | #include "absl/base/internal/tsan_mutex_interface.h" |
57 | | #include "absl/base/optimization.h" |
58 | | #include "absl/base/port.h" |
59 | | #include "absl/debugging/stacktrace.h" |
60 | | #include "absl/debugging/symbolize.h" |
61 | | #include "absl/synchronization/internal/graphcycles.h" |
62 | | #include "absl/synchronization/internal/per_thread_sem.h" |
63 | | #include "absl/time/time.h" |
64 | | |
65 | | using absl::base_internal::CurrentThreadIdentityIfPresent; |
66 | | using absl::base_internal::PerThreadSynch; |
67 | | using absl::base_internal::SchedulingGuard; |
68 | | using absl::base_internal::ThreadIdentity; |
69 | | using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity; |
70 | | using absl::synchronization_internal::GraphCycles; |
71 | | using absl::synchronization_internal::GraphId; |
72 | | using absl::synchronization_internal::InvalidGraphId; |
73 | | using absl::synchronization_internal::KernelTimeout; |
74 | | using absl::synchronization_internal::PerThreadSem; |
75 | | |
76 | | extern "C" { |
77 | 0 | ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)() { |
78 | 0 | std::this_thread::yield(); |
79 | 0 | } |
80 | | } // extern "C" |
81 | | |
82 | | namespace absl { |
83 | | ABSL_NAMESPACE_BEGIN |
84 | | |
85 | | namespace { |
86 | | |
87 | | #if defined(ABSL_HAVE_THREAD_SANITIZER) |
88 | | constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore; |
89 | | #else |
90 | | constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort; |
91 | | #endif |
92 | | |
93 | | ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection( |
94 | | kDeadlockDetectionDefault); |
95 | | ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false); |
96 | | |
97 | | ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES |
98 | | absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)> |
99 | | submit_profile_data; |
100 | | ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)( |
101 | | const char *msg, const void *obj, int64_t wait_cycles)> |
102 | | mutex_tracer; |
103 | | ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES |
104 | | absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)> |
105 | | cond_var_tracer; |
106 | | ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook< |
107 | | bool (*)(const void *pc, char *out, int out_size)> |
108 | | symbolizer(absl::Symbolize); |
109 | | |
110 | | } // namespace |
111 | | |
112 | | static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu, |
113 | | bool locking, bool trylock, |
114 | | bool read_lock); |
115 | | |
116 | 0 | void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)) { |
117 | 0 | submit_profile_data.Store(fn); |
118 | 0 | } |
119 | | |
120 | | void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj, |
121 | 0 | int64_t wait_cycles)) { |
122 | 0 | mutex_tracer.Store(fn); |
123 | 0 | } |
124 | | |
125 | 0 | void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) { |
126 | 0 | cond_var_tracer.Store(fn); |
127 | 0 | } |
128 | | |
129 | 0 | void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) { |
130 | 0 | symbolizer.Store(fn); |
131 | 0 | } |
132 | | |
133 | | namespace { |
134 | | // Represents the strategy for spin and yield. |
135 | | // See the comment in GetMutexGlobals() for more information. |
136 | | enum DelayMode { AGGRESSIVE, GENTLE }; |
137 | | |
138 | | struct ABSL_CACHELINE_ALIGNED MutexGlobals { |
139 | | absl::once_flag once; |
140 | | int spinloop_iterations = 0; |
141 | | int32_t mutex_sleep_spins[2] = {}; |
142 | | absl::Duration mutex_sleep_time; |
143 | | }; |
144 | | |
145 | 0 | absl::Duration MeasureTimeToYield() { |
146 | 0 | absl::Time before = absl::Now(); |
147 | 0 | ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)(); |
148 | 0 | return absl::Now() - before; |
149 | 0 | } |
150 | | |
151 | 0 | const MutexGlobals &GetMutexGlobals() { |
152 | 0 | ABSL_CONST_INIT static MutexGlobals data; |
153 | 0 | absl::base_internal::LowLevelCallOnce(&data.once, [&]() { |
154 | 0 | const int num_cpus = absl::base_internal::NumCPUs(); |
155 | 0 | data.spinloop_iterations = num_cpus > 1 ? 1500 : 0; |
156 | | // If this a uniprocessor, only yield/sleep. |
157 | | // Real-time threads are often unable to yield, so the sleep time needs |
158 | | // to be long enough to keep the calling thread asleep until scheduling |
159 | | // happens. |
160 | | // If this is multiprocessor, allow spinning. If the mode is |
161 | | // aggressive then spin many times before yielding. If the mode is |
162 | | // gentle then spin only a few times before yielding. Aggressive spinning |
163 | | // is used to ensure that an Unlock() call, which must get the spin lock |
164 | | // for any thread to make progress gets it without undue delay. |
165 | 0 | if (num_cpus > 1) { |
166 | 0 | data.mutex_sleep_spins[AGGRESSIVE] = 5000; |
167 | 0 | data.mutex_sleep_spins[GENTLE] = 250; |
168 | 0 | data.mutex_sleep_time = absl::Microseconds(10); |
169 | 0 | } else { |
170 | 0 | data.mutex_sleep_spins[AGGRESSIVE] = 0; |
171 | 0 | data.mutex_sleep_spins[GENTLE] = 0; |
172 | 0 | data.mutex_sleep_time = MeasureTimeToYield() * 5; |
173 | 0 | data.mutex_sleep_time = |
174 | 0 | std::min(data.mutex_sleep_time, absl::Milliseconds(1)); |
175 | 0 | data.mutex_sleep_time = |
176 | 0 | std::max(data.mutex_sleep_time, absl::Microseconds(10)); |
177 | 0 | } |
178 | 0 | }); |
179 | 0 | return data; |
180 | 0 | } |
181 | | } // namespace |
182 | | |
183 | | namespace synchronization_internal { |
184 | | // Returns the Mutex delay on iteration `c` depending on the given `mode`. |
185 | | // The returned value should be used as `c` for the next call to `MutexDelay`. |
186 | 0 | int MutexDelay(int32_t c, int mode) { |
187 | 0 | const int32_t limit = GetMutexGlobals().mutex_sleep_spins[mode]; |
188 | 0 | const absl::Duration sleep_time = GetMutexGlobals().mutex_sleep_time; |
189 | 0 | if (c < limit) { |
190 | | // Spin. |
191 | 0 | c++; |
192 | 0 | } else { |
193 | 0 | SchedulingGuard::ScopedEnable enable_rescheduling; |
194 | 0 | ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0); |
195 | 0 | if (c == limit) { |
196 | | // Yield once. |
197 | 0 | ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)(); |
198 | 0 | c++; |
199 | 0 | } else { |
200 | | // Then wait. |
201 | 0 | absl::SleepFor(sleep_time); |
202 | 0 | c = 0; |
203 | 0 | } |
204 | 0 | ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0); |
205 | 0 | } |
206 | 0 | return c; |
207 | 0 | } |
208 | | } // namespace synchronization_internal |
209 | | |
210 | | // --------------------------Generic atomic ops |
211 | | // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to |
212 | | // "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0 |
213 | | // before making any change. |
214 | | // This is used to set flags in mutex and condition variable words. |
215 | | static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits, |
216 | 0 | intptr_t wait_until_clear) { |
217 | 0 | intptr_t v; |
218 | 0 | do { |
219 | 0 | v = pv->load(std::memory_order_relaxed); |
220 | 0 | } while ((v & bits) != bits && |
221 | 0 | ((v & wait_until_clear) != 0 || |
222 | 0 | !pv->compare_exchange_weak(v, v | bits, |
223 | 0 | std::memory_order_release, |
224 | 0 | std::memory_order_relaxed))); |
225 | 0 | } |
226 | | |
227 | | // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to |
228 | | // "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0 |
229 | | // before making any change. |
230 | | // This is used to unset flags in mutex and condition variable words. |
231 | | static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits, |
232 | 0 | intptr_t wait_until_clear) { |
233 | 0 | intptr_t v; |
234 | 0 | do { |
235 | 0 | v = pv->load(std::memory_order_relaxed); |
236 | 0 | } while ((v & bits) != 0 && |
237 | 0 | ((v & wait_until_clear) != 0 || |
238 | 0 | !pv->compare_exchange_weak(v, v & ~bits, |
239 | 0 | std::memory_order_release, |
240 | 0 | std::memory_order_relaxed))); |
241 | 0 | } |
242 | | |
243 | | //------------------------------------------------------------------ |
244 | | |
245 | | // Data for doing deadlock detection. |
246 | | ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu( |
247 | | absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); |
248 | | |
249 | | // Graph used to detect deadlocks. |
250 | | ABSL_CONST_INIT static GraphCycles *deadlock_graph |
251 | | ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu); |
252 | | |
253 | | //------------------------------------------------------------------ |
254 | | // An event mechanism for debugging mutex use. |
255 | | // It also allows mutexes to be given names for those who can't handle |
256 | | // addresses, and instead like to give their data structures names like |
257 | | // "Henry", "Fido", or "Rupert IV, King of Yondavia". |
258 | | |
259 | | namespace { // to prevent name pollution |
260 | | enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent |
261 | | // Mutex events |
262 | | SYNCH_EV_TRYLOCK_SUCCESS, |
263 | | SYNCH_EV_TRYLOCK_FAILED, |
264 | | SYNCH_EV_READERTRYLOCK_SUCCESS, |
265 | | SYNCH_EV_READERTRYLOCK_FAILED, |
266 | | SYNCH_EV_LOCK, |
267 | | SYNCH_EV_LOCK_RETURNING, |
268 | | SYNCH_EV_READERLOCK, |
269 | | SYNCH_EV_READERLOCK_RETURNING, |
270 | | SYNCH_EV_UNLOCK, |
271 | | SYNCH_EV_READERUNLOCK, |
272 | | |
273 | | // CondVar events |
274 | | SYNCH_EV_WAIT, |
275 | | SYNCH_EV_WAIT_RETURNING, |
276 | | SYNCH_EV_SIGNAL, |
277 | | SYNCH_EV_SIGNALALL, |
278 | | }; |
279 | | |
280 | | enum { // Event flags |
281 | | SYNCH_F_R = 0x01, // reader event |
282 | | SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held |
283 | | SYNCH_F_TRY = 0x04, // TryLock or ReaderTryLock |
284 | | SYNCH_F_UNLOCK = 0x08, // Unlock or ReaderUnlock |
285 | | |
286 | | SYNCH_F_LCK_W = SYNCH_F_LCK, |
287 | | SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R, |
288 | | }; |
289 | | } // anonymous namespace |
290 | | |
291 | | // Properties of the events. |
292 | | static const struct { |
293 | | int flags; |
294 | | const char *msg; |
295 | | } event_properties[] = { |
296 | | {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "}, |
297 | | {0, "TryLock failed "}, |
298 | | {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "}, |
299 | | {0, "ReaderTryLock failed "}, |
300 | | {0, "Lock blocking "}, |
301 | | {SYNCH_F_LCK_W, "Lock returning "}, |
302 | | {0, "ReaderLock blocking "}, |
303 | | {SYNCH_F_LCK_R, "ReaderLock returning "}, |
304 | | {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "}, |
305 | | {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "}, |
306 | | {0, "Wait on "}, |
307 | | {0, "Wait unblocked "}, |
308 | | {0, "Signal on "}, |
309 | | {0, "SignalAll on "}, |
310 | | }; |
311 | | |
312 | | ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu( |
313 | | absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); |
314 | | |
315 | | // Hash table size; should be prime > 2. |
316 | | // Can't be too small, as it's used for deadlock detection information. |
317 | | static constexpr uint32_t kNSynchEvent = 1031; |
318 | | |
319 | | static struct SynchEvent { // this is a trivial hash table for the events |
320 | | // struct is freed when refcount reaches 0 |
321 | | int refcount ABSL_GUARDED_BY(synch_event_mu); |
322 | | |
323 | | // buckets have linear, 0-terminated chains |
324 | | SynchEvent *next ABSL_GUARDED_BY(synch_event_mu); |
325 | | |
326 | | // Constant after initialization |
327 | | uintptr_t masked_addr; // object at this address is called "name" |
328 | | |
329 | | // No explicit synchronization used. Instead we assume that the |
330 | | // client who enables/disables invariants/logging on a Mutex does so |
331 | | // while the Mutex is not being concurrently accessed by others. |
332 | | void (*invariant)(void *arg); // called on each event |
333 | | void *arg; // first arg to (*invariant)() |
334 | | bool log; // logging turned on |
335 | | |
336 | | // Constant after initialization |
337 | | char name[1]; // actually longer---NUL-terminated string |
338 | | } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu); |
339 | | |
340 | | // Ensure that the object at "addr" has a SynchEvent struct associated with it, |
341 | | // set "bits" in the word there (waiting until lockbit is clear before doing |
342 | | // so), and return a refcounted reference that will remain valid until |
343 | | // UnrefSynchEvent() is called. If a new SynchEvent is allocated, |
344 | | // the string name is copied into it. |
345 | | // When used with a mutex, the caller should also ensure that kMuEvent |
346 | | // is set in the mutex word, and similarly for condition variables and kCVEvent. |
347 | | static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr, |
348 | | const char *name, intptr_t bits, |
349 | 0 | intptr_t lockbit) { |
350 | 0 | uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent; |
351 | 0 | SynchEvent *e; |
352 | | // first look for existing SynchEvent struct.. |
353 | 0 | synch_event_mu.Lock(); |
354 | 0 | for (e = synch_event[h]; |
355 | 0 | e != nullptr && e->masked_addr != base_internal::HidePtr(addr); |
356 | 0 | e = e->next) { |
357 | 0 | } |
358 | 0 | if (e == nullptr) { // no SynchEvent struct found; make one. |
359 | 0 | if (name == nullptr) { |
360 | 0 | name = ""; |
361 | 0 | } |
362 | 0 | size_t l = strlen(name); |
363 | 0 | e = reinterpret_cast<SynchEvent *>( |
364 | 0 | base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l)); |
365 | 0 | e->refcount = 2; // one for return value, one for linked list |
366 | 0 | e->masked_addr = base_internal::HidePtr(addr); |
367 | 0 | e->invariant = nullptr; |
368 | 0 | e->arg = nullptr; |
369 | 0 | e->log = false; |
370 | 0 | strcpy(e->name, name); // NOLINT(runtime/printf) |
371 | 0 | e->next = synch_event[h]; |
372 | 0 | AtomicSetBits(addr, bits, lockbit); |
373 | 0 | synch_event[h] = e; |
374 | 0 | } else { |
375 | 0 | e->refcount++; // for return value |
376 | 0 | } |
377 | 0 | synch_event_mu.Unlock(); |
378 | 0 | return e; |
379 | 0 | } |
380 | | |
381 | | // Deallocate the SynchEvent *e, whose refcount has fallen to zero. |
382 | 0 | static void DeleteSynchEvent(SynchEvent *e) { |
383 | 0 | base_internal::LowLevelAlloc::Free(e); |
384 | 0 | } |
385 | | |
386 | | // Decrement the reference count of *e, or do nothing if e==null. |
387 | 0 | static void UnrefSynchEvent(SynchEvent *e) { |
388 | 0 | if (e != nullptr) { |
389 | 0 | synch_event_mu.Lock(); |
390 | 0 | bool del = (--(e->refcount) == 0); |
391 | 0 | synch_event_mu.Unlock(); |
392 | 0 | if (del) { |
393 | 0 | DeleteSynchEvent(e); |
394 | 0 | } |
395 | 0 | } |
396 | 0 | } |
397 | | |
398 | | // Forget the mapping from the object (Mutex or CondVar) at address addr |
399 | | // to SynchEvent object, and clear "bits" in its word (waiting until lockbit |
400 | | // is clear before doing so). |
401 | | static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits, |
402 | 0 | intptr_t lockbit) { |
403 | 0 | uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent; |
404 | 0 | SynchEvent **pe; |
405 | 0 | SynchEvent *e; |
406 | 0 | synch_event_mu.Lock(); |
407 | 0 | for (pe = &synch_event[h]; |
408 | 0 | (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr); |
409 | 0 | pe = &e->next) { |
410 | 0 | } |
411 | 0 | bool del = false; |
412 | 0 | if (e != nullptr) { |
413 | 0 | *pe = e->next; |
414 | 0 | del = (--(e->refcount) == 0); |
415 | 0 | } |
416 | 0 | AtomicClearBits(addr, bits, lockbit); |
417 | 0 | synch_event_mu.Unlock(); |
418 | 0 | if (del) { |
419 | 0 | DeleteSynchEvent(e); |
420 | 0 | } |
421 | 0 | } |
422 | | |
423 | | // Return a refcounted reference to the SynchEvent of the object at address |
424 | | // "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is |
425 | | // called. |
426 | 0 | static SynchEvent *GetSynchEvent(const void *addr) { |
427 | 0 | uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent; |
428 | 0 | SynchEvent *e; |
429 | 0 | synch_event_mu.Lock(); |
430 | 0 | for (e = synch_event[h]; |
431 | 0 | e != nullptr && e->masked_addr != base_internal::HidePtr(addr); |
432 | 0 | e = e->next) { |
433 | 0 | } |
434 | 0 | if (e != nullptr) { |
435 | 0 | e->refcount++; |
436 | 0 | } |
437 | 0 | synch_event_mu.Unlock(); |
438 | 0 | return e; |
439 | 0 | } |
440 | | |
441 | | // Called when an event "ev" occurs on a Mutex of CondVar "obj" |
442 | | // if event recording is on |
443 | 0 | static void PostSynchEvent(void *obj, int ev) { |
444 | 0 | SynchEvent *e = GetSynchEvent(obj); |
445 | | // logging is on if event recording is on and either there's no event struct, |
446 | | // or it explicitly says to log |
447 | 0 | if (e == nullptr || e->log) { |
448 | 0 | void *pcs[40]; |
449 | 0 | int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1); |
450 | | // A buffer with enough space for the ASCII for all the PCs, even on a |
451 | | // 64-bit machine. |
452 | 0 | char buffer[ABSL_ARRAYSIZE(pcs) * 24]; |
453 | 0 | int pos = snprintf(buffer, sizeof (buffer), " @"); |
454 | 0 | for (int i = 0; i != n; i++) { |
455 | 0 | int b = snprintf(&buffer[pos], sizeof(buffer) - static_cast<size_t>(pos), |
456 | 0 | " %p", pcs[i]); |
457 | 0 | if (b < 0 || |
458 | 0 | static_cast<size_t>(b) >= sizeof(buffer) - static_cast<size_t>(pos)) { |
459 | 0 | break; |
460 | 0 | } |
461 | 0 | pos += b; |
462 | 0 | } |
463 | 0 | ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj, |
464 | 0 | (e == nullptr ? "" : e->name), buffer); |
465 | 0 | } |
466 | 0 | const int flags = event_properties[ev].flags; |
467 | 0 | if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) { |
468 | | // Calling the invariant as is causes problems under ThreadSanitizer. |
469 | | // We are currently inside of Mutex Lock/Unlock and are ignoring all |
470 | | // memory accesses and synchronization. If the invariant transitively |
471 | | // synchronizes something else and we ignore the synchronization, we will |
472 | | // get false positive race reports later. |
473 | | // Reuse EvalConditionAnnotated to properly call into user code. |
474 | 0 | struct local { |
475 | 0 | static bool pred(SynchEvent *ev) { |
476 | 0 | (*ev->invariant)(ev->arg); |
477 | 0 | return false; |
478 | 0 | } |
479 | 0 | }; |
480 | 0 | Condition cond(&local::pred, e); |
481 | 0 | Mutex *mu = static_cast<Mutex *>(obj); |
482 | 0 | const bool locking = (flags & SYNCH_F_UNLOCK) == 0; |
483 | 0 | const bool trylock = (flags & SYNCH_F_TRY) != 0; |
484 | 0 | const bool read_lock = (flags & SYNCH_F_R) != 0; |
485 | 0 | EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock); |
486 | 0 | } |
487 | 0 | UnrefSynchEvent(e); |
488 | 0 | } |
489 | | |
490 | | //------------------------------------------------------------------ |
491 | | |
492 | | // The SynchWaitParams struct encapsulates the way in which a thread is waiting: |
493 | | // whether it has a timeout, the condition, exclusive/shared, and whether a |
494 | | // condition variable wait has an associated Mutex (as opposed to another |
495 | | // type of lock). It also points to the PerThreadSynch struct of its thread. |
496 | | // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue(). |
497 | | // |
498 | | // This structure is held on the stack rather than directly in |
499 | | // PerThreadSynch because a thread can be waiting on multiple Mutexes if, |
500 | | // while waiting on one Mutex, the implementation calls a client callback |
501 | | // (such as a Condition function) that acquires another Mutex. We don't |
502 | | // strictly need to allow this, but programmers become confused if we do not |
503 | | // allow them to use functions such a LOG() within Condition functions. The |
504 | | // PerThreadSynch struct points at the most recent SynchWaitParams struct when |
505 | | // the thread is on a Mutex's waiter queue. |
506 | | struct SynchWaitParams { |
507 | | SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg, |
508 | | KernelTimeout timeout_arg, Mutex *cvmu_arg, |
509 | | PerThreadSynch *thread_arg, |
510 | | std::atomic<intptr_t> *cv_word_arg) |
511 | | : how(how_arg), |
512 | | cond(cond_arg), |
513 | | timeout(timeout_arg), |
514 | | cvmu(cvmu_arg), |
515 | | thread(thread_arg), |
516 | | cv_word(cv_word_arg), |
517 | | contention_start_cycles(base_internal::CycleClock::Now()), |
518 | 0 | should_submit_contention_data(false) {} |
519 | | |
520 | | const Mutex::MuHow how; // How this thread needs to wait. |
521 | | const Condition *cond; // The condition that this thread is waiting for. |
522 | | // In Mutex, this field is set to zero if a timeout |
523 | | // expires. |
524 | | KernelTimeout timeout; // timeout expiry---absolute time |
525 | | // In Mutex, this field is set to zero if a timeout |
526 | | // expires. |
527 | | Mutex *const cvmu; // used for transfer from cond var to mutex |
528 | | PerThreadSynch *const thread; // thread that is waiting |
529 | | |
530 | | // If not null, thread should be enqueued on the CondVar whose state |
531 | | // word is cv_word instead of queueing normally on the Mutex. |
532 | | std::atomic<intptr_t> *cv_word; |
533 | | |
534 | | int64_t contention_start_cycles; // Time (in cycles) when this thread started |
535 | | // to contend for the mutex. |
536 | | bool should_submit_contention_data; |
537 | | }; |
538 | | |
539 | | struct SynchLocksHeld { |
540 | | int n; // number of valid entries in locks[] |
541 | | bool overflow; // true iff we overflowed the array at some point |
542 | | struct { |
543 | | Mutex *mu; // lock acquired |
544 | | int32_t count; // times acquired |
545 | | GraphId id; // deadlock_graph id of acquired lock |
546 | | } locks[40]; |
547 | | // If a thread overfills the array during deadlock detection, we |
548 | | // continue, discarding information as needed. If no overflow has |
549 | | // taken place, we can provide more error checking, such as |
550 | | // detecting when a thread releases a lock it does not hold. |
551 | | }; |
552 | | |
553 | | // A sentinel value in lists that is not 0. |
554 | | // A 0 value is used to mean "not on a list". |
555 | | static PerThreadSynch *const kPerThreadSynchNull = |
556 | | reinterpret_cast<PerThreadSynch *>(1); |
557 | | |
558 | 0 | static SynchLocksHeld *LocksHeldAlloc() { |
559 | 0 | SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>( |
560 | 0 | base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld))); |
561 | 0 | ret->n = 0; |
562 | 0 | ret->overflow = false; |
563 | 0 | return ret; |
564 | 0 | } |
565 | | |
566 | | // Return the PerThreadSynch-struct for this thread. |
567 | 0 | static PerThreadSynch *Synch_GetPerThread() { |
568 | 0 | ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity(); |
569 | 0 | return &identity->per_thread_synch; |
570 | 0 | } |
571 | | |
572 | 0 | static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) { |
573 | 0 | if (mu) { |
574 | 0 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
575 | 0 | } |
576 | 0 | PerThreadSynch *w = Synch_GetPerThread(); |
577 | 0 | if (mu) { |
578 | 0 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
579 | 0 | } |
580 | 0 | return w; |
581 | 0 | } |
582 | | |
583 | 0 | static SynchLocksHeld *Synch_GetAllLocks() { |
584 | 0 | PerThreadSynch *s = Synch_GetPerThread(); |
585 | 0 | if (s->all_locks == nullptr) { |
586 | 0 | s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity. |
587 | 0 | } |
588 | 0 | return s->all_locks; |
589 | 0 | } |
590 | | |
591 | | // Post on "w"'s associated PerThreadSem. |
592 | 0 | void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) { |
593 | 0 | if (mu) { |
594 | 0 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
595 | | // We miss synchronization around passing PerThreadSynch between threads |
596 | | // since it happens inside of the Mutex code, so we need to ignore all |
597 | | // accesses to the object. |
598 | 0 | ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); |
599 | 0 | PerThreadSem::Post(w->thread_identity()); |
600 | 0 | ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END(); |
601 | 0 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
602 | 0 | } else { |
603 | 0 | PerThreadSem::Post(w->thread_identity()); |
604 | 0 | } |
605 | 0 | } |
606 | | |
607 | | // Wait on "w"'s associated PerThreadSem; returns false if timeout expired. |
608 | 0 | bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) { |
609 | 0 | if (mu) { |
610 | 0 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
611 | 0 | } |
612 | 0 | assert(w == Synch_GetPerThread()); |
613 | 0 | static_cast<void>(w); |
614 | 0 | bool res = PerThreadSem::Wait(t); |
615 | 0 | if (mu) { |
616 | 0 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
617 | 0 | } |
618 | 0 | return res; |
619 | 0 | } |
620 | | |
621 | | // We're in a fatal signal handler that hopes to use Mutex and to get |
622 | | // lucky by not deadlocking. We try to improve its chances of success |
623 | | // by effectively disabling some of the consistency checks. This will |
624 | | // prevent certain ABSL_RAW_CHECK() statements from being triggered when |
625 | | // re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the |
626 | | // Mutex code checking that the "waitp" field has not been reused. |
627 | 0 | void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() { |
628 | | // Fix the per-thread state only if it exists. |
629 | 0 | ThreadIdentity *identity = CurrentThreadIdentityIfPresent(); |
630 | 0 | if (identity != nullptr) { |
631 | 0 | identity->per_thread_synch.suppress_fatal_errors = true; |
632 | 0 | } |
633 | | // Don't do deadlock detection when we are already failing. |
634 | 0 | synch_deadlock_detection.store(OnDeadlockCycle::kIgnore, |
635 | 0 | std::memory_order_release); |
636 | 0 | } |
637 | | |
638 | | // --------------------------time support |
639 | | |
640 | | // Return the current time plus the timeout. Use the same clock as |
641 | | // PerThreadSem::Wait() for consistency. Unfortunately, we don't have |
642 | | // such a choice when a deadline is given directly. |
643 | 0 | static absl::Time DeadlineFromTimeout(absl::Duration timeout) { |
644 | 0 | #ifndef _WIN32 |
645 | 0 | struct timeval tv; |
646 | 0 | gettimeofday(&tv, nullptr); |
647 | 0 | return absl::TimeFromTimeval(tv) + timeout; |
648 | | #else |
649 | | return absl::Now() + timeout; |
650 | | #endif |
651 | 0 | } |
652 | | |
653 | | // --------------------------Mutexes |
654 | | |
655 | | // In the layout below, the msb of the bottom byte is currently unused. Also, |
656 | | // the following constraints were considered in choosing the layout: |
657 | | // o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and |
658 | | // 0xcd) are illegal: reader and writer lock both held. |
659 | | // o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the |
660 | | // bit-twiddling trick in Mutex::Unlock(). |
661 | | // o kMuWriter / kMuReader == kMuWrWait / kMuWait, |
662 | | // to enable the bit-twiddling trick in CheckForMutexCorruption(). |
663 | | static const intptr_t kMuReader = 0x0001L; // a reader holds the lock |
664 | | static const intptr_t kMuDesig = 0x0002L; // there's a designated waker |
665 | | static const intptr_t kMuWait = 0x0004L; // threads are waiting |
666 | | static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock |
667 | | static const intptr_t kMuEvent = 0x0010L; // record this mutex's events |
668 | | // INVARIANT1: there's a thread that was blocked on the mutex, is |
669 | | // no longer, yet has not yet acquired the mutex. If there's a |
670 | | // designated waker, all threads can avoid taking the slow path in |
671 | | // unlock because the designated waker will subsequently acquire |
672 | | // the lock and wake someone. To maintain INVARIANT1 the bit is |
673 | | // set when a thread is unblocked(INV1a), and threads that were |
674 | | // unblocked reset the bit when they either acquire or re-block |
675 | | // (INV1b). |
676 | | static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting |
677 | | // for a reader |
678 | | static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list |
679 | | static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits |
680 | | static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count |
681 | | |
682 | | // Hack to make constant values available to gdb pretty printer |
683 | | enum { |
684 | | kGdbMuSpin = kMuSpin, |
685 | | kGdbMuEvent = kMuEvent, |
686 | | kGdbMuWait = kMuWait, |
687 | | kGdbMuWriter = kMuWriter, |
688 | | kGdbMuDesig = kMuDesig, |
689 | | kGdbMuWrWait = kMuWrWait, |
690 | | kGdbMuReader = kMuReader, |
691 | | kGdbMuLow = kMuLow, |
692 | | }; |
693 | | |
694 | | // kMuWrWait implies kMuWait. |
695 | | // kMuReader and kMuWriter are mutually exclusive. |
696 | | // If kMuReader is zero, there are no readers. |
697 | | // Otherwise, if kMuWait is zero, the high order bits contain a count of the |
698 | | // number of readers. Otherwise, the reader count is held in |
699 | | // PerThreadSynch::readers of the most recently queued waiter, again in the |
700 | | // bits above kMuLow. |
701 | | static const intptr_t kMuOne = 0x0100; // a count of one reader |
702 | | |
703 | | // flags passed to Enqueue and LockSlow{,WithTimeout,Loop} |
704 | | static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1) |
705 | | static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition) |
706 | | |
707 | | static_assert(PerThreadSynch::kAlignment > kMuLow, |
708 | | "PerThreadSynch::kAlignment must be greater than kMuLow"); |
709 | | |
710 | | // This struct contains various bitmasks to be used in |
711 | | // acquiring and releasing a mutex in a particular mode. |
712 | | struct MuHowS { |
713 | | // if all the bits in fast_need_zero are zero, the lock can be acquired by |
714 | | // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff |
715 | | // this is the designated waker. |
716 | | intptr_t fast_need_zero; |
717 | | intptr_t fast_or; |
718 | | intptr_t fast_add; |
719 | | |
720 | | intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging) |
721 | | |
722 | | intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are |
723 | | // zero a reader can acquire a read share by |
724 | | // setting the reader bit and incrementing |
725 | | // the reader count (in last waiter since |
726 | | // we're now slow-path). kMuWrWait be may |
727 | | // be ignored if we already waited once. |
728 | | }; |
729 | | |
730 | | static const MuHowS kSharedS = { |
731 | | // shared or read lock |
732 | | kMuWriter | kMuWait | kMuEvent, // fast_need_zero |
733 | | kMuReader, // fast_or |
734 | | kMuOne, // fast_add |
735 | | kMuWriter | kMuWait, // slow_need_zero |
736 | | kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero |
737 | | }; |
738 | | static const MuHowS kExclusiveS = { |
739 | | // exclusive or write lock |
740 | | kMuWriter | kMuReader | kMuEvent, // fast_need_zero |
741 | | kMuWriter, // fast_or |
742 | | 0, // fast_add |
743 | | kMuWriter | kMuReader, // slow_need_zero |
744 | | ~static_cast<intptr_t>(0), // slow_inc_need_zero |
745 | | }; |
746 | | static const Mutex::MuHow kShared = &kSharedS; // shared lock |
747 | | static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock |
748 | | |
749 | | #ifdef NDEBUG |
750 | | static constexpr bool kDebugMode = false; |
751 | | #else |
752 | | static constexpr bool kDebugMode = true; |
753 | | #endif |
754 | | |
755 | | #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE |
756 | | static unsigned TsanFlags(Mutex::MuHow how) { |
757 | | return how == kShared ? __tsan_mutex_read_lock : 0; |
758 | | } |
759 | | #endif |
760 | | |
761 | 0 | static bool DebugOnlyIsExiting() { |
762 | 0 | return false; |
763 | 0 | } |
764 | | |
765 | 8 | Mutex::~Mutex() { |
766 | 8 | intptr_t v = mu_.load(std::memory_order_relaxed); |
767 | 8 | if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) { |
768 | 0 | ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin); |
769 | 0 | } |
770 | 8 | if (kDebugMode) { |
771 | 0 | this->ForgetDeadlockInfo(); |
772 | 0 | } |
773 | 8 | ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static); |
774 | 8 | } |
775 | | |
776 | 0 | void Mutex::EnableDebugLog(const char *name) { |
777 | 0 | SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin); |
778 | 0 | e->log = true; |
779 | 0 | UnrefSynchEvent(e); |
780 | 0 | } |
781 | | |
782 | 0 | void EnableMutexInvariantDebugging(bool enabled) { |
783 | 0 | synch_check_invariants.store(enabled, std::memory_order_release); |
784 | 0 | } |
785 | | |
786 | | void Mutex::EnableInvariantDebugging(void (*invariant)(void *), |
787 | 0 | void *arg) { |
788 | 0 | if (synch_check_invariants.load(std::memory_order_acquire) && |
789 | 0 | invariant != nullptr) { |
790 | 0 | SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin); |
791 | 0 | e->invariant = invariant; |
792 | 0 | e->arg = arg; |
793 | 0 | UnrefSynchEvent(e); |
794 | 0 | } |
795 | 0 | } |
796 | | |
797 | 0 | void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) { |
798 | 0 | synch_deadlock_detection.store(mode, std::memory_order_release); |
799 | 0 | } |
800 | | |
801 | | // Return true iff threads x and y are part of the same equivalence |
802 | | // class of waiters. An equivalence class is defined as the set of |
803 | | // waiters with the same condition, type of lock, and thread priority. |
804 | | // |
805 | | // Requires that x and y be waiting on the same Mutex queue. |
806 | 0 | static bool MuEquivalentWaiter(PerThreadSynch *x, PerThreadSynch *y) { |
807 | 0 | return x->waitp->how == y->waitp->how && x->priority == y->priority && |
808 | 0 | Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond); |
809 | 0 | } |
810 | | |
811 | | // Given the contents of a mutex word containing a PerThreadSynch pointer, |
812 | | // return the pointer. |
813 | 0 | static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) { |
814 | 0 | return reinterpret_cast<PerThreadSynch *>(v & kMuHigh); |
815 | 0 | } |
816 | | |
817 | | // The next several routines maintain the per-thread next and skip fields |
818 | | // used in the Mutex waiter queue. |
819 | | // The queue is a circular singly-linked list, of which the "head" is the |
820 | | // last element, and head->next if the first element. |
821 | | // The skip field has the invariant: |
822 | | // For thread x, x->skip is one of: |
823 | | // - invalid (iff x is not in a Mutex wait queue), |
824 | | // - null, or |
825 | | // - a pointer to a distinct thread waiting later in the same Mutex queue |
826 | | // such that all threads in [x, x->skip] have the same condition, priority |
827 | | // and lock type (MuEquivalentWaiter() is true for all pairs in [x, |
828 | | // x->skip]). |
829 | | // In addition, if x->skip is valid, (x->may_skip || x->skip == null) |
830 | | // |
831 | | // By the spec of MuEquivalentWaiter(), it is not necessary when removing the |
832 | | // first runnable thread y from the front a Mutex queue to adjust the skip |
833 | | // field of another thread x because if x->skip==y, x->skip must (have) become |
834 | | // invalid before y is removed. The function TryRemove can remove a specified |
835 | | // thread from an arbitrary position in the queue whether runnable or not, so |
836 | | // it fixes up skip fields that would otherwise be left dangling. |
837 | | // The statement |
838 | | // if (x->may_skip && MuEquivalentWaiter(x, x->next)) { x->skip = x->next; } |
839 | | // maintains the invariant provided x is not the last waiter in a Mutex queue |
840 | | // The statement |
841 | | // if (x->skip != null) { x->skip = x->skip->skip; } |
842 | | // maintains the invariant. |
843 | | |
844 | | // Returns the last thread y in a mutex waiter queue such that all threads in |
845 | | // [x, y] inclusive share the same condition. Sets skip fields of some threads |
846 | | // in that range to optimize future evaluation of Skip() on x values in |
847 | | // the range. Requires thread x is in a mutex waiter queue. |
848 | | // The locking is unusual. Skip() is called under these conditions: |
849 | | // - spinlock is held in call from Enqueue(), with maybe_unlocking == false |
850 | | // - Mutex is held in call from UnlockSlow() by last unlocker, with |
851 | | // maybe_unlocking == true |
852 | | // - both Mutex and spinlock are held in call from DequeueAllWakeable() (from |
853 | | // UnlockSlow()) and TryRemove() |
854 | | // These cases are mutually exclusive, so Skip() never runs concurrently |
855 | | // with itself on the same Mutex. The skip chain is used in these other places |
856 | | // that cannot occur concurrently: |
857 | | // - FixSkip() (from TryRemove()) - spinlock and Mutex are held) |
858 | | // - Dequeue() (with spinlock and Mutex held) |
859 | | // - UnlockSlow() (with spinlock and Mutex held) |
860 | | // A more complex case is Enqueue() |
861 | | // - Enqueue() (with spinlock held and maybe_unlocking == false) |
862 | | // This is the first case in which Skip is called, above. |
863 | | // - Enqueue() (without spinlock held; but queue is empty and being freshly |
864 | | // formed) |
865 | | // - Enqueue() (with spinlock held and maybe_unlocking == true) |
866 | | // The first case has mutual exclusion, and the second isolation through |
867 | | // working on an otherwise unreachable data structure. |
868 | | // In the last case, Enqueue() is required to change no skip/next pointers |
869 | | // except those in the added node and the former "head" node. This implies |
870 | | // that the new node is added after head, and so must be the new head or the |
871 | | // new front of the queue. |
872 | 0 | static PerThreadSynch *Skip(PerThreadSynch *x) { |
873 | 0 | PerThreadSynch *x0 = nullptr; |
874 | 0 | PerThreadSynch *x1 = x; |
875 | 0 | PerThreadSynch *x2 = x->skip; |
876 | 0 | if (x2 != nullptr) { |
877 | | // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence |
878 | | // such that x1 == x0->skip && x2 == x1->skip |
879 | 0 | while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) { |
880 | 0 | x0->skip = x2; // short-circuit skip from x0 to x2 |
881 | 0 | } |
882 | 0 | x->skip = x1; // short-circuit skip from x to result |
883 | 0 | } |
884 | 0 | return x1; |
885 | 0 | } |
886 | | |
887 | | // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue. |
888 | | // The latter is going to be removed out of order, because of a timeout. |
889 | | // Check whether "ancestor" has a skip field pointing to "to_be_removed", |
890 | | // and fix it if it does. |
891 | 0 | static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) { |
892 | 0 | if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling |
893 | 0 | if (to_be_removed->skip != nullptr) { |
894 | 0 | ancestor->skip = to_be_removed->skip; // can skip past to_be_removed |
895 | 0 | } else if (ancestor->next != to_be_removed) { // they are not adjacent |
896 | 0 | ancestor->skip = ancestor->next; // can skip one past ancestor |
897 | 0 | } else { |
898 | 0 | ancestor->skip = nullptr; // can't skip at all |
899 | 0 | } |
900 | 0 | } |
901 | 0 | } |
902 | | |
903 | | static void CondVarEnqueue(SynchWaitParams *waitp); |
904 | | |
905 | | // Enqueue thread "waitp->thread" on a waiter queue. |
906 | | // Called with mutex spinlock held if head != nullptr |
907 | | // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is |
908 | | // idempotent; it alters no state associated with the existing (empty) |
909 | | // queue. |
910 | | // |
911 | | // If waitp->cv_word == nullptr, queue the thread at either the front or |
912 | | // the end (according to its priority) of the circular mutex waiter queue whose |
913 | | // head is "head", and return the new head. mu is the previous mutex state, |
914 | | // which contains the reader count (perhaps adjusted for the operation in |
915 | | // progress) if the list was empty and a read lock held, and the holder hint if |
916 | | // the list was empty and a write lock held. (flags & kMuIsCond) indicates |
917 | | // whether this thread was transferred from a CondVar or is waiting for a |
918 | | // non-trivial condition. In this case, Enqueue() never returns nullptr |
919 | | // |
920 | | // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is |
921 | | // returned. This mechanism is used by CondVar to queue a thread on the |
922 | | // condition variable queue instead of the mutex queue in implementing Wait(). |
923 | | // In this case, Enqueue() can return nullptr (if head==nullptr). |
924 | | static PerThreadSynch *Enqueue(PerThreadSynch *head, |
925 | 0 | SynchWaitParams *waitp, intptr_t mu, int flags) { |
926 | | // If we have been given a cv_word, call CondVarEnqueue() and return |
927 | | // the previous head of the Mutex waiter queue. |
928 | 0 | if (waitp->cv_word != nullptr) { |
929 | 0 | CondVarEnqueue(waitp); |
930 | 0 | return head; |
931 | 0 | } |
932 | | |
933 | 0 | PerThreadSynch *s = waitp->thread; |
934 | 0 | ABSL_RAW_CHECK( |
935 | 0 | s->waitp == nullptr || // normal case |
936 | 0 | s->waitp == waitp || // Fer()---transfer from condition variable |
937 | 0 | s->suppress_fatal_errors, |
938 | 0 | "detected illegal recursion into Mutex code"); |
939 | 0 | s->waitp = waitp; |
940 | 0 | s->skip = nullptr; // maintain skip invariant (see above) |
941 | 0 | s->may_skip = true; // always true on entering queue |
942 | 0 | s->wake = false; // not being woken |
943 | 0 | s->cond_waiter = ((flags & kMuIsCond) != 0); |
944 | 0 | if (head == nullptr) { // s is the only waiter |
945 | 0 | s->next = s; // it's the only entry in the cycle |
946 | 0 | s->readers = mu; // reader count is from mu word |
947 | 0 | s->maybe_unlocking = false; // no one is searching an empty list |
948 | 0 | head = s; // s is new head |
949 | 0 | } else { |
950 | 0 | PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element |
951 | 0 | #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM |
952 | 0 | int64_t now_cycles = base_internal::CycleClock::Now(); |
953 | 0 | if (s->next_priority_read_cycles < now_cycles) { |
954 | | // Every so often, update our idea of the thread's priority. |
955 | | // pthread_getschedparam() is 5% of the block/wakeup time; |
956 | | // base_internal::CycleClock::Now() is 0.5%. |
957 | 0 | int policy; |
958 | 0 | struct sched_param param; |
959 | 0 | const int err = pthread_getschedparam(pthread_self(), &policy, ¶m); |
960 | 0 | if (err != 0) { |
961 | 0 | ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err); |
962 | 0 | } else { |
963 | 0 | s->priority = param.sched_priority; |
964 | 0 | s->next_priority_read_cycles = |
965 | 0 | now_cycles + |
966 | 0 | static_cast<int64_t>(base_internal::CycleClock::Frequency()); |
967 | 0 | } |
968 | 0 | } |
969 | 0 | if (s->priority > head->priority) { // s's priority is above head's |
970 | | // try to put s in priority-fifo order, or failing that at the front. |
971 | 0 | if (!head->maybe_unlocking) { |
972 | | // No unlocker can be scanning the queue, so we can insert into the |
973 | | // middle of the queue. |
974 | | // |
975 | | // Within a skip chain, all waiters have the same priority, so we can |
976 | | // skip forward through the chains until we find one with a lower |
977 | | // priority than the waiter to be enqueued. |
978 | 0 | PerThreadSynch *advance_to = head; // next value of enqueue_after |
979 | 0 | do { |
980 | 0 | enqueue_after = advance_to; |
981 | | // (side-effect: optimizes skip chain) |
982 | 0 | advance_to = Skip(enqueue_after->next); |
983 | 0 | } while (s->priority <= advance_to->priority); |
984 | | // termination guaranteed because s->priority > head->priority |
985 | | // and head is the end of a skip chain |
986 | 0 | } else if (waitp->how == kExclusive && |
987 | 0 | Condition::GuaranteedEqual(waitp->cond, nullptr)) { |
988 | | // An unlocker could be scanning the queue, but we know it will recheck |
989 | | // the queue front for writers that have no condition, which is what s |
990 | | // is, so an insert at front is safe. |
991 | 0 | enqueue_after = head; // add after head, at front |
992 | 0 | } |
993 | 0 | } |
994 | 0 | #endif |
995 | 0 | if (enqueue_after != nullptr) { |
996 | 0 | s->next = enqueue_after->next; |
997 | 0 | enqueue_after->next = s; |
998 | | |
999 | | // enqueue_after can be: head, Skip(...), or cur. |
1000 | | // The first two imply enqueue_after->skip == nullptr, and |
1001 | | // the last is used only if MuEquivalentWaiter(s, cur). |
1002 | | // We require this because clearing enqueue_after->skip |
1003 | | // is impossible; enqueue_after's predecessors might also |
1004 | | // incorrectly skip over s if we were to allow other |
1005 | | // insertion points. |
1006 | 0 | ABSL_RAW_CHECK(enqueue_after->skip == nullptr || |
1007 | 0 | MuEquivalentWaiter(enqueue_after, s), |
1008 | 0 | "Mutex Enqueue failure"); |
1009 | |
|
1010 | 0 | if (enqueue_after != head && enqueue_after->may_skip && |
1011 | 0 | MuEquivalentWaiter(enqueue_after, enqueue_after->next)) { |
1012 | | // enqueue_after can skip to its new successor, s |
1013 | 0 | enqueue_after->skip = enqueue_after->next; |
1014 | 0 | } |
1015 | 0 | if (MuEquivalentWaiter(s, s->next)) { // s->may_skip is known to be true |
1016 | 0 | s->skip = s->next; // s may skip to its successor |
1017 | 0 | } |
1018 | 0 | } else { // enqueue not done any other way, so |
1019 | | // we're inserting s at the back |
1020 | | // s will become new head; copy data from head into it |
1021 | 0 | s->next = head->next; // add s after head |
1022 | 0 | head->next = s; |
1023 | 0 | s->readers = head->readers; // reader count is from previous head |
1024 | 0 | s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint |
1025 | 0 | if (head->may_skip && MuEquivalentWaiter(head, s)) { |
1026 | | // head now has successor; may skip |
1027 | 0 | head->skip = s; |
1028 | 0 | } |
1029 | 0 | head = s; // s is new head |
1030 | 0 | } |
1031 | 0 | } |
1032 | 0 | s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed); |
1033 | 0 | return head; |
1034 | 0 | } |
1035 | | |
1036 | | // Dequeue the successor pw->next of thread pw from the Mutex waiter queue |
1037 | | // whose last element is head. The new head element is returned, or null |
1038 | | // if the list is made empty. |
1039 | | // Dequeue is called with both spinlock and Mutex held. |
1040 | 0 | static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) { |
1041 | 0 | PerThreadSynch *w = pw->next; |
1042 | 0 | pw->next = w->next; // snip w out of list |
1043 | 0 | if (head == w) { // we removed the head |
1044 | 0 | head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head |
1045 | 0 | } else if (pw != head && MuEquivalentWaiter(pw, pw->next)) { |
1046 | | // pw can skip to its new successor |
1047 | 0 | if (pw->next->skip != |
1048 | 0 | nullptr) { // either skip to its successors skip target |
1049 | 0 | pw->skip = pw->next->skip; |
1050 | 0 | } else { // or to pw's successor |
1051 | 0 | pw->skip = pw->next; |
1052 | 0 | } |
1053 | 0 | } |
1054 | 0 | return head; |
1055 | 0 | } |
1056 | | |
1057 | | // Traverse the elements [ pw->next, h] of the circular list whose last element |
1058 | | // is head. |
1059 | | // Remove all elements with wake==true and place them in the |
1060 | | // singly-linked list wake_list in the order found. Assumes that |
1061 | | // there is only one such element if the element has how == kExclusive. |
1062 | | // Return the new head. |
1063 | | static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head, |
1064 | | PerThreadSynch *pw, |
1065 | 0 | PerThreadSynch **wake_tail) { |
1066 | 0 | PerThreadSynch *orig_h = head; |
1067 | 0 | PerThreadSynch *w = pw->next; |
1068 | 0 | bool skipped = false; |
1069 | 0 | do { |
1070 | 0 | if (w->wake) { // remove this element |
1071 | 0 | ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable"); |
1072 | | // we're removing pw's successor so either pw->skip is zero or we should |
1073 | | // already have removed pw since if pw->skip!=null, pw has the same |
1074 | | // condition as w. |
1075 | 0 | head = Dequeue(head, pw); |
1076 | 0 | w->next = *wake_tail; // keep list terminated |
1077 | 0 | *wake_tail = w; // add w to wake_list; |
1078 | 0 | wake_tail = &w->next; // next addition to end |
1079 | 0 | if (w->waitp->how == kExclusive) { // wake at most 1 writer |
1080 | 0 | break; |
1081 | 0 | } |
1082 | 0 | } else { // not waking this one; skip |
1083 | 0 | pw = Skip(w); // skip as much as possible |
1084 | 0 | skipped = true; |
1085 | 0 | } |
1086 | 0 | w = pw->next; |
1087 | | // We want to stop processing after we've considered the original head, |
1088 | | // orig_h. We can't test for w==orig_h in the loop because w may skip over |
1089 | | // it; we are guaranteed only that w's predecessor will not skip over |
1090 | | // orig_h. When we've considered orig_h, either we've processed it and |
1091 | | // removed it (so orig_h != head), or we considered it and skipped it (so |
1092 | | // skipped==true && pw == head because skipping from head always skips by |
1093 | | // just one, leaving pw pointing at head). So we want to |
1094 | | // continue the loop with the negation of that expression. |
1095 | 0 | } while (orig_h == head && (pw != head || !skipped)); |
1096 | 0 | return head; |
1097 | 0 | } |
1098 | | |
1099 | | // Try to remove thread s from the list of waiters on this mutex. |
1100 | | // Does nothing if s is not on the waiter list. |
1101 | 0 | void Mutex::TryRemove(PerThreadSynch *s) { |
1102 | 0 | SchedulingGuard::ScopedDisable disable_rescheduling; |
1103 | 0 | intptr_t v = mu_.load(std::memory_order_relaxed); |
1104 | | // acquire spinlock & lock |
1105 | 0 | if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait && |
1106 | 0 | mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter, |
1107 | 0 | std::memory_order_acquire, |
1108 | 0 | std::memory_order_relaxed)) { |
1109 | 0 | PerThreadSynch *h = GetPerThreadSynch(v); |
1110 | 0 | if (h != nullptr) { |
1111 | 0 | PerThreadSynch *pw = h; // pw is w's predecessor |
1112 | 0 | PerThreadSynch *w; |
1113 | 0 | if ((w = pw->next) != s) { // search for thread, |
1114 | 0 | do { // processing at least one element |
1115 | | // If the current element isn't equivalent to the waiter to be |
1116 | | // removed, we can skip the entire chain. |
1117 | 0 | if (!MuEquivalentWaiter(s, w)) { |
1118 | 0 | pw = Skip(w); // so skip all that won't match |
1119 | | // we don't have to worry about dangling skip fields |
1120 | | // in the threads we skipped; none can point to s |
1121 | | // because they are in a different equivalence class. |
1122 | 0 | } else { // seeking same condition |
1123 | 0 | FixSkip(w, s); // fix up any skip pointer from w to s |
1124 | 0 | pw = w; |
1125 | 0 | } |
1126 | | // don't search further if we found the thread, or we're about to |
1127 | | // process the first thread again. |
1128 | 0 | } while ((w = pw->next) != s && pw != h); |
1129 | 0 | } |
1130 | 0 | if (w == s) { // found thread; remove it |
1131 | | // pw->skip may be non-zero here; the loop above ensured that |
1132 | | // no ancestor of s can skip to s, so removal is safe anyway. |
1133 | 0 | h = Dequeue(h, pw); |
1134 | 0 | s->next = nullptr; |
1135 | 0 | s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
1136 | 0 | } |
1137 | 0 | } |
1138 | 0 | intptr_t nv; |
1139 | 0 | do { // release spinlock and lock |
1140 | 0 | v = mu_.load(std::memory_order_relaxed); |
1141 | 0 | nv = v & (kMuDesig | kMuEvent); |
1142 | 0 | if (h != nullptr) { |
1143 | 0 | nv |= kMuWait | reinterpret_cast<intptr_t>(h); |
1144 | 0 | h->readers = 0; // we hold writer lock |
1145 | 0 | h->maybe_unlocking = false; // finished unlocking |
1146 | 0 | } |
1147 | 0 | } while (!mu_.compare_exchange_weak(v, nv, |
1148 | 0 | std::memory_order_release, |
1149 | 0 | std::memory_order_relaxed)); |
1150 | 0 | } |
1151 | 0 | } |
1152 | | |
1153 | | // Wait until thread "s", which must be the current thread, is removed from the |
1154 | | // this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up |
1155 | | // if the wait extends past the absolute time specified, even if "s" is still |
1156 | | // on the mutex queue. In this case, remove "s" from the queue and return |
1157 | | // true, otherwise return false. |
1158 | 0 | void Mutex::Block(PerThreadSynch *s) { |
1159 | 0 | while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) { |
1160 | 0 | if (!DecrementSynchSem(this, s, s->waitp->timeout)) { |
1161 | | // After a timeout, we go into a spin loop until we remove ourselves |
1162 | | // from the queue, or someone else removes us. We can't be sure to be |
1163 | | // able to remove ourselves in a single lock acquisition because this |
1164 | | // mutex may be held, and the holder has the right to read the centre |
1165 | | // of the waiter queue without holding the spinlock. |
1166 | 0 | this->TryRemove(s); |
1167 | 0 | int c = 0; |
1168 | 0 | while (s->next != nullptr) { |
1169 | 0 | c = synchronization_internal::MutexDelay(c, GENTLE); |
1170 | 0 | this->TryRemove(s); |
1171 | 0 | } |
1172 | 0 | if (kDebugMode) { |
1173 | | // This ensures that we test the case that TryRemove() is called when s |
1174 | | // is not on the queue. |
1175 | 0 | this->TryRemove(s); |
1176 | 0 | } |
1177 | 0 | s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied |
1178 | 0 | s->waitp->cond = nullptr; // condition no longer relevant for wakeups |
1179 | 0 | } |
1180 | 0 | } |
1181 | 0 | ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors, |
1182 | 0 | "detected illegal recursion in Mutex code"); |
1183 | 0 | s->waitp = nullptr; |
1184 | 0 | } |
1185 | | |
1186 | | // Wake thread w, and return the next thread in the list. |
1187 | 0 | PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) { |
1188 | 0 | PerThreadSynch *next = w->next; |
1189 | 0 | w->next = nullptr; |
1190 | 0 | w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
1191 | 0 | IncrementSynchSem(this, w); |
1192 | |
|
1193 | 0 | return next; |
1194 | 0 | } |
1195 | | |
1196 | | static GraphId GetGraphIdLocked(Mutex *mu) |
1197 | 0 | ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) { |
1198 | 0 | if (!deadlock_graph) { // (re)create the deadlock graph. |
1199 | 0 | deadlock_graph = |
1200 | 0 | new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph))) |
1201 | 0 | GraphCycles; |
1202 | 0 | } |
1203 | 0 | return deadlock_graph->GetId(mu); |
1204 | 0 | } |
1205 | | |
1206 | 0 | static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) { |
1207 | 0 | deadlock_graph_mu.Lock(); |
1208 | 0 | GraphId id = GetGraphIdLocked(mu); |
1209 | 0 | deadlock_graph_mu.Unlock(); |
1210 | 0 | return id; |
1211 | 0 | } |
1212 | | |
1213 | | // Record a lock acquisition. This is used in debug mode for deadlock |
1214 | | // detection. The held_locks pointer points to the relevant data |
1215 | | // structure for each case. |
1216 | 0 | static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { |
1217 | 0 | int n = held_locks->n; |
1218 | 0 | int i = 0; |
1219 | 0 | while (i != n && held_locks->locks[i].id != id) { |
1220 | 0 | i++; |
1221 | 0 | } |
1222 | 0 | if (i == n) { |
1223 | 0 | if (n == ABSL_ARRAYSIZE(held_locks->locks)) { |
1224 | 0 | held_locks->overflow = true; // lost some data |
1225 | 0 | } else { // we have room for lock |
1226 | 0 | held_locks->locks[i].mu = mu; |
1227 | 0 | held_locks->locks[i].count = 1; |
1228 | 0 | held_locks->locks[i].id = id; |
1229 | 0 | held_locks->n = n + 1; |
1230 | 0 | } |
1231 | 0 | } else { |
1232 | 0 | held_locks->locks[i].count++; |
1233 | 0 | } |
1234 | 0 | } |
1235 | | |
1236 | | // Record a lock release. Each call to LockEnter(mu, id, x) should be |
1237 | | // eventually followed by a call to LockLeave(mu, id, x) by the same thread. |
1238 | | // It does not process the event if is not needed when deadlock detection is |
1239 | | // disabled. |
1240 | 0 | static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { |
1241 | 0 | int n = held_locks->n; |
1242 | 0 | int i = 0; |
1243 | 0 | while (i != n && held_locks->locks[i].id != id) { |
1244 | 0 | i++; |
1245 | 0 | } |
1246 | 0 | if (i == n) { |
1247 | 0 | if (!held_locks->overflow) { |
1248 | 0 | // The deadlock id may have been reassigned after ForgetDeadlockInfo, |
1249 | 0 | // but in that case mu should still be present. |
1250 | 0 | i = 0; |
1251 | 0 | while (i != n && held_locks->locks[i].mu != mu) { |
1252 | 0 | i++; |
1253 | 0 | } |
1254 | 0 | if (i == n) { // mu missing means releasing unheld lock |
1255 | 0 | SynchEvent *mu_events = GetSynchEvent(mu); |
1256 | 0 | ABSL_RAW_LOG(FATAL, |
1257 | 0 | "thread releasing lock it does not hold: %p %s; " |
1258 | 0 | , |
1259 | 0 | static_cast<void *>(mu), |
1260 | 0 | mu_events == nullptr ? "" : mu_events->name); |
1261 | 0 | } |
1262 | 0 | } |
1263 | 0 | } else if (held_locks->locks[i].count == 1) { |
1264 | 0 | held_locks->n = n - 1; |
1265 | 0 | held_locks->locks[i] = held_locks->locks[n - 1]; |
1266 | 0 | held_locks->locks[n - 1].id = InvalidGraphId(); |
1267 | 0 | held_locks->locks[n - 1].mu = |
1268 | 0 | nullptr; // clear mu to please the leak detector. |
1269 | 0 | } else { |
1270 | 0 | assert(held_locks->locks[i].count > 0); |
1271 | 0 | held_locks->locks[i].count--; |
1272 | 0 | } |
1273 | 0 | } |
1274 | | |
1275 | | // Call LockEnter() if in debug mode and deadlock detection is enabled. |
1276 | 0 | static inline void DebugOnlyLockEnter(Mutex *mu) { |
1277 | 0 | if (kDebugMode) { |
1278 | 0 | if (synch_deadlock_detection.load(std::memory_order_acquire) != |
1279 | 0 | OnDeadlockCycle::kIgnore) { |
1280 | 0 | LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks()); |
1281 | 0 | } |
1282 | 0 | } |
1283 | 0 | } |
1284 | | |
1285 | | // Call LockEnter() if in debug mode and deadlock detection is enabled. |
1286 | 7.97k | static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) { |
1287 | 7.97k | if (kDebugMode) { |
1288 | 0 | if (synch_deadlock_detection.load(std::memory_order_acquire) != |
1289 | 0 | OnDeadlockCycle::kIgnore) { |
1290 | 0 | LockEnter(mu, id, Synch_GetAllLocks()); |
1291 | 0 | } |
1292 | 0 | } |
1293 | 7.97k | } |
1294 | | |
1295 | | // Call LockLeave() if in debug mode and deadlock detection is enabled. |
1296 | 7.97k | static inline void DebugOnlyLockLeave(Mutex *mu) { |
1297 | 7.97k | if (kDebugMode) { |
1298 | 0 | if (synch_deadlock_detection.load(std::memory_order_acquire) != |
1299 | 0 | OnDeadlockCycle::kIgnore) { |
1300 | 0 | LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks()); |
1301 | 0 | } |
1302 | 0 | } |
1303 | 7.97k | } |
1304 | | |
1305 | | static char *StackString(void **pcs, int n, char *buf, int maxlen, |
1306 | 0 | bool symbolize) { |
1307 | 0 | static const int kSymLen = 200; |
1308 | 0 | char sym[kSymLen]; |
1309 | 0 | int len = 0; |
1310 | 0 | for (int i = 0; i != n; i++) { |
1311 | 0 | if (len >= maxlen) |
1312 | 0 | return buf; |
1313 | 0 | size_t count = static_cast<size_t>(maxlen - len); |
1314 | 0 | if (symbolize) { |
1315 | 0 | if (!symbolizer(pcs[i], sym, kSymLen)) { |
1316 | 0 | sym[0] = '\0'; |
1317 | 0 | } |
1318 | 0 | snprintf(buf + len, count, "%s\t@ %p %s\n", (i == 0 ? "\n" : ""), pcs[i], |
1319 | 0 | sym); |
1320 | 0 | } else { |
1321 | 0 | snprintf(buf + len, count, " %p", pcs[i]); |
1322 | 0 | } |
1323 | 0 | len += strlen(&buf[len]); |
1324 | 0 | } |
1325 | 0 | return buf; |
1326 | 0 | } |
1327 | | |
1328 | 0 | static char *CurrentStackString(char *buf, int maxlen, bool symbolize) { |
1329 | 0 | void *pcs[40]; |
1330 | 0 | return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf, |
1331 | 0 | maxlen, symbolize); |
1332 | 0 | } |
1333 | | |
1334 | | namespace { |
1335 | | enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle; |
1336 | | // a path this long would be remarkable |
1337 | | // Buffers required to report a deadlock. |
1338 | | // We do not allocate them on stack to avoid large stack frame. |
1339 | | struct DeadlockReportBuffers { |
1340 | | char buf[6100]; |
1341 | | GraphId path[kMaxDeadlockPathLen]; |
1342 | | }; |
1343 | | |
1344 | | struct ScopedDeadlockReportBuffers { |
1345 | 0 | ScopedDeadlockReportBuffers() { |
1346 | 0 | b = reinterpret_cast<DeadlockReportBuffers *>( |
1347 | 0 | base_internal::LowLevelAlloc::Alloc(sizeof(*b))); |
1348 | 0 | } |
1349 | 0 | ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); } |
1350 | | DeadlockReportBuffers *b; |
1351 | | }; |
1352 | | |
1353 | | // Helper to pass to GraphCycles::UpdateStackTrace. |
1354 | 0 | int GetStack(void** stack, int max_depth) { |
1355 | 0 | return absl::GetStackTrace(stack, max_depth, 3); |
1356 | 0 | } |
1357 | | } // anonymous namespace |
1358 | | |
1359 | | // Called in debug mode when a thread is about to acquire a lock in a way that |
1360 | | // may block. |
1361 | 0 | static GraphId DeadlockCheck(Mutex *mu) { |
1362 | 0 | if (synch_deadlock_detection.load(std::memory_order_acquire) == |
1363 | 0 | OnDeadlockCycle::kIgnore) { |
1364 | 0 | return InvalidGraphId(); |
1365 | 0 | } |
1366 | 0 |
|
1367 | 0 | SynchLocksHeld *all_locks = Synch_GetAllLocks(); |
1368 | 0 |
|
1369 | 0 | absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu); |
1370 | 0 | const GraphId mu_id = GetGraphIdLocked(mu); |
1371 | 0 |
|
1372 | 0 | if (all_locks->n == 0) { |
1373 | 0 | // There are no other locks held. Return now so that we don't need to |
1374 | 0 | // call GetSynchEvent(). This way we do not record the stack trace |
1375 | 0 | // for this Mutex. It's ok, since if this Mutex is involved in a deadlock, |
1376 | 0 | // it can't always be the first lock acquired by a thread. |
1377 | 0 | return mu_id; |
1378 | 0 | } |
1379 | 0 |
|
1380 | 0 | // We prefer to keep stack traces that show a thread holding and acquiring |
1381 | 0 | // as many locks as possible. This increases the chances that a given edge |
1382 | 0 | // in the acquires-before graph will be represented in the stack traces |
1383 | 0 | // recorded for the locks. |
1384 | 0 | deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack); |
1385 | 0 |
|
1386 | 0 | // For each other mutex already held by this thread: |
1387 | 0 | for (int i = 0; i != all_locks->n; i++) { |
1388 | 0 | const GraphId other_node_id = all_locks->locks[i].id; |
1389 | 0 | const Mutex *other = |
1390 | 0 | static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id)); |
1391 | 0 | if (other == nullptr) { |
1392 | 0 | // Ignore stale lock |
1393 | 0 | continue; |
1394 | 0 | } |
1395 | 0 |
|
1396 | 0 | // Add the acquired-before edge to the graph. |
1397 | 0 | if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) { |
1398 | 0 | ScopedDeadlockReportBuffers scoped_buffers; |
1399 | 0 | DeadlockReportBuffers *b = scoped_buffers.b; |
1400 | 0 | static int number_of_reported_deadlocks = 0; |
1401 | 0 | number_of_reported_deadlocks++; |
1402 | 0 | // Symbolize only 2 first deadlock report to avoid huge slowdowns. |
1403 | 0 | bool symbolize = number_of_reported_deadlocks <= 2; |
1404 | 0 | ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s", |
1405 | 0 | CurrentStackString(b->buf, sizeof (b->buf), symbolize)); |
1406 | 0 | size_t len = 0; |
1407 | 0 | for (int j = 0; j != all_locks->n; j++) { |
1408 | 0 | void* pr = deadlock_graph->Ptr(all_locks->locks[j].id); |
1409 | 0 | if (pr != nullptr) { |
1410 | 0 | snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr); |
1411 | 0 | len += strlen(&b->buf[len]); |
1412 | 0 | } |
1413 | 0 | } |
1414 | 0 | ABSL_RAW_LOG(ERROR, |
1415 | 0 | "Acquiring absl::Mutex %p while holding %s; a cycle in the " |
1416 | 0 | "historical lock ordering graph has been observed", |
1417 | 0 | static_cast<void *>(mu), b->buf); |
1418 | 0 | ABSL_RAW_LOG(ERROR, "Cycle: "); |
1419 | 0 | int path_len = deadlock_graph->FindPath( |
1420 | 0 | mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path); |
1421 | 0 | for (int j = 0; j != path_len; j++) { |
1422 | 0 | GraphId id = b->path[j]; |
1423 | 0 | Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id)); |
1424 | 0 | if (path_mu == nullptr) continue; |
1425 | 0 | void** stack; |
1426 | 0 | int depth = deadlock_graph->GetStackTrace(id, &stack); |
1427 | 0 | snprintf(b->buf, sizeof(b->buf), |
1428 | 0 | "mutex@%p stack: ", static_cast<void *>(path_mu)); |
1429 | 0 | StackString(stack, depth, b->buf + strlen(b->buf), |
1430 | 0 | static_cast<int>(sizeof(b->buf) - strlen(b->buf)), |
1431 | 0 | symbolize); |
1432 | 0 | ABSL_RAW_LOG(ERROR, "%s", b->buf); |
1433 | 0 | } |
1434 | 0 | if (synch_deadlock_detection.load(std::memory_order_acquire) == |
1435 | 0 | OnDeadlockCycle::kAbort) { |
1436 | 0 | deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler |
1437 | 0 | ABSL_RAW_LOG(FATAL, "dying due to potential deadlock"); |
1438 | 0 | return mu_id; |
1439 | 0 | } |
1440 | 0 | break; // report at most one potential deadlock per acquisition |
1441 | 0 | } |
1442 | 0 | } |
1443 | 0 |
|
1444 | 0 | return mu_id; |
1445 | 0 | } |
1446 | | |
1447 | | // Invoke DeadlockCheck() iff we're in debug mode and |
1448 | | // deadlock checking has been enabled. |
1449 | 7.97k | static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) { |
1450 | 7.97k | if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != |
1451 | 0 | OnDeadlockCycle::kIgnore) { |
1452 | 0 | return DeadlockCheck(mu); |
1453 | 7.97k | } else { |
1454 | 7.97k | return InvalidGraphId(); |
1455 | 7.97k | } |
1456 | 7.97k | } |
1457 | | |
1458 | 0 | void Mutex::ForgetDeadlockInfo() { |
1459 | 0 | if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != |
1460 | 0 | OnDeadlockCycle::kIgnore) { |
1461 | 0 | deadlock_graph_mu.Lock(); |
1462 | 0 | if (deadlock_graph != nullptr) { |
1463 | 0 | deadlock_graph->RemoveNode(this); |
1464 | 0 | } |
1465 | 0 | deadlock_graph_mu.Unlock(); |
1466 | 0 | } |
1467 | 0 | } |
1468 | | |
1469 | 0 | void Mutex::AssertNotHeld() const { |
1470 | | // We have the data to allow this check only if in debug mode and deadlock |
1471 | | // detection is enabled. |
1472 | 0 | if (kDebugMode && |
1473 | 0 | (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 && |
1474 | 0 | synch_deadlock_detection.load(std::memory_order_acquire) != |
1475 | 0 | OnDeadlockCycle::kIgnore) { |
1476 | 0 | GraphId id = GetGraphId(const_cast<Mutex *>(this)); |
1477 | 0 | SynchLocksHeld *locks = Synch_GetAllLocks(); |
1478 | 0 | for (int i = 0; i != locks->n; i++) { |
1479 | 0 | if (locks->locks[i].id == id) { |
1480 | 0 | SynchEvent *mu_events = GetSynchEvent(this); |
1481 | 0 | ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s", |
1482 | 0 | static_cast<const void *>(this), |
1483 | 0 | (mu_events == nullptr ? "" : mu_events->name)); |
1484 | 0 | } |
1485 | 0 | } |
1486 | 0 | } |
1487 | 0 | } |
1488 | | |
1489 | | // Attempt to acquire *mu, and return whether successful. The implementation |
1490 | | // may spin for a short while if the lock cannot be acquired immediately. |
1491 | 0 | static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) { |
1492 | 0 | int c = GetMutexGlobals().spinloop_iterations; |
1493 | 0 | do { // do/while somewhat faster on AMD |
1494 | 0 | intptr_t v = mu->load(std::memory_order_relaxed); |
1495 | 0 | if ((v & (kMuReader|kMuEvent)) != 0) { |
1496 | 0 | return false; // a reader or tracing -> give up |
1497 | 0 | } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire |
1498 | 0 | mu->compare_exchange_strong(v, kMuWriter | v, |
1499 | 0 | std::memory_order_acquire, |
1500 | 0 | std::memory_order_relaxed)) { |
1501 | 0 | return true; |
1502 | 0 | } |
1503 | 0 | } while (--c > 0); |
1504 | 0 | return false; |
1505 | 0 | } |
1506 | | |
1507 | 40 | void Mutex::Lock() { |
1508 | 40 | ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); |
1509 | 40 | GraphId id = DebugOnlyDeadlockCheck(this); |
1510 | 40 | intptr_t v = mu_.load(std::memory_order_relaxed); |
1511 | | // try fast acquire, then spin loop |
1512 | 40 | if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 || |
1513 | 40 | !mu_.compare_exchange_strong(v, kMuWriter | v, |
1514 | 40 | std::memory_order_acquire, |
1515 | 40 | std::memory_order_relaxed)) { |
1516 | | // try spin acquire, then slow loop |
1517 | 0 | if (!TryAcquireWithSpinning(&this->mu_)) { |
1518 | 0 | this->LockSlow(kExclusive, nullptr, 0); |
1519 | 0 | } |
1520 | 0 | } |
1521 | 40 | DebugOnlyLockEnter(this, id); |
1522 | 40 | ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); |
1523 | 40 | } |
1524 | | |
1525 | 7.93k | void Mutex::ReaderLock() { |
1526 | 7.93k | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); |
1527 | 7.93k | GraphId id = DebugOnlyDeadlockCheck(this); |
1528 | 7.93k | intptr_t v = mu_.load(std::memory_order_relaxed); |
1529 | | // try fast acquire, then slow loop |
1530 | 7.93k | if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 || |
1531 | 7.93k | !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, |
1532 | 7.93k | std::memory_order_acquire, |
1533 | 7.93k | std::memory_order_relaxed)) { |
1534 | 0 | this->LockSlow(kShared, nullptr, 0); |
1535 | 0 | } |
1536 | 7.93k | DebugOnlyLockEnter(this, id); |
1537 | 7.93k | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); |
1538 | 7.93k | } |
1539 | | |
1540 | 0 | void Mutex::LockWhen(const Condition &cond) { |
1541 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); |
1542 | 0 | GraphId id = DebugOnlyDeadlockCheck(this); |
1543 | 0 | this->LockSlow(kExclusive, &cond, 0); |
1544 | 0 | DebugOnlyLockEnter(this, id); |
1545 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); |
1546 | 0 | } |
1547 | | |
1548 | 0 | bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) { |
1549 | 0 | return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); |
1550 | 0 | } |
1551 | | |
1552 | 0 | bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) { |
1553 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); |
1554 | 0 | GraphId id = DebugOnlyDeadlockCheck(this); |
1555 | 0 | bool res = LockSlowWithDeadline(kExclusive, &cond, |
1556 | 0 | KernelTimeout(deadline), 0); |
1557 | 0 | DebugOnlyLockEnter(this, id); |
1558 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); |
1559 | 0 | return res; |
1560 | 0 | } |
1561 | | |
1562 | 0 | void Mutex::ReaderLockWhen(const Condition &cond) { |
1563 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); |
1564 | 0 | GraphId id = DebugOnlyDeadlockCheck(this); |
1565 | 0 | this->LockSlow(kShared, &cond, 0); |
1566 | 0 | DebugOnlyLockEnter(this, id); |
1567 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); |
1568 | 0 | } |
1569 | | |
1570 | | bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond, |
1571 | 0 | absl::Duration timeout) { |
1572 | 0 | return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); |
1573 | 0 | } |
1574 | | |
1575 | | bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond, |
1576 | 0 | absl::Time deadline) { |
1577 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); |
1578 | 0 | GraphId id = DebugOnlyDeadlockCheck(this); |
1579 | 0 | bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0); |
1580 | 0 | DebugOnlyLockEnter(this, id); |
1581 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); |
1582 | 0 | return res; |
1583 | 0 | } |
1584 | | |
1585 | 0 | void Mutex::Await(const Condition &cond) { |
1586 | 0 | if (cond.Eval()) { // condition already true; nothing to do |
1587 | 0 | if (kDebugMode) { |
1588 | 0 | this->AssertReaderHeld(); |
1589 | 0 | } |
1590 | 0 | } else { // normal case |
1591 | 0 | ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()), |
1592 | 0 | "condition untrue on return from Await"); |
1593 | 0 | } |
1594 | 0 | } |
1595 | | |
1596 | 0 | bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) { |
1597 | 0 | return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout)); |
1598 | 0 | } |
1599 | | |
1600 | 0 | bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) { |
1601 | 0 | if (cond.Eval()) { // condition already true; nothing to do |
1602 | 0 | if (kDebugMode) { |
1603 | 0 | this->AssertReaderHeld(); |
1604 | 0 | } |
1605 | 0 | return true; |
1606 | 0 | } |
1607 | | |
1608 | 0 | KernelTimeout t{deadline}; |
1609 | 0 | bool res = this->AwaitCommon(cond, t); |
1610 | 0 | ABSL_RAW_CHECK(res || t.has_timeout(), |
1611 | 0 | "condition untrue on return from Await"); |
1612 | 0 | return res; |
1613 | 0 | } |
1614 | | |
1615 | 0 | bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) { |
1616 | 0 | this->AssertReaderHeld(); |
1617 | 0 | MuHow how = |
1618 | 0 | (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared; |
1619 | 0 | ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how)); |
1620 | 0 | SynchWaitParams waitp( |
1621 | 0 | how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), |
1622 | 0 | nullptr /*no cv_word*/); |
1623 | 0 | int flags = kMuHasBlocked; |
1624 | 0 | if (!Condition::GuaranteedEqual(&cond, nullptr)) { |
1625 | 0 | flags |= kMuIsCond; |
1626 | 0 | } |
1627 | 0 | this->UnlockSlow(&waitp); |
1628 | 0 | this->Block(waitp.thread); |
1629 | 0 | ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how)); |
1630 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how)); |
1631 | 0 | this->LockSlowLoop(&waitp, flags); |
1632 | 0 | bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop |
1633 | 0 | EvalConditionAnnotated(&cond, this, true, false, how == kShared); |
1634 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0); |
1635 | 0 | return res; |
1636 | 0 | } |
1637 | | |
1638 | 0 | bool Mutex::TryLock() { |
1639 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock); |
1640 | 0 | intptr_t v = mu_.load(std::memory_order_relaxed); |
1641 | 0 | if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire |
1642 | 0 | mu_.compare_exchange_strong(v, kMuWriter | v, |
1643 | 0 | std::memory_order_acquire, |
1644 | 0 | std::memory_order_relaxed)) { |
1645 | 0 | DebugOnlyLockEnter(this); |
1646 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); |
1647 | 0 | return true; |
1648 | 0 | } |
1649 | 0 | if ((v & kMuEvent) != 0) { // we're recording events |
1650 | 0 | if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire |
1651 | 0 | mu_.compare_exchange_strong( |
1652 | 0 | v, (kExclusive->fast_or | v) + kExclusive->fast_add, |
1653 | 0 | std::memory_order_acquire, std::memory_order_relaxed)) { |
1654 | 0 | DebugOnlyLockEnter(this); |
1655 | 0 | PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS); |
1656 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); |
1657 | 0 | return true; |
1658 | 0 | } else { |
1659 | 0 | PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED); |
1660 | 0 | } |
1661 | 0 | } |
1662 | 0 | ABSL_TSAN_MUTEX_POST_LOCK( |
1663 | 0 | this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); |
1664 | 0 | return false; |
1665 | 0 | } |
1666 | | |
1667 | 0 | bool Mutex::ReaderTryLock() { |
1668 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(this, |
1669 | 0 | __tsan_mutex_read_lock | __tsan_mutex_try_lock); |
1670 | 0 | intptr_t v = mu_.load(std::memory_order_relaxed); |
1671 | | // The while-loops (here and below) iterate only if the mutex word keeps |
1672 | | // changing (typically because the reader count changes) under the CAS. We |
1673 | | // limit the number of attempts to avoid having to think about livelock. |
1674 | 0 | int loop_limit = 5; |
1675 | 0 | while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) { |
1676 | 0 | if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, |
1677 | 0 | std::memory_order_acquire, |
1678 | 0 | std::memory_order_relaxed)) { |
1679 | 0 | DebugOnlyLockEnter(this); |
1680 | 0 | ABSL_TSAN_MUTEX_POST_LOCK( |
1681 | 0 | this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); |
1682 | 0 | return true; |
1683 | 0 | } |
1684 | 0 | loop_limit--; |
1685 | 0 | v = mu_.load(std::memory_order_relaxed); |
1686 | 0 | } |
1687 | 0 | if ((v & kMuEvent) != 0) { // we're recording events |
1688 | 0 | loop_limit = 5; |
1689 | 0 | while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) { |
1690 | 0 | if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, |
1691 | 0 | std::memory_order_acquire, |
1692 | 0 | std::memory_order_relaxed)) { |
1693 | 0 | DebugOnlyLockEnter(this); |
1694 | 0 | PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS); |
1695 | 0 | ABSL_TSAN_MUTEX_POST_LOCK( |
1696 | 0 | this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); |
1697 | 0 | return true; |
1698 | 0 | } |
1699 | 0 | loop_limit--; |
1700 | 0 | v = mu_.load(std::memory_order_relaxed); |
1701 | 0 | } |
1702 | 0 | if ((v & kMuEvent) != 0) { |
1703 | 0 | PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED); |
1704 | 0 | } |
1705 | 0 | } |
1706 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(this, |
1707 | 0 | __tsan_mutex_read_lock | __tsan_mutex_try_lock | |
1708 | 0 | __tsan_mutex_try_lock_failed, |
1709 | 0 | 0); |
1710 | 0 | return false; |
1711 | 0 | } |
1712 | | |
1713 | 40 | void Mutex::Unlock() { |
1714 | 40 | ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0); |
1715 | 40 | DebugOnlyLockLeave(this); |
1716 | 40 | intptr_t v = mu_.load(std::memory_order_relaxed); |
1717 | | |
1718 | 40 | if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) { |
1719 | 0 | ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x", |
1720 | 0 | static_cast<unsigned>(v)); |
1721 | 0 | } |
1722 | | |
1723 | | // should_try_cas is whether we'll try a compare-and-swap immediately. |
1724 | | // NOTE: optimized out when kDebugMode is false. |
1725 | 40 | bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter && |
1726 | 40 | (v & (kMuWait | kMuDesig)) != kMuWait); |
1727 | | // But, we can use an alternate computation of it, that compilers |
1728 | | // currently don't find on their own. When that changes, this function |
1729 | | // can be simplified. |
1730 | 40 | intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent); |
1731 | 40 | intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig); |
1732 | | // Claim: "x == 0 && y > 0" is equal to should_try_cas. |
1733 | | // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait, |
1734 | | // all possible non-zero values for x exceed all possible values for y. |
1735 | | // Therefore, (x == 0 && y > 0) == (x < y). |
1736 | 40 | if (kDebugMode && should_try_cas != (x < y)) { |
1737 | | // We would usually use PRIdPTR here, but is not correctly implemented |
1738 | | // within the android toolchain. |
1739 | 0 | ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n", |
1740 | 0 | static_cast<long long>(v), static_cast<long long>(x), |
1741 | 0 | static_cast<long long>(y)); |
1742 | 0 | } |
1743 | 40 | if (x < y && |
1744 | 40 | mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), |
1745 | 40 | std::memory_order_release, |
1746 | 40 | std::memory_order_relaxed)) { |
1747 | | // fast writer release (writer with no waiters or with designated waker) |
1748 | 40 | } else { |
1749 | 0 | this->UnlockSlow(nullptr /*no waitp*/); // take slow path |
1750 | 0 | } |
1751 | 40 | ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0); |
1752 | 40 | } |
1753 | | |
1754 | | // Requires v to represent a reader-locked state. |
1755 | 7.93k | static bool ExactlyOneReader(intptr_t v) { |
1756 | 7.93k | assert((v & (kMuWriter|kMuReader)) == kMuReader); |
1757 | 7.93k | assert((v & kMuHigh) != 0); |
1758 | | // The more straightforward "(v & kMuHigh) == kMuOne" also works, but |
1759 | | // on some architectures the following generates slightly smaller code. |
1760 | | // It may be faster too. |
1761 | 7.93k | constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne; |
1762 | 7.93k | return (v & kMuMultipleWaitersMask) == 0; |
1763 | 7.93k | } |
1764 | | |
1765 | 7.93k | void Mutex::ReaderUnlock() { |
1766 | 7.93k | ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock); |
1767 | 7.93k | DebugOnlyLockLeave(this); |
1768 | 7.93k | intptr_t v = mu_.load(std::memory_order_relaxed); |
1769 | 7.93k | assert((v & (kMuWriter|kMuReader)) == kMuReader); |
1770 | 7.93k | if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) { |
1771 | | // fast reader release (reader with no waiters) |
1772 | 7.93k | intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne; |
1773 | 7.93k | if (mu_.compare_exchange_strong(v, v - clear, |
1774 | 7.93k | std::memory_order_release, |
1775 | 7.93k | std::memory_order_relaxed)) { |
1776 | 7.93k | ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); |
1777 | 7.93k | return; |
1778 | 7.93k | } |
1779 | 7.93k | } |
1780 | 0 | this->UnlockSlow(nullptr /*no waitp*/); // take slow path |
1781 | 0 | ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); |
1782 | 0 | } |
1783 | | |
1784 | | // Clears the designated waker flag in the mutex if this thread has blocked, and |
1785 | | // therefore may be the designated waker. |
1786 | 0 | static intptr_t ClearDesignatedWakerMask(int flag) { |
1787 | 0 | assert(flag >= 0); |
1788 | 0 | assert(flag <= 1); |
1789 | 0 | switch (flag) { |
1790 | 0 | case 0: // not blocked |
1791 | 0 | return ~static_cast<intptr_t>(0); |
1792 | 0 | case 1: // blocked; turn off the designated waker bit |
1793 | 0 | return ~static_cast<intptr_t>(kMuDesig); |
1794 | 0 | } |
1795 | 0 | ABSL_UNREACHABLE(); |
1796 | 0 | } |
1797 | | |
1798 | | // Conditionally ignores the existence of waiting writers if a reader that has |
1799 | | // already blocked once wakes up. |
1800 | 0 | static intptr_t IgnoreWaitingWritersMask(int flag) { |
1801 | 0 | assert(flag >= 0); |
1802 | 0 | assert(flag <= 1); |
1803 | 0 | switch (flag) { |
1804 | 0 | case 0: // not blocked |
1805 | 0 | return ~static_cast<intptr_t>(0); |
1806 | 0 | case 1: // blocked; pretend there are no waiting writers |
1807 | 0 | return ~static_cast<intptr_t>(kMuWrWait); |
1808 | 0 | } |
1809 | 0 | ABSL_UNREACHABLE(); |
1810 | 0 | } |
1811 | | |
1812 | | // Internal version of LockWhen(). See LockSlowWithDeadline() |
1813 | | ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition *cond, |
1814 | 0 | int flags) { |
1815 | 0 | ABSL_RAW_CHECK( |
1816 | 0 | this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags), |
1817 | 0 | "condition untrue on return from LockSlow"); |
1818 | 0 | } |
1819 | | |
1820 | | // Compute cond->Eval() and tell race detectors that we do it under mutex mu. |
1821 | | static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu, |
1822 | | bool locking, bool trylock, |
1823 | 0 | bool read_lock) { |
1824 | | // Delicate annotation dance. |
1825 | | // We are currently inside of read/write lock/unlock operation. |
1826 | | // All memory accesses are ignored inside of mutex operations + for unlock |
1827 | | // operation tsan considers that we've already released the mutex. |
1828 | 0 | bool res = false; |
1829 | | #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE |
1830 | | const uint32_t flags = read_lock ? __tsan_mutex_read_lock : 0; |
1831 | | const uint32_t tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0); |
1832 | | #endif |
1833 | 0 | if (locking) { |
1834 | | // For lock we pretend that we have finished the operation, |
1835 | | // evaluate the predicate, then unlock the mutex and start locking it again |
1836 | | // to match the annotation at the end of outer lock operation. |
1837 | | // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan |
1838 | | // will think the lock acquisition is recursive which will trigger |
1839 | | // deadlock detector. |
1840 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0); |
1841 | 0 | res = cond->Eval(); |
1842 | | // There is no "try" version of Unlock, so use flags instead of tryflags. |
1843 | 0 | ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); |
1844 | 0 | ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); |
1845 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags); |
1846 | 0 | } else { |
1847 | | // Similarly, for unlock we pretend that we have unlocked the mutex, |
1848 | | // lock the mutex, evaluate the predicate, and start unlocking it again |
1849 | | // to match the annotation at the end of outer unlock operation. |
1850 | 0 | ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); |
1851 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags); |
1852 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0); |
1853 | 0 | res = cond->Eval(); |
1854 | 0 | ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); |
1855 | 0 | } |
1856 | | // Prevent unused param warnings in non-TSAN builds. |
1857 | 0 | static_cast<void>(mu); |
1858 | 0 | static_cast<void>(trylock); |
1859 | 0 | static_cast<void>(read_lock); |
1860 | 0 | return res; |
1861 | 0 | } |
1862 | | |
1863 | | // Compute cond->Eval() hiding it from race detectors. |
1864 | | // We are hiding it because inside of UnlockSlow we can evaluate a predicate |
1865 | | // that was just added by a concurrent Lock operation; Lock adds the predicate |
1866 | | // to the internal Mutex list without actually acquiring the Mutex |
1867 | | // (it only acquires the internal spinlock, which is rightfully invisible for |
1868 | | // tsan). As the result there is no tsan-visible synchronization between the |
1869 | | // addition and this thread. So if we would enable race detection here, |
1870 | | // it would race with the predicate initialization. |
1871 | 0 | static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) { |
1872 | | // Memory accesses are already ignored inside of lock/unlock operations, |
1873 | | // but synchronization operations are also ignored. When we evaluate the |
1874 | | // predicate we must ignore only memory accesses but not synchronization, |
1875 | | // because missed synchronization can lead to false reports later. |
1876 | | // So we "divert" (which un-ignores both memory accesses and synchronization) |
1877 | | // and then separately turn on ignores of memory accesses. |
1878 | 0 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
1879 | 0 | ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); |
1880 | 0 | bool res = cond->Eval(); |
1881 | 0 | ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END(); |
1882 | 0 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
1883 | 0 | static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds. |
1884 | 0 | return res; |
1885 | 0 | } |
1886 | | |
1887 | | // Internal equivalent of *LockWhenWithDeadline(), where |
1888 | | // "t" represents the absolute timeout; !t.has_timeout() means "forever". |
1889 | | // "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen) |
1890 | | // In flags, bits are ored together: |
1891 | | // - kMuHasBlocked indicates that the client has already blocked on the call so |
1892 | | // the designated waker bit must be cleared and waiting writers should not |
1893 | | // obstruct this call |
1894 | | // - kMuIsCond indicates that this is a conditional acquire (condition variable, |
1895 | | // Await, LockWhen) so contention profiling should be suppressed. |
1896 | | bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond, |
1897 | 0 | KernelTimeout t, int flags) { |
1898 | 0 | intptr_t v = mu_.load(std::memory_order_relaxed); |
1899 | 0 | bool unlock = false; |
1900 | 0 | if ((v & how->fast_need_zero) == 0 && // try fast acquire |
1901 | 0 | mu_.compare_exchange_strong( |
1902 | 0 | v, |
1903 | 0 | (how->fast_or | |
1904 | 0 | (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) + |
1905 | 0 | how->fast_add, |
1906 | 0 | std::memory_order_acquire, std::memory_order_relaxed)) { |
1907 | 0 | if (cond == nullptr || |
1908 | 0 | EvalConditionAnnotated(cond, this, true, false, how == kShared)) { |
1909 | 0 | return true; |
1910 | 0 | } |
1911 | 0 | unlock = true; |
1912 | 0 | } |
1913 | 0 | SynchWaitParams waitp( |
1914 | 0 | how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), |
1915 | 0 | nullptr /*no cv_word*/); |
1916 | 0 | if (!Condition::GuaranteedEqual(cond, nullptr)) { |
1917 | 0 | flags |= kMuIsCond; |
1918 | 0 | } |
1919 | 0 | if (unlock) { |
1920 | 0 | this->UnlockSlow(&waitp); |
1921 | 0 | this->Block(waitp.thread); |
1922 | 0 | flags |= kMuHasBlocked; |
1923 | 0 | } |
1924 | 0 | this->LockSlowLoop(&waitp, flags); |
1925 | 0 | return waitp.cond != nullptr || // => cond known true from LockSlowLoop |
1926 | 0 | cond == nullptr || |
1927 | 0 | EvalConditionAnnotated(cond, this, true, false, how == kShared); |
1928 | 0 | } |
1929 | | |
1930 | | // RAW_CHECK_FMT() takes a condition, a printf-style format string, and |
1931 | | // the printf-style argument list. The format string must be a literal. |
1932 | | // Arguments after the first are not evaluated unless the condition is true. |
1933 | | #define RAW_CHECK_FMT(cond, ...) \ |
1934 | 0 | do { \ |
1935 | 0 | if (ABSL_PREDICT_FALSE(!(cond))) { \ |
1936 | 0 | ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \ |
1937 | 0 | } \ |
1938 | 0 | } while (0) |
1939 | | |
1940 | 0 | static void CheckForMutexCorruption(intptr_t v, const char* label) { |
1941 | | // Test for either of two situations that should not occur in v: |
1942 | | // kMuWriter and kMuReader |
1943 | | // kMuWrWait and !kMuWait |
1944 | 0 | const uintptr_t w = static_cast<uintptr_t>(v ^ kMuWait); |
1945 | | // By flipping that bit, we can now test for: |
1946 | | // kMuWriter and kMuReader in w |
1947 | | // kMuWrWait and kMuWait in w |
1948 | | // We've chosen these two pairs of values to be so that they will overlap, |
1949 | | // respectively, when the word is left shifted by three. This allows us to |
1950 | | // save a branch in the common (correct) case of them not being coincident. |
1951 | 0 | static_assert(kMuReader << 3 == kMuWriter, "must match"); |
1952 | 0 | static_assert(kMuWait << 3 == kMuWrWait, "must match"); |
1953 | 0 | if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return; |
1954 | 0 | RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader), |
1955 | 0 | "%s: Mutex corrupt: both reader and writer lock held: %p", |
1956 | 0 | label, reinterpret_cast<void *>(v)); |
1957 | 0 | RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait, |
1958 | 0 | "%s: Mutex corrupt: waiting writer with no waiters: %p", |
1959 | 0 | label, reinterpret_cast<void *>(v)); |
1960 | 0 | assert(false); |
1961 | 0 | } |
1962 | | |
1963 | 0 | void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) { |
1964 | 0 | SchedulingGuard::ScopedDisable disable_rescheduling; |
1965 | 0 | int c = 0; |
1966 | 0 | intptr_t v = mu_.load(std::memory_order_relaxed); |
1967 | 0 | if ((v & kMuEvent) != 0) { |
1968 | 0 | PostSynchEvent(this, |
1969 | 0 | waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK); |
1970 | 0 | } |
1971 | 0 | ABSL_RAW_CHECK( |
1972 | 0 | waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, |
1973 | 0 | "detected illegal recursion into Mutex code"); |
1974 | 0 | for (;;) { |
1975 | 0 | v = mu_.load(std::memory_order_relaxed); |
1976 | 0 | CheckForMutexCorruption(v, "Lock"); |
1977 | 0 | if ((v & waitp->how->slow_need_zero) == 0) { |
1978 | 0 | if (mu_.compare_exchange_strong( |
1979 | 0 | v, |
1980 | 0 | (waitp->how->fast_or | |
1981 | 0 | (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) + |
1982 | 0 | waitp->how->fast_add, |
1983 | 0 | std::memory_order_acquire, std::memory_order_relaxed)) { |
1984 | 0 | if (waitp->cond == nullptr || |
1985 | 0 | EvalConditionAnnotated(waitp->cond, this, true, false, |
1986 | 0 | waitp->how == kShared)) { |
1987 | 0 | break; // we timed out, or condition true, so return |
1988 | 0 | } |
1989 | 0 | this->UnlockSlow(waitp); // got lock but condition false |
1990 | 0 | this->Block(waitp->thread); |
1991 | 0 | flags |= kMuHasBlocked; |
1992 | 0 | c = 0; |
1993 | 0 | } |
1994 | 0 | } else { // need to access waiter list |
1995 | 0 | bool dowait = false; |
1996 | 0 | if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters |
1997 | | // This thread tries to become the one and only waiter. |
1998 | 0 | PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags); |
1999 | 0 | intptr_t nv = |
2000 | 0 | (v & ClearDesignatedWakerMask(flags & kMuHasBlocked) & kMuLow) | |
2001 | 0 | kMuWait; |
2002 | 0 | ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed"); |
2003 | 0 | if (waitp->how == kExclusive && (v & kMuReader) != 0) { |
2004 | 0 | nv |= kMuWrWait; |
2005 | 0 | } |
2006 | 0 | if (mu_.compare_exchange_strong( |
2007 | 0 | v, reinterpret_cast<intptr_t>(new_h) | nv, |
2008 | 0 | std::memory_order_release, std::memory_order_relaxed)) { |
2009 | 0 | dowait = true; |
2010 | 0 | } else { // attempted Enqueue() failed |
2011 | | // zero out the waitp field set by Enqueue() |
2012 | 0 | waitp->thread->waitp = nullptr; |
2013 | 0 | } |
2014 | 0 | } else if ((v & waitp->how->slow_inc_need_zero & |
2015 | 0 | IgnoreWaitingWritersMask(flags & kMuHasBlocked)) == 0) { |
2016 | | // This is a reader that needs to increment the reader count, |
2017 | | // but the count is currently held in the last waiter. |
2018 | 0 | if (mu_.compare_exchange_strong( |
2019 | 0 | v, |
2020 | 0 | (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) | |
2021 | 0 | kMuSpin | kMuReader, |
2022 | 0 | std::memory_order_acquire, std::memory_order_relaxed)) { |
2023 | 0 | PerThreadSynch *h = GetPerThreadSynch(v); |
2024 | 0 | h->readers += kMuOne; // inc reader count in waiter |
2025 | 0 | do { // release spinlock |
2026 | 0 | v = mu_.load(std::memory_order_relaxed); |
2027 | 0 | } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader, |
2028 | 0 | std::memory_order_release, |
2029 | 0 | std::memory_order_relaxed)); |
2030 | 0 | if (waitp->cond == nullptr || |
2031 | 0 | EvalConditionAnnotated(waitp->cond, this, true, false, |
2032 | 0 | waitp->how == kShared)) { |
2033 | 0 | break; // we timed out, or condition true, so return |
2034 | 0 | } |
2035 | 0 | this->UnlockSlow(waitp); // got lock but condition false |
2036 | 0 | this->Block(waitp->thread); |
2037 | 0 | flags |= kMuHasBlocked; |
2038 | 0 | c = 0; |
2039 | 0 | } |
2040 | 0 | } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves |
2041 | 0 | mu_.compare_exchange_strong( |
2042 | 0 | v, |
2043 | 0 | (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) | |
2044 | 0 | kMuSpin | kMuWait, |
2045 | 0 | std::memory_order_acquire, std::memory_order_relaxed)) { |
2046 | 0 | PerThreadSynch *h = GetPerThreadSynch(v); |
2047 | 0 | PerThreadSynch *new_h = Enqueue(h, waitp, v, flags); |
2048 | 0 | intptr_t wr_wait = 0; |
2049 | 0 | ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed"); |
2050 | 0 | if (waitp->how == kExclusive && (v & kMuReader) != 0) { |
2051 | 0 | wr_wait = kMuWrWait; // give priority to a waiting writer |
2052 | 0 | } |
2053 | 0 | do { // release spinlock |
2054 | 0 | v = mu_.load(std::memory_order_relaxed); |
2055 | 0 | } while (!mu_.compare_exchange_weak( |
2056 | 0 | v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait | |
2057 | 0 | reinterpret_cast<intptr_t>(new_h), |
2058 | 0 | std::memory_order_release, std::memory_order_relaxed)); |
2059 | 0 | dowait = true; |
2060 | 0 | } |
2061 | 0 | if (dowait) { |
2062 | 0 | this->Block(waitp->thread); // wait until removed from list or timeout |
2063 | 0 | flags |= kMuHasBlocked; |
2064 | 0 | c = 0; |
2065 | 0 | } |
2066 | 0 | } |
2067 | 0 | ABSL_RAW_CHECK( |
2068 | 0 | waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, |
2069 | 0 | "detected illegal recursion into Mutex code"); |
2070 | | // delay, then try again |
2071 | 0 | c = synchronization_internal::MutexDelay(c, GENTLE); |
2072 | 0 | } |
2073 | 0 | ABSL_RAW_CHECK( |
2074 | 0 | waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, |
2075 | 0 | "detected illegal recursion into Mutex code"); |
2076 | 0 | if ((v & kMuEvent) != 0) { |
2077 | 0 | PostSynchEvent(this, |
2078 | 0 | waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING : |
2079 | 0 | SYNCH_EV_READERLOCK_RETURNING); |
2080 | 0 | } |
2081 | 0 | } |
2082 | | |
2083 | | // Unlock this mutex, which is held by the current thread. |
2084 | | // If waitp is non-zero, it must be the wait parameters for the current thread |
2085 | | // which holds the lock but is not runnable because its condition is false |
2086 | | // or it is in the process of blocking on a condition variable; it must requeue |
2087 | | // itself on the mutex/condvar to wait for its condition to become true. |
2088 | 0 | ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) { |
2089 | 0 | SchedulingGuard::ScopedDisable disable_rescheduling; |
2090 | 0 | intptr_t v = mu_.load(std::memory_order_relaxed); |
2091 | 0 | this->AssertReaderHeld(); |
2092 | 0 | CheckForMutexCorruption(v, "Unlock"); |
2093 | 0 | if ((v & kMuEvent) != 0) { |
2094 | 0 | PostSynchEvent(this, |
2095 | 0 | (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK); |
2096 | 0 | } |
2097 | 0 | int c = 0; |
2098 | | // the waiter under consideration to wake, or zero |
2099 | 0 | PerThreadSynch *w = nullptr; |
2100 | | // the predecessor to w or zero |
2101 | 0 | PerThreadSynch *pw = nullptr; |
2102 | | // head of the list searched previously, or zero |
2103 | 0 | PerThreadSynch *old_h = nullptr; |
2104 | | // a condition that's known to be false. |
2105 | 0 | const Condition *known_false = nullptr; |
2106 | 0 | PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake |
2107 | 0 | intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a |
2108 | | // later writer could have acquired the lock |
2109 | | // (starvation avoidance) |
2110 | 0 | ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr || |
2111 | 0 | waitp->thread->suppress_fatal_errors, |
2112 | 0 | "detected illegal recursion into Mutex code"); |
2113 | | // This loop finds threads wake_list to wakeup if any, and removes them from |
2114 | | // the list of waiters. In addition, it places waitp.thread on the queue of |
2115 | | // waiters if waitp is non-zero. |
2116 | 0 | for (;;) { |
2117 | 0 | v = mu_.load(std::memory_order_relaxed); |
2118 | 0 | if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait && |
2119 | 0 | waitp == nullptr) { |
2120 | | // fast writer release (writer with no waiters or with designated waker) |
2121 | 0 | if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), |
2122 | 0 | std::memory_order_release, |
2123 | 0 | std::memory_order_relaxed)) { |
2124 | 0 | return; |
2125 | 0 | } |
2126 | 0 | } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) { |
2127 | | // fast reader release (reader with no waiters) |
2128 | 0 | intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne; |
2129 | 0 | if (mu_.compare_exchange_strong(v, v - clear, |
2130 | 0 | std::memory_order_release, |
2131 | 0 | std::memory_order_relaxed)) { |
2132 | 0 | return; |
2133 | 0 | } |
2134 | 0 | } else if ((v & kMuSpin) == 0 && // attempt to get spinlock |
2135 | 0 | mu_.compare_exchange_strong(v, v | kMuSpin, |
2136 | 0 | std::memory_order_acquire, |
2137 | 0 | std::memory_order_relaxed)) { |
2138 | 0 | if ((v & kMuWait) == 0) { // no one to wake |
2139 | 0 | intptr_t nv; |
2140 | 0 | bool do_enqueue = true; // always Enqueue() the first time |
2141 | 0 | ABSL_RAW_CHECK(waitp != nullptr, |
2142 | 0 | "UnlockSlow is confused"); // about to sleep |
2143 | 0 | do { // must loop to release spinlock as reader count may change |
2144 | 0 | v = mu_.load(std::memory_order_relaxed); |
2145 | | // decrement reader count if there are readers |
2146 | 0 | intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v; |
2147 | 0 | PerThreadSynch *new_h = nullptr; |
2148 | 0 | if (do_enqueue) { |
2149 | | // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then |
2150 | | // we must not retry here. The initial attempt will always have |
2151 | | // succeeded, further attempts would enqueue us against *this due to |
2152 | | // Fer() handling. |
2153 | 0 | do_enqueue = (waitp->cv_word == nullptr); |
2154 | 0 | new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond); |
2155 | 0 | } |
2156 | 0 | intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit |
2157 | 0 | if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader |
2158 | 0 | clear = kMuWrWait | kMuReader; // clear read bit |
2159 | 0 | } |
2160 | 0 | nv = (v & kMuLow & ~clear & ~kMuSpin); |
2161 | 0 | if (new_h != nullptr) { |
2162 | 0 | nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); |
2163 | 0 | } else { // new_h could be nullptr if we queued ourselves on a |
2164 | | // CondVar |
2165 | | // In that case, we must place the reader count back in the mutex |
2166 | | // word, as Enqueue() did not store it in the new waiter. |
2167 | 0 | nv |= new_readers & kMuHigh; |
2168 | 0 | } |
2169 | | // release spinlock & our lock; retry if reader-count changed |
2170 | | // (writer count cannot change since we hold lock) |
2171 | 0 | } while (!mu_.compare_exchange_weak(v, nv, |
2172 | 0 | std::memory_order_release, |
2173 | 0 | std::memory_order_relaxed)); |
2174 | 0 | break; |
2175 | 0 | } |
2176 | | |
2177 | | // There are waiters. |
2178 | | // Set h to the head of the circular waiter list. |
2179 | 0 | PerThreadSynch *h = GetPerThreadSynch(v); |
2180 | 0 | if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) { |
2181 | | // a reader but not the last |
2182 | 0 | h->readers -= kMuOne; // release our lock |
2183 | 0 | intptr_t nv = v; // normally just release spinlock |
2184 | 0 | if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves |
2185 | 0 | PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); |
2186 | 0 | ABSL_RAW_CHECK(new_h != nullptr, |
2187 | 0 | "waiters disappeared during Enqueue()!"); |
2188 | 0 | nv &= kMuLow; |
2189 | 0 | nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); |
2190 | 0 | } |
2191 | 0 | mu_.store(nv, std::memory_order_release); // release spinlock |
2192 | | // can release with a store because there were waiters |
2193 | 0 | break; |
2194 | 0 | } |
2195 | | |
2196 | | // Either we didn't search before, or we marked the queue |
2197 | | // as "maybe_unlocking" and no one else should have changed it. |
2198 | 0 | ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking, |
2199 | 0 | "Mutex queue changed beneath us"); |
2200 | | |
2201 | | // The lock is becoming free, and there's a waiter |
2202 | 0 | if (old_h != nullptr && |
2203 | 0 | !old_h->may_skip) { // we used old_h as a terminator |
2204 | 0 | old_h->may_skip = true; // allow old_h to skip once more |
2205 | 0 | ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head"); |
2206 | 0 | if (h != old_h && MuEquivalentWaiter(old_h, old_h->next)) { |
2207 | 0 | old_h->skip = old_h->next; // old_h not head & can skip to successor |
2208 | 0 | } |
2209 | 0 | } |
2210 | 0 | if (h->next->waitp->how == kExclusive && |
2211 | 0 | Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) { |
2212 | | // easy case: writer with no condition; no need to search |
2213 | 0 | pw = h; // wake w, the successor of h (=pw) |
2214 | 0 | w = h->next; |
2215 | 0 | w->wake = true; |
2216 | | // We are waking up a writer. This writer may be racing against |
2217 | | // an already awake reader for the lock. We want the |
2218 | | // writer to usually win this race, |
2219 | | // because if it doesn't, we can potentially keep taking a reader |
2220 | | // perpetually and writers will starve. Worse than |
2221 | | // that, this can also starve other readers if kMuWrWait gets set |
2222 | | // later. |
2223 | 0 | wr_wait = kMuWrWait; |
2224 | 0 | } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) { |
2225 | | // we found a waiter w to wake on a previous iteration and either it's |
2226 | | // a writer, or we've searched the entire list so we have all the |
2227 | | // readers. |
2228 | 0 | if (pw == nullptr) { // if w's predecessor is unknown, it must be h |
2229 | 0 | pw = h; |
2230 | 0 | } |
2231 | 0 | } else { |
2232 | | // At this point we don't know all the waiters to wake, and the first |
2233 | | // waiter has a condition or is a reader. We avoid searching over |
2234 | | // waiters we've searched on previous iterations by starting at |
2235 | | // old_h if it's set. If old_h==h, there's no one to wakeup at all. |
2236 | 0 | if (old_h == h) { // we've searched before, and nothing's new |
2237 | | // so there's no one to wake. |
2238 | 0 | intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait)); |
2239 | 0 | h->readers = 0; |
2240 | 0 | h->maybe_unlocking = false; // finished unlocking |
2241 | 0 | if (waitp != nullptr) { // we must queue ourselves and sleep |
2242 | 0 | PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); |
2243 | 0 | nv &= kMuLow; |
2244 | 0 | if (new_h != nullptr) { |
2245 | 0 | nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); |
2246 | 0 | } // else new_h could be nullptr if we queued ourselves on a |
2247 | | // CondVar |
2248 | 0 | } |
2249 | | // release spinlock & lock |
2250 | | // can release with a store because there were waiters |
2251 | 0 | mu_.store(nv, std::memory_order_release); |
2252 | 0 | break; |
2253 | 0 | } |
2254 | | |
2255 | | // set up to walk the list |
2256 | 0 | PerThreadSynch *w_walk; // current waiter during list walk |
2257 | 0 | PerThreadSynch *pw_walk; // previous waiter during list walk |
2258 | 0 | if (old_h != nullptr) { // we've searched up to old_h before |
2259 | 0 | pw_walk = old_h; |
2260 | 0 | w_walk = old_h->next; |
2261 | 0 | } else { // no prior search, start at beginning |
2262 | 0 | pw_walk = |
2263 | 0 | nullptr; // h->next's predecessor may change; don't record it |
2264 | 0 | w_walk = h->next; |
2265 | 0 | } |
2266 | |
|
2267 | 0 | h->may_skip = false; // ensure we never skip past h in future searches |
2268 | | // even if other waiters are queued after it. |
2269 | 0 | ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head"); |
2270 | |
|
2271 | 0 | h->maybe_unlocking = true; // we're about to scan the waiter list |
2272 | | // without the spinlock held. |
2273 | | // Enqueue must be conservative about |
2274 | | // priority queuing. |
2275 | | |
2276 | | // We must release the spinlock to evaluate the conditions. |
2277 | 0 | mu_.store(v, std::memory_order_release); // release just spinlock |
2278 | | // can release with a store because there were waiters |
2279 | | |
2280 | | // h is the last waiter queued, and w_walk the first unsearched waiter. |
2281 | | // Without the spinlock, the locations mu_ and h->next may now change |
2282 | | // underneath us, but since we hold the lock itself, the only legal |
2283 | | // change is to add waiters between h and w_walk. Therefore, it's safe |
2284 | | // to walk the path from w_walk to h inclusive. (TryRemove() can remove |
2285 | | // a waiter anywhere, but it acquires both the spinlock and the Mutex) |
2286 | |
|
2287 | 0 | old_h = h; // remember we searched to here |
2288 | | |
2289 | | // Walk the path upto and including h looking for waiters we can wake. |
2290 | 0 | while (pw_walk != h) { |
2291 | 0 | w_walk->wake = false; |
2292 | 0 | if (w_walk->waitp->cond == |
2293 | 0 | nullptr || // no condition => vacuously true OR |
2294 | 0 | (w_walk->waitp->cond != known_false && |
2295 | | // this thread's condition is not known false, AND |
2296 | | // is in fact true |
2297 | 0 | EvalConditionIgnored(this, w_walk->waitp->cond))) { |
2298 | 0 | if (w == nullptr) { |
2299 | 0 | w_walk->wake = true; // can wake this waiter |
2300 | 0 | w = w_walk; |
2301 | 0 | pw = pw_walk; |
2302 | 0 | if (w_walk->waitp->how == kExclusive) { |
2303 | 0 | wr_wait = kMuWrWait; |
2304 | 0 | break; // bail if waking this writer |
2305 | 0 | } |
2306 | 0 | } else if (w_walk->waitp->how == kShared) { // wake if a reader |
2307 | 0 | w_walk->wake = true; |
2308 | 0 | } else { // writer with true condition |
2309 | 0 | wr_wait = kMuWrWait; |
2310 | 0 | } |
2311 | 0 | } else { // can't wake; condition false |
2312 | 0 | known_false = w_walk->waitp->cond; // remember last false condition |
2313 | 0 | } |
2314 | 0 | if (w_walk->wake) { // we're waking reader w_walk |
2315 | 0 | pw_walk = w_walk; // don't skip similar waiters |
2316 | 0 | } else { // not waking; skip as much as possible |
2317 | 0 | pw_walk = Skip(w_walk); |
2318 | 0 | } |
2319 | | // If pw_walk == h, then load of pw_walk->next can race with |
2320 | | // concurrent write in Enqueue(). However, at the same time |
2321 | | // we do not need to do the load, because we will bail out |
2322 | | // from the loop anyway. |
2323 | 0 | if (pw_walk != h) { |
2324 | 0 | w_walk = pw_walk->next; |
2325 | 0 | } |
2326 | 0 | } |
2327 | |
|
2328 | 0 | continue; // restart for(;;)-loop to wakeup w or to find more waiters |
2329 | 0 | } |
2330 | 0 | ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor"); |
2331 | | // The first (and perhaps only) waiter we've chosen to wake is w, whose |
2332 | | // predecessor is pw. If w is a reader, we must wake all the other |
2333 | | // waiters with wake==true as well. We may also need to queue |
2334 | | // ourselves if waitp != null. The spinlock and the lock are still |
2335 | | // held. |
2336 | | |
2337 | | // This traverses the list in [ pw->next, h ], where h is the head, |
2338 | | // removing all elements with wake==true and placing them in the |
2339 | | // singly-linked list wake_list. Returns the new head. |
2340 | 0 | h = DequeueAllWakeable(h, pw, &wake_list); |
2341 | |
|
2342 | 0 | intptr_t nv = (v & kMuEvent) | kMuDesig; |
2343 | | // assume no waiters left, |
2344 | | // set kMuDesig for INV1a |
2345 | |
|
2346 | 0 | if (waitp != nullptr) { // we must queue ourselves and sleep |
2347 | 0 | h = Enqueue(h, waitp, v, kMuIsCond); |
2348 | | // h is new last waiter; could be null if we queued ourselves on a |
2349 | | // CondVar |
2350 | 0 | } |
2351 | |
|
2352 | 0 | ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull, |
2353 | 0 | "unexpected empty wake list"); |
2354 | |
|
2355 | 0 | if (h != nullptr) { // there are waiters left |
2356 | 0 | h->readers = 0; |
2357 | 0 | h->maybe_unlocking = false; // finished unlocking |
2358 | 0 | nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h); |
2359 | 0 | } |
2360 | | |
2361 | | // release both spinlock & lock |
2362 | | // can release with a store because there were waiters |
2363 | 0 | mu_.store(nv, std::memory_order_release); |
2364 | 0 | break; // out of for(;;)-loop |
2365 | 0 | } |
2366 | | // aggressive here; no one can proceed till we do |
2367 | 0 | c = synchronization_internal::MutexDelay(c, AGGRESSIVE); |
2368 | 0 | } // end of for(;;)-loop |
2369 | | |
2370 | 0 | if (wake_list != kPerThreadSynchNull) { |
2371 | 0 | int64_t total_wait_cycles = 0; |
2372 | 0 | int64_t max_wait_cycles = 0; |
2373 | 0 | int64_t now = base_internal::CycleClock::Now(); |
2374 | 0 | do { |
2375 | | // Profile lock contention events only if the waiter was trying to acquire |
2376 | | // the lock, not waiting on a condition variable or Condition. |
2377 | 0 | if (!wake_list->cond_waiter) { |
2378 | 0 | int64_t cycles_waited = |
2379 | 0 | (now - wake_list->waitp->contention_start_cycles); |
2380 | 0 | total_wait_cycles += cycles_waited; |
2381 | 0 | if (max_wait_cycles == 0) max_wait_cycles = cycles_waited; |
2382 | 0 | wake_list->waitp->contention_start_cycles = now; |
2383 | 0 | wake_list->waitp->should_submit_contention_data = true; |
2384 | 0 | } |
2385 | 0 | wake_list = Wakeup(wake_list); // wake waiters |
2386 | 0 | } while (wake_list != kPerThreadSynchNull); |
2387 | 0 | if (total_wait_cycles > 0) { |
2388 | 0 | mutex_tracer("slow release", this, total_wait_cycles); |
2389 | 0 | ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0); |
2390 | 0 | submit_profile_data(total_wait_cycles); |
2391 | 0 | ABSL_TSAN_MUTEX_POST_DIVERT(this, 0); |
2392 | 0 | } |
2393 | 0 | } |
2394 | 0 | } |
2395 | | |
2396 | | // Used by CondVar implementation to reacquire mutex after waking from |
2397 | | // condition variable. This routine is used instead of Lock() because the |
2398 | | // waiting thread may have been moved from the condition variable queue to the |
2399 | | // mutex queue without a wakeup, by Trans(). In that case, when the thread is |
2400 | | // finally woken, the woken thread will believe it has been woken from the |
2401 | | // condition variable (i.e. its PC will be in when in the CondVar code), when |
2402 | | // in fact it has just been woken from the mutex. Thus, it must enter the slow |
2403 | | // path of the mutex in the same state as if it had just woken from the mutex. |
2404 | | // That is, it must ensure to clear kMuDesig (INV1b). |
2405 | 0 | void Mutex::Trans(MuHow how) { |
2406 | 0 | this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond); |
2407 | 0 | } |
2408 | | |
2409 | | // Used by CondVar implementation to effectively wake thread w from the |
2410 | | // condition variable. If this mutex is free, we simply wake the thread. |
2411 | | // It will later acquire the mutex with high probability. Otherwise, we |
2412 | | // enqueue thread w on this mutex. |
2413 | 0 | void Mutex::Fer(PerThreadSynch *w) { |
2414 | 0 | SchedulingGuard::ScopedDisable disable_rescheduling; |
2415 | 0 | int c = 0; |
2416 | 0 | ABSL_RAW_CHECK(w->waitp->cond == nullptr, |
2417 | 0 | "Mutex::Fer while waiting on Condition"); |
2418 | 0 | ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(), |
2419 | 0 | "Mutex::Fer while in timed wait"); |
2420 | 0 | ABSL_RAW_CHECK(w->waitp->cv_word == nullptr, |
2421 | 0 | "Mutex::Fer with pending CondVar queueing"); |
2422 | 0 | for (;;) { |
2423 | 0 | intptr_t v = mu_.load(std::memory_order_relaxed); |
2424 | | // Note: must not queue if the mutex is unlocked (nobody will wake it). |
2425 | | // For example, we can have only kMuWait (conditional) or maybe |
2426 | | // kMuWait|kMuWrWait. |
2427 | | // conflicting != 0 implies that the waking thread cannot currently take |
2428 | | // the mutex, which in turn implies that someone else has it and can wake |
2429 | | // us if we queue. |
2430 | 0 | const intptr_t conflicting = |
2431 | 0 | kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader); |
2432 | 0 | if ((v & conflicting) == 0) { |
2433 | 0 | w->next = nullptr; |
2434 | 0 | w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
2435 | 0 | IncrementSynchSem(this, w); |
2436 | 0 | return; |
2437 | 0 | } else { |
2438 | 0 | if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters |
2439 | | // This thread tries to become the one and only waiter. |
2440 | 0 | PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond); |
2441 | 0 | ABSL_RAW_CHECK(new_h != nullptr, |
2442 | 0 | "Enqueue failed"); // we must queue ourselves |
2443 | 0 | if (mu_.compare_exchange_strong( |
2444 | 0 | v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait, |
2445 | 0 | std::memory_order_release, std::memory_order_relaxed)) { |
2446 | 0 | return; |
2447 | 0 | } |
2448 | 0 | } else if ((v & kMuSpin) == 0 && |
2449 | 0 | mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) { |
2450 | 0 | PerThreadSynch *h = GetPerThreadSynch(v); |
2451 | 0 | PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond); |
2452 | 0 | ABSL_RAW_CHECK(new_h != nullptr, |
2453 | 0 | "Enqueue failed"); // we must queue ourselves |
2454 | 0 | do { |
2455 | 0 | v = mu_.load(std::memory_order_relaxed); |
2456 | 0 | } while (!mu_.compare_exchange_weak( |
2457 | 0 | v, |
2458 | 0 | (v & kMuLow & ~kMuSpin) | kMuWait | |
2459 | 0 | reinterpret_cast<intptr_t>(new_h), |
2460 | 0 | std::memory_order_release, std::memory_order_relaxed)); |
2461 | 0 | return; |
2462 | 0 | } |
2463 | 0 | } |
2464 | 0 | c = synchronization_internal::MutexDelay(c, GENTLE); |
2465 | 0 | } |
2466 | 0 | } |
2467 | | |
2468 | 26 | void Mutex::AssertHeld() const { |
2469 | 26 | if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) { |
2470 | 0 | SynchEvent *e = GetSynchEvent(this); |
2471 | 0 | ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s", |
2472 | 0 | static_cast<const void *>(this), |
2473 | 0 | (e == nullptr ? "" : e->name)); |
2474 | 0 | } |
2475 | 26 | } |
2476 | | |
2477 | 0 | void Mutex::AssertReaderHeld() const { |
2478 | 0 | if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) { |
2479 | 0 | SynchEvent *e = GetSynchEvent(this); |
2480 | 0 | ABSL_RAW_LOG( |
2481 | 0 | FATAL, "thread should hold at least a read lock on Mutex %p %s", |
2482 | 0 | static_cast<const void *>(this), (e == nullptr ? "" : e->name)); |
2483 | 0 | } |
2484 | 0 | } |
2485 | | |
2486 | | // -------------------------------- condition variables |
2487 | | static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list |
2488 | | static const intptr_t kCvEvent = 0x0002L; // record events |
2489 | | |
2490 | | static const intptr_t kCvLow = 0x0003L; // low order bits of CV |
2491 | | |
2492 | | // Hack to make constant values available to gdb pretty printer |
2493 | | enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, }; |
2494 | | |
2495 | | static_assert(PerThreadSynch::kAlignment > kCvLow, |
2496 | | "PerThreadSynch::kAlignment must be greater than kCvLow"); |
2497 | | |
2498 | 0 | void CondVar::EnableDebugLog(const char *name) { |
2499 | 0 | SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin); |
2500 | 0 | e->log = true; |
2501 | 0 | UnrefSynchEvent(e); |
2502 | 0 | } |
2503 | | |
2504 | 0 | CondVar::~CondVar() { |
2505 | 0 | if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) { |
2506 | 0 | ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin); |
2507 | 0 | } |
2508 | 0 | } |
2509 | | |
2510 | | |
2511 | | // Remove thread s from the list of waiters on this condition variable. |
2512 | 0 | void CondVar::Remove(PerThreadSynch *s) { |
2513 | 0 | SchedulingGuard::ScopedDisable disable_rescheduling; |
2514 | 0 | intptr_t v; |
2515 | 0 | int c = 0; |
2516 | 0 | for (v = cv_.load(std::memory_order_relaxed);; |
2517 | 0 | v = cv_.load(std::memory_order_relaxed)) { |
2518 | 0 | if ((v & kCvSpin) == 0 && // attempt to acquire spinlock |
2519 | 0 | cv_.compare_exchange_strong(v, v | kCvSpin, |
2520 | 0 | std::memory_order_acquire, |
2521 | 0 | std::memory_order_relaxed)) { |
2522 | 0 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
2523 | 0 | if (h != nullptr) { |
2524 | 0 | PerThreadSynch *w = h; |
2525 | 0 | while (w->next != s && w->next != h) { // search for thread |
2526 | 0 | w = w->next; |
2527 | 0 | } |
2528 | 0 | if (w->next == s) { // found thread; remove it |
2529 | 0 | w->next = s->next; |
2530 | 0 | if (h == s) { |
2531 | 0 | h = (w == s) ? nullptr : w; |
2532 | 0 | } |
2533 | 0 | s->next = nullptr; |
2534 | 0 | s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
2535 | 0 | } |
2536 | 0 | } |
2537 | | // release spinlock |
2538 | 0 | cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), |
2539 | 0 | std::memory_order_release); |
2540 | 0 | return; |
2541 | 0 | } else { |
2542 | | // try again after a delay |
2543 | 0 | c = synchronization_internal::MutexDelay(c, GENTLE); |
2544 | 0 | } |
2545 | 0 | } |
2546 | 0 | } |
2547 | | |
2548 | | // Queue thread waitp->thread on condition variable word cv_word using |
2549 | | // wait parameters waitp. |
2550 | | // We split this into a separate routine, rather than simply doing it as part |
2551 | | // of WaitCommon(). If we were to queue ourselves on the condition variable |
2552 | | // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via |
2553 | | // the logging code, or via a Condition function) and might potentially attempt |
2554 | | // to block this thread. That would be a problem if the thread were already on |
2555 | | // a condition variable waiter queue. Thus, we use the waitp->cv_word to tell |
2556 | | // the unlock code to call CondVarEnqueue() to queue the thread on the condition |
2557 | | // variable queue just before the mutex is to be unlocked, and (most |
2558 | | // importantly) after any call to an external routine that might re-enter the |
2559 | | // mutex code. |
2560 | 0 | static void CondVarEnqueue(SynchWaitParams *waitp) { |
2561 | | // This thread might be transferred to the Mutex queue by Fer() when |
2562 | | // we are woken. To make sure that is what happens, Enqueue() doesn't |
2563 | | // call CondVarEnqueue() again but instead uses its normal code. We |
2564 | | // must do this before we queue ourselves so that cv_word will be null |
2565 | | // when seen by the dequeuer, who may wish immediately to requeue |
2566 | | // this thread on another queue. |
2567 | 0 | std::atomic<intptr_t> *cv_word = waitp->cv_word; |
2568 | 0 | waitp->cv_word = nullptr; |
2569 | |
|
2570 | 0 | intptr_t v = cv_word->load(std::memory_order_relaxed); |
2571 | 0 | int c = 0; |
2572 | 0 | while ((v & kCvSpin) != 0 || // acquire spinlock |
2573 | 0 | !cv_word->compare_exchange_weak(v, v | kCvSpin, |
2574 | 0 | std::memory_order_acquire, |
2575 | 0 | std::memory_order_relaxed)) { |
2576 | 0 | c = synchronization_internal::MutexDelay(c, GENTLE); |
2577 | 0 | v = cv_word->load(std::memory_order_relaxed); |
2578 | 0 | } |
2579 | 0 | ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be"); |
2580 | 0 | waitp->thread->waitp = waitp; // prepare ourselves for waiting |
2581 | 0 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
2582 | 0 | if (h == nullptr) { // add this thread to waiter list |
2583 | 0 | waitp->thread->next = waitp->thread; |
2584 | 0 | } else { |
2585 | 0 | waitp->thread->next = h->next; |
2586 | 0 | h->next = waitp->thread; |
2587 | 0 | } |
2588 | 0 | waitp->thread->state.store(PerThreadSynch::kQueued, |
2589 | 0 | std::memory_order_relaxed); |
2590 | 0 | cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread), |
2591 | 0 | std::memory_order_release); |
2592 | 0 | } |
2593 | | |
2594 | 0 | bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) { |
2595 | 0 | bool rc = false; // return value; true iff we timed-out |
2596 | |
|
2597 | 0 | intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed); |
2598 | 0 | Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared; |
2599 | 0 | ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how)); |
2600 | | |
2601 | | // maybe trace this call |
2602 | 0 | intptr_t v = cv_.load(std::memory_order_relaxed); |
2603 | 0 | cond_var_tracer("Wait", this); |
2604 | 0 | if ((v & kCvEvent) != 0) { |
2605 | 0 | PostSynchEvent(this, SYNCH_EV_WAIT); |
2606 | 0 | } |
2607 | | |
2608 | | // Release mu and wait on condition variable. |
2609 | 0 | SynchWaitParams waitp(mutex_how, nullptr, t, mutex, |
2610 | 0 | Synch_GetPerThreadAnnotated(mutex), &cv_); |
2611 | | // UnlockSlow() will call CondVarEnqueue() just before releasing the |
2612 | | // Mutex, thus queuing this thread on the condition variable. See |
2613 | | // CondVarEnqueue() for the reasons. |
2614 | 0 | mutex->UnlockSlow(&waitp); |
2615 | | |
2616 | | // wait for signal |
2617 | 0 | while (waitp.thread->state.load(std::memory_order_acquire) == |
2618 | 0 | PerThreadSynch::kQueued) { |
2619 | 0 | if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) { |
2620 | | // DecrementSynchSem returned due to timeout. |
2621 | | // Now we will either (1) remove ourselves from the wait list in Remove |
2622 | | // below, in which case Remove will set thread.state = kAvailable and |
2623 | | // we will not call DecrementSynchSem again; or (2) Signal/SignalAll |
2624 | | // has removed us concurrently and is calling Wakeup, which will set |
2625 | | // thread.state = kAvailable and post to the semaphore. |
2626 | | // It's important to reset the timeout for the case (2) because otherwise |
2627 | | // we can live-lock in this loop since DecrementSynchSem will always |
2628 | | // return immediately due to timeout, but Signal/SignalAll is not |
2629 | | // necessary set thread.state = kAvailable yet (and is not scheduled |
2630 | | // due to thread priorities or other scheduler artifacts). |
2631 | | // Note this could also be resolved if Signal/SignalAll would set |
2632 | | // thread.state = kAvailable while holding the wait list spin lock. |
2633 | | // But this can't be easily done for SignalAll since it grabs the whole |
2634 | | // wait list with a single compare-exchange and does not really grab |
2635 | | // the spin lock. |
2636 | 0 | t = KernelTimeout::Never(); |
2637 | 0 | this->Remove(waitp.thread); |
2638 | 0 | rc = true; |
2639 | 0 | } |
2640 | 0 | } |
2641 | |
|
2642 | 0 | ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be"); |
2643 | 0 | waitp.thread->waitp = nullptr; // cleanup |
2644 | | |
2645 | | // maybe trace this call |
2646 | 0 | cond_var_tracer("Unwait", this); |
2647 | 0 | if ((v & kCvEvent) != 0) { |
2648 | 0 | PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING); |
2649 | 0 | } |
2650 | | |
2651 | | // From synchronization point of view Wait is unlock of the mutex followed |
2652 | | // by lock of the mutex. We've annotated start of unlock in the beginning |
2653 | | // of the function. Now, finish unlock and annotate lock of the mutex. |
2654 | | // (Trans is effectively lock). |
2655 | 0 | ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how)); |
2656 | 0 | ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how)); |
2657 | 0 | mutex->Trans(mutex_how); // Reacquire mutex |
2658 | 0 | ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0); |
2659 | 0 | return rc; |
2660 | 0 | } |
2661 | | |
2662 | 0 | bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) { |
2663 | 0 | return WaitWithDeadline(mu, DeadlineFromTimeout(timeout)); |
2664 | 0 | } |
2665 | | |
2666 | 0 | bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) { |
2667 | 0 | return WaitCommon(mu, KernelTimeout(deadline)); |
2668 | 0 | } |
2669 | | |
2670 | 0 | void CondVar::Wait(Mutex *mu) { |
2671 | 0 | WaitCommon(mu, KernelTimeout::Never()); |
2672 | 0 | } |
2673 | | |
2674 | | // Wake thread w |
2675 | | // If it was a timed wait, w will be waiting on w->cv |
2676 | | // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem |
2677 | | // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer(). |
2678 | 0 | void CondVar::Wakeup(PerThreadSynch *w) { |
2679 | 0 | if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) { |
2680 | | // The waiting thread only needs to observe "w->state == kAvailable" to be |
2681 | | // released, we must cache "cvmu" before clearing "next". |
2682 | 0 | Mutex *mu = w->waitp->cvmu; |
2683 | 0 | w->next = nullptr; |
2684 | 0 | w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
2685 | 0 | Mutex::IncrementSynchSem(mu, w); |
2686 | 0 | } else { |
2687 | 0 | w->waitp->cvmu->Fer(w); |
2688 | 0 | } |
2689 | 0 | } |
2690 | | |
2691 | 0 | void CondVar::Signal() { |
2692 | 0 | SchedulingGuard::ScopedDisable disable_rescheduling; |
2693 | 0 | ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); |
2694 | 0 | intptr_t v; |
2695 | 0 | int c = 0; |
2696 | 0 | for (v = cv_.load(std::memory_order_relaxed); v != 0; |
2697 | 0 | v = cv_.load(std::memory_order_relaxed)) { |
2698 | 0 | if ((v & kCvSpin) == 0 && // attempt to acquire spinlock |
2699 | 0 | cv_.compare_exchange_strong(v, v | kCvSpin, |
2700 | 0 | std::memory_order_acquire, |
2701 | 0 | std::memory_order_relaxed)) { |
2702 | 0 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
2703 | 0 | PerThreadSynch *w = nullptr; |
2704 | 0 | if (h != nullptr) { // remove first waiter |
2705 | 0 | w = h->next; |
2706 | 0 | if (w == h) { |
2707 | 0 | h = nullptr; |
2708 | 0 | } else { |
2709 | 0 | h->next = w->next; |
2710 | 0 | } |
2711 | 0 | } |
2712 | | // release spinlock |
2713 | 0 | cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), |
2714 | 0 | std::memory_order_release); |
2715 | 0 | if (w != nullptr) { |
2716 | 0 | CondVar::Wakeup(w); // wake waiter, if there was one |
2717 | 0 | cond_var_tracer("Signal wakeup", this); |
2718 | 0 | } |
2719 | 0 | if ((v & kCvEvent) != 0) { |
2720 | 0 | PostSynchEvent(this, SYNCH_EV_SIGNAL); |
2721 | 0 | } |
2722 | 0 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
2723 | 0 | return; |
2724 | 0 | } else { |
2725 | 0 | c = synchronization_internal::MutexDelay(c, GENTLE); |
2726 | 0 | } |
2727 | 0 | } |
2728 | 0 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
2729 | 0 | } |
2730 | | |
2731 | 0 | void CondVar::SignalAll () { |
2732 | 0 | ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); |
2733 | 0 | intptr_t v; |
2734 | 0 | int c = 0; |
2735 | 0 | for (v = cv_.load(std::memory_order_relaxed); v != 0; |
2736 | 0 | v = cv_.load(std::memory_order_relaxed)) { |
2737 | | // empty the list if spinlock free |
2738 | | // We do this by simply setting the list to empty using |
2739 | | // compare and swap. We then have the entire list in our hands, |
2740 | | // which cannot be changing since we grabbed it while no one |
2741 | | // held the lock. |
2742 | 0 | if ((v & kCvSpin) == 0 && |
2743 | 0 | cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire, |
2744 | 0 | std::memory_order_relaxed)) { |
2745 | 0 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
2746 | 0 | if (h != nullptr) { |
2747 | 0 | PerThreadSynch *w; |
2748 | 0 | PerThreadSynch *n = h->next; |
2749 | 0 | do { // for every thread, wake it up |
2750 | 0 | w = n; |
2751 | 0 | n = n->next; |
2752 | 0 | CondVar::Wakeup(w); |
2753 | 0 | } while (w != h); |
2754 | 0 | cond_var_tracer("SignalAll wakeup", this); |
2755 | 0 | } |
2756 | 0 | if ((v & kCvEvent) != 0) { |
2757 | 0 | PostSynchEvent(this, SYNCH_EV_SIGNALALL); |
2758 | 0 | } |
2759 | 0 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
2760 | 0 | return; |
2761 | 0 | } else { |
2762 | | // try again after a delay |
2763 | 0 | c = synchronization_internal::MutexDelay(c, GENTLE); |
2764 | 0 | } |
2765 | 0 | } |
2766 | 0 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
2767 | 0 | } |
2768 | | |
2769 | 0 | void ReleasableMutexLock::Release() { |
2770 | 0 | ABSL_RAW_CHECK(this->mu_ != nullptr, |
2771 | 0 | "ReleasableMutexLock::Release may only be called once"); |
2772 | 0 | this->mu_->Unlock(); |
2773 | 0 | this->mu_ = nullptr; |
2774 | 0 | } |
2775 | | |
2776 | | #ifdef ABSL_HAVE_THREAD_SANITIZER |
2777 | | extern "C" void __tsan_read1(void *addr); |
2778 | | #else |
2779 | | #define __tsan_read1(addr) // do nothing if TSan not enabled |
2780 | | #endif |
2781 | | |
2782 | | // A function that just returns its argument, dereferenced |
2783 | 0 | static bool Dereference(void *arg) { |
2784 | | // ThreadSanitizer does not instrument this file for memory accesses. |
2785 | | // This function dereferences a user variable that can participate |
2786 | | // in a data race, so we need to manually tell TSan about this memory access. |
2787 | 0 | __tsan_read1(arg); |
2788 | 0 | return *(static_cast<bool *>(arg)); |
2789 | 0 | } |
2790 | | |
2791 | | ABSL_CONST_INIT const Condition Condition::kTrue; |
2792 | | |
2793 | | Condition::Condition(bool (*func)(void *), void *arg) |
2794 | | : eval_(&CallVoidPtrFunction), |
2795 | 0 | arg_(arg) { |
2796 | 0 | static_assert(sizeof(&func) <= sizeof(callback_), |
2797 | 0 | "An overlarge function pointer passed to Condition."); |
2798 | 0 | StoreCallback(func); |
2799 | 0 | } |
2800 | | |
2801 | 0 | bool Condition::CallVoidPtrFunction(const Condition *c) { |
2802 | 0 | using FunctionPointer = bool (*)(void *); |
2803 | 0 | FunctionPointer function_pointer; |
2804 | 0 | std::memcpy(&function_pointer, c->callback_, sizeof(function_pointer)); |
2805 | 0 | return (*function_pointer)(c->arg_); |
2806 | 0 | } |
2807 | | |
2808 | | Condition::Condition(const bool *cond) |
2809 | | : eval_(CallVoidPtrFunction), |
2810 | | // const_cast is safe since Dereference does not modify arg |
2811 | 0 | arg_(const_cast<bool *>(cond)) { |
2812 | 0 | using FunctionPointer = bool (*)(void *); |
2813 | 0 | const FunctionPointer dereference = Dereference; |
2814 | 0 | StoreCallback(dereference); |
2815 | 0 | } |
2816 | | |
2817 | 0 | bool Condition::Eval() const { |
2818 | | // eval_ == null for kTrue |
2819 | 0 | return (this->eval_ == nullptr) || (*this->eval_)(this); |
2820 | 0 | } |
2821 | | |
2822 | 0 | bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) { |
2823 | | // kTrue logic. |
2824 | 0 | if (a == nullptr || a->eval_ == nullptr) { |
2825 | 0 | return b == nullptr || b->eval_ == nullptr; |
2826 | 0 | } else if (b == nullptr || b->eval_ == nullptr) { |
2827 | 0 | return false; |
2828 | 0 | } |
2829 | | // Check equality of the representative fields. |
2830 | 0 | return a->eval_ == b->eval_ && a->arg_ == b->arg_ && |
2831 | 0 | !memcmp(a->callback_, b->callback_, sizeof(a->callback_)); |
2832 | 0 | } |
2833 | | |
2834 | | ABSL_NAMESPACE_END |
2835 | | } // namespace absl |